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Abstract—Control firmware in unmanned aerial vehicles
(UAVs) uses sensors to model and manage flight operations,
from takeoff to landing to flying between waypoints. However,
sensors can fail at any time during a flight. If control firmware
mishandles sensor failures, UAVs can crash, fly away, or suffer
other unsafe conditions. In-situ model checking finds sensor
failures that could lead to unsafe conditions by systematically
failing sensors. However, the type of sensor failure and its timing
within a flight affect its manifestation, creating a large search
space. We propose Avis, an in-situ model checker to quickly
uncover UAV sensor failures that lead to unsafe conditions.
Avis exploits operating modes, i.e., a label that maps software
execution to corresponding flight operations. Widely used control
firmware already support operating modes. Avis injects sensor
failures as the control firmware transitions between modes — a
key execution point where mishandled software exceptions can
trigger unsafe conditions. We implemented Avis and applied
it to ArduPilot and PX4. Avis found unsafe conditions 2.4X
faster than Bayesian Fault Injection, the leading, state-of-the-
art approach. Within the current code base of ArduPilot and
PX4, Avis discovered 10 previously unknown software bugs that
lead to unsafe conditions. Additionally, we reinserted 5 known
bugs that caused serious, unsafe conditions and Avis correctly
reported all of them.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) hover, fly to set way-
points and perform complex aerial operations. Without a hu-
man aboard, UAVs can handle missions that are too dangerous,
too long or otherwise unprofitable for traditional aircraft. For
example, UAVs can enter wildfires and war zones [3], [20].
UAVs can also survey large crop fields at low altitudes to as-
sess damage caused by natural disasters, pests and contagious
crop diseases [43]], [44]. UAVs use software, called control
firmware, to read from sensors, model the state of the aircraft,
respond to pilot commands, and control pitch, thrust and yaw
for navigation. As the global market for UAVs will soon
exceed $42B [32], control firmware is increasingly crucial
system software. It underlies every major UAV use case and
must support a growing number of flight operations. Software
bugs in UAV control firmware can have serious consequences,
such as crashes.

UAVs use a myriad of sensors, including inertial mea-
surement units (IMUs), global positioning systems (GPSs),
compasses, and barometers. Sensors can fail for many reasons.
GPSs can be disrupted by Carrington events that affect the
Earth’s magnetic field [33]. Alternatively, sensors can be
disconnected from their power source due to turbulence or
motor vibrations. Control firmware, by design, accounts for
sensor failures via (1) failing over to redundant sensors,
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Fig. 1: Execution analysis of a mishandled sensor failure that
can cause a crash.

(2) discarding invalid readings and (3) employing multiple
methods with diverse input needs to model the state of the
aircraft. Despite these precautions, sensor failures can cause
unsafe flight conditions where control firmware executes flight
operations that crash the UAV or disrupt its mission. Unsafe
flight conditions occur when fault handling logic does not
anticipate the context surrounding a sensor failure.

Figure [1| depicts an unsafe condition that stemmed from a
sensor failure in ArduPilot. At the end of a landing operation,
IMU sensors failed. The control firmware detected the failure
and began to return to home using GPS driven flight. At
normal flight altitudes, these actions are safe; the GPS would
measure altitude less precisely than an IMU but sufficiently
to conduct simple maneuvers when used with other models.
However, the control firmware triggered GPS-driven flight
under the incorrect assumption that the UAV could safely
navigate to a new altitude using the GPS alone. At low
altitudes, such as the end of a landing operation, GPS is
too imprecise to guide major altitude adjustments. We can
repeatedly trigger this crash in simulation by failing IMU
sensors when the UAV is fewer than 2 meters above ground.

Sensor bugs are segments of control firmware source code
that, if fixed, could eliminate an unsafe flight condition caused
by a sensor failure. Figure (1| was caused by a sensor bug. If
control firmware checked altitude before switching to GPS
flight, the crash could have been avoided. Instead, the landing
routine could have been allowed to complete normally.

Our analysis of public Github repositories reveals that
sensor bugs represent 40% of source code patches intended
to fix UAV crashes. Further, sensor bugs often lead to crashes
or other serious consequences. However, the source code for
control firmware is large and complex. In practice, software
developers wait for users to report sensor bug manifestations
before trying to understand root causes. The severity of sensor
bug manifestations necessitates more preemptive approaches.



In-situ model checking systematically injects faults during
simulated executions, searching for faults that cause the system
to violate invariant properties. While in-situ model checking
enables preemptive analysis, UAVs present unique challenges
for its application. First, control firmware accesses sensor
readings frequently (103-10* times per second). Also, one
or multiple types of sensors can fail at any moment. This
failure space is immense. Second, sensor bug manifestations
depend on the timing and type of failure. Figure [I] depicts
the narrow window where an IMU failure can cause a UAV
to crash. Practical in-situ model checking approaches must
balance these conflicting concerns. While statistics-driven fault
injection seems necessary given the magnitude of the search
space, the sampling approaches could miss fault injections that
trigger time-sensitive bugs.

This paper presents Avis, an aerial-vehicle in-situ model
checker. Avis exploits a common sentiment among control
firmware developers: Sensor bugs often stem from failure
handling logic that is too narrowly tailored to specific oper-
ating modes. These bugs are hard to detect because failure
handling logic is implemented in different locations in the
firmware [24]. Avis uses custom in-situ workloads that
exercise transitions between operating modes and carefully
injects failures, across all types of sensors, near the transitions
between operating modes. By exploiting operating modes,
Avis finds a nice balance. It prioritizes injection sites likely
to reveal bugs, but also captures time-sensitive issues at the
critical boundaries between operating modes. Compared to
Bayesian Fault Injection (BFI) [15], a statistically guided
model checker for autonomous vehicles, Avis does not rely
on statistical inference. BFI is more likely to trigger unsafe
conditions that occur in the main flight mode, especially if
unsafe conditions have occurred in the past. In contrast, Avis
does not require training data and can comprehensively explore
fault handling logic that spans operating modes.

We implemented Avis and applied it to two open-source
control firmware: ArduPilot and PX4. We compared it to BFI
in terms of efficiency (unsafe conditions found per simulation)
and efficacy (bugs uncovered). Avis found unsafe conditions
24X more efficiently than BFI. When we re-inserted 5
previously known software bugs that caused serious, unsafe
conditions, Avis found unsafe conditions caused by each bug.
BFI did not find any. When we studied unsafe conditions that
Avis found in the current code base, we found 10 previously
unknown software bugs related to IMU and GPS failures (2
of which have been confirmed by developers).

To summarize, our contributions are:

o A study characterizing the frequency and impact of sensor
bugs in widely used open-source control firmware.

o A fault injection approach that exploits operating modes
in UAV for stratified breadth-first search.

o A framework for building UAV workloads that exercise
operating modes.

o A prototype of Avis and experimental results on ArduPi-
lot and PX4 that reveal the efficiency and efficacy of our
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Fig. 2: ArduPilot uses support for multiple threads to query
sensors and asynchronously update its main control loop.

approach by capturing previously known sensor bugs and
uncovering new, previously unknown bugs.

The rest of the paper is organized as follows. provides
background on sensor bugs and UAVs. {III shows the impact
of sensor bugs on UAV reliability. presents the design
of Avis, including our framework to create workloads that
exercise operating modes and our stratified approach for fault
injection. describes implementation details. In VI we
present our evaluation of Avis and a study analyzing sensor
bugs and their manifestations in UAVs. We discuss related

work in §VIIl Finally, we conclude in §VIII

II. BACKGROUND

Figure [2] depicts runtime execution for ArduPilot, a widely
used software system for controlling UAVs [35]. Created in
2007 by hobbyists, ArduPilot is now used by more than 65
companies in industrial applications. It supports a wide range
of aircraft from large fixed-wing planes to copters that weigh
less than a kilogram. The code base now exceeds 700K lines
with nearly 100 developers contributing to its maintenance.
PX4 is another popular, open-source framework for autopilot
control firmware [28]]. PX4 has over 6M lines of code and is
used by the production-grade PixHawk UAV.

As shown in Figure 2} ArduPilot uses multiple parallel
threads to read from sensors and manage flight dynamics.
Pilots can provide input with a remote control or with a laptop.
Throughout this paper, we refer to pilot inputs as the UAV
workload, i.e., a sequence of flight commands. For example,
ArduPilot supports flight commands to (1) directly adjust
thrust, yaw or pitch, and (2) fly to a waypoint coordinate.
The code used to execute these commands differs. An oper-
ating mode encompasses all code execution associated with a
pilot command. Today, the ArduPilot code base supports 25
operating modes including takeoff, landing, manual piloting,
fly to waypoint, return home, auto avoidance and acrobatics.
In addition, developers can add custom modes to create
automated flight maneuvers.

During every iteration of the simulation, an operating mode
translates user inputs and sensor signals to actuation in the
motor systems. To help developers, ArduPilot includes models
to estimate the state of the aircraft. For any operating mode,
it is important to know the position, altitude and attitude of
the aircraft before adjusting motor systems. However, sensor
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Fig. 3: Analysis of reported bugs for ArduPilot and PX4.

failures can render these models useless because (1) fault
handling logic may not realize that state models differ from
normal flight conditions (as in Figurem) and (2) sensor failures
may lead to incorrect state models that diverge from reality.
When developer expectations, state models and reality differ,
the UAV is flying in an unsafe condition that could have
serious consequences.

III. THE IMPACT OF SENSOR BUGS

We reviewed bugs reported and resolved on the public
GitHub repositories of ArduPilot (206 cases) and PX4 (188
cases) from 2016-2019. In total, we reviewed 394 bugs.
We excluded bug reports related to software development
environments and tools (29). We also removed duplicates,
false reports, reports unrelated to control firmware and bugs
that were described too vaguely to repeat or understand (150).
After pruning, we were left with 215 bugs.

We classified bugs by their root causes: Semantic bugs were
caused by logically incorrect behavior of the UAV without
a preceding hardware fault; Memory bugs stemmed from
incorrect memory allocation or invalid accesses; Sensor bugs,
as described earlier, were triggered by a sensor fault. Finally,
we grouped all remaining bugs, including concurrency bugs,
under the label other.

We also classified bugs by the flight conditions where they
manifested. Some bugs were easy to reproduce, because they
could be triggered under default settings, i.e., with standard
environment and hardware configurations. We distinguished
bugs that required special settings. Finally, we also classified
bugs by their symptoms. Some bugs were asymptomatic.
Others had transient affects, such as jerks during flight. The
most serious bugs resulted in a crash or the UAV flew away.

Finding 1: Sensor bugs account for 20% of control
firmware bugs.

We found that semantic bugs accounted for 68% of reported
bugs. Sensor bugs were second most common, accounting for
20% of reported bugs. However, as shown in Figure 3[A),
sensor bugs represented 40% of reported bugs that caused the
UAV to crash.

We believe sensor bugs are common for a several reasons.
(1) ArduPilot and PX4 have adopted Valgrind [26] to detect
memory bugs during in-house testing [6], [29], depressing

the frequency of such bugs. (2) Semantic bugs were often
asymptomatic (90%). Common symptoms include improper
messages appearing in logs, unimplemented commands, grad-
ual vehicle drift, and mishandled unit conversions resulting
in the vehicle navigating to an incorrect location. These bugs
reflected the growing number of contributors to the code base,
but they were resolved without serious consequences. (3) As
of this writing, ArduPilot and PX4 did not adopt tools for
rigorous fault injection. Code paths related to handling sensor
failures are checked by unit tests, but are not comprehensively
checked across multiple environments.

Finding 2: 47% of the sensor bugs are reproducible under
default settings.

Figure [3(B) examines the 44 sensor bugs in our study.
47% could be reproduced under default environment and
hardware settings. In a nutshell, these bugs followed a simple
template (1) trigger a sensor failure and (2) check the vehicle’s
behavior for symptoms. Wind and humidity contributed to
bugs that required special environmental conditions. However,
new aircraft also introduced bugs. For example, Px4-12758
in PX4 describes a sensor bug where the fault handling logic
in a new copter used the wrong interface to set return to home
mode on the aircraft.

Finding 3: About 34% of the sensor bugs have serious
symptoms.

Not only were sensor bugs the most common root cause
for bugs manifesting as a crash, Figure 3[C) shows that
most reported sensor bugs displayed symptoms. A significant
portion of sensor bugs are serious (34%). This finding demon-
strates the importance of detecting sensor bugs in RVs. Sensor
bugs are prone to serious outcomes because UAV depend on
sensors for safe flight. We noticed that, for many root causes,
developers applied default actions, like return to home, as-
suming they can be executed effectively. When sensors failed,
these assumptions—i.e., the difference between expectations,
modeled state and reality— had severe consequences.

IV. Avis DESIGN

As shown in Figure [ Avis consists of three major com-
ponents: workloads, a fault injection engine, and an invariant
monitor. Avis tests a UAV by simulating its behavior in a
physical environment under a workload. Workloads issue flight
commands to the UAV, as shown in Figure [Z_f} While the UAV
runs, the fault injection engine monitors the vehicle’s mode
transitions. The fault injection engine uses mode transitions to
schedule injections. Meanwhile, the invariant monitor checks
the UAV’s simulated physical state to detect unsafe conditions.
If an unsafe condition occurs, the invariant monitor generates
a detailed report to help reproduce and diagnose the bug.

UAV simulation involves executing mostly unmodified UAV
source code while simulating hardware. The only two modi-
fications are the use of simulated sensor and actuator drivers.
The sensor drivers read from the simulator instead of hard-
ware. The original firmware source code uses the simulated
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Fig. 4: An overview of Avis. Arrows denote the direction of
information flow.

sensor inputs to determine its next motor controls. The actuator
drivers communicate the motor controls to the simulator (not
shown). The simulator uses these controls to generate the ve-
hicle’s new physical state. One iteration of this communication
is called a simulation time-step.

Avis relies on simulation instead of real UAV flights for
three reasons. First, recall that sensor bugs can have serious
symptoms; simulating the behavior of the UAV under a fault
injection scenario allows Avis to expose a sensor bug without
suffering from the bug’s symptom, e.g., crashing the vehicle.
Second, simulations can be performed faster than real experi-
ments, improving test throughput. Last but not least, all UAV
firmware modules (except for drivers) are identical to the ones
used in real systems, enabling Avis to use simulation to check
real UAV firmware. Next, we discuss the three components of
Avis in more details.

A. Workloads and Environments

Pilots send commands using a ground-control station to
control a UAV’s movements. A sequence of pilot commands
constitutes a workload. UAVs typically communicate with
the ground-control station using the MAVLink [21] protocol.
Ideally, all control firmware would support the same MAVLink
messages and strictly implement their semantics. In practice,
implementations have subtle quirks that make it difficult for
users to develop portable workloads. To mitigate this issue,
Avis provides default workloads that work on both ArduPilot
and PX4. We also provide a high-level framework developers
can use to extend our workloads and build their own.

We design our workloads to exercise common commands
such as takeoff, fly-to-waypoint, and land. Each command
maneuvers the vehicle in a simple way, e.g. along a polygon.
This allows Avis to trigger bugs that UAV pilots are most
likely to experience.

The simulator provides an environment, a model of the
physical world that contains obstacles and weather effects.
Workloads navigate the UAV in the environment. Some unsafe
conditions can only be recreated in specific environments, e.g.
due to adverse weather or obstacles such as trees. Avis uses
an environment without hostile weather or obstacles.

B. Fault Injection Engine

Avis injects sensor failures during simulated flights to
expose bugs in control firmware that lead to unsafe conditions.
The main challenge Avis faces is exploring a huge fault space.
Exhaustively injecting every possible fault is not feasible and,
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Fig. 5: UAV modes and the corresponding UAV code executed
at different times ¢; during a test run. Each circle represents
the failure state of the GPS and barometer. Similar states are
colored black.

in most cases, would yield normal executions that do not aid
root cause analysis. In this subsection, we first elaborate on
this challenge. Then, we propose a new search strategy, called
SABRE, for fault injection based on the UAV’s operating
mode. Finally, we show how to avoid fault injections that yield
redundant states to further improve search efficiency.

Fault Model and Challenges: Avis models clean sensor
failures, where a sensor instance stops communicating with
the firmware and the driver reports the instance has failed.
Any sensor instance can fail at any time (controlled by Avis).
Moreover, a failed sensor will not recover during the same test
run. Avis focuses on such a simple fault model because it is
realistic. More importantly, UAVs are expected to handle this
simple fault model.

Usually, a UAV samples its sensors thousands of times each
second. Consequently, there are far too many fault injection
sites to exhaustively cover. Moreover, since UAV workloads
usually take minutes to execute, effectively exploring fault
injection sites becomes even more important. On a simple
vehicle with 7 onboard sensors and no backups, there are more
than (27 — 1) x 10® ~ 10° fault injection sites each second.

To maximize the number of unsafe scenarios identified as
we search the fault space, we rely on a key observation: there
are many similar fault injection sites within each mode.
Figure [5] demonstrates this observation using an example.
Since injecting the same failures in the same mode likely leads
to the same UAV behavior, injecting sensor failure at ¢3 can
be similar to injecting failures at ¢5. However, injecting sensor
failures at ¢4 exposes different UAV code to failures, likely
causing different UAV behaviors.

This observation motivates us to prioritize fault injection
at mode boundaries. Consider the bug described in Figure
In a narrow window while the UAV has low altitude but has
not yet landed, it is vulnerable to an IMU failure blinding the



firmware to the effects of its own actuation. By considering
the area between landing and disarming early in the injection
space exploration, Avis quickly triggers this scenario.

Search Strategies: Inspired by the previous observation, we
propose SABRE—a stratified breadth-first search. SABRE ex-
plores the space of sensor failures using injection sites across
all modes. Before we describe SABRE, we first consider two
common search strategies to understand their drawbacks.

Figure 5| shows the fault space that should be explored given
two sensors (GPS and Barometer) and a workload with five
time-steps. Depth-first search is an intuitive way to search
the fault space, which results in the following sequence of
executions:

,0,0,{GPS})
0,0, {Baro})
,0,{GPS,Baro})
,0,0,{GPS}, {GPS})

In each sequence (Fi,..., F5), F; denotes the set of sensors
that are failed at time ¢;. This search is ineffective because
similar fault injection scenarios (e.g. failing the GPS at ¢4 and
failing the GPS at ¢5) are explored before the scenarios in
different modes (e.g., failing GPS at ¢3). Given a limited test
budget, depth-first search tends to test a small area of the UAV
firmware.

An alternative approach is to use breadth-first search to
explore the fault space. We explore the fault space across time
to reach dissimilar moments faster. This approach results in the
following sequence of executions:

0,0,0,0,0)

({GPS}, {GPS}, {GPS}, {GPS}, {GPS})
({Baro}, {Baro}, {Baro}, {Baro}, {Baro})
({GPS,Baro}, {GPS, Baro}, ..., {GPS, Baro})
(0,{GPS}, {GPS}, {GPS}, {GPS})

(0,0, {GPS}, {GPS}, {GPS})

However, this strategy is ineffective because it also explores
similar fault scenarios first. Specifically, after injecting failures
at to, breadth-first search considers similar failures at t3
next. This delays exploration of complex fault scenarios (i.e.,
failing different sensors at different times) until all the simple
scenarios are checked. Given the limited test budget, complex
fault scenarios may never be explored by breadth-first search.

In contrast to depth-first search and breadth-first search,
SABRE prioritizes exploring the most different states in the
fault space by considering the UAV’s mode. Specifically,
SABRE first explores the scenarios that inject sensor failures
around mode transitions, allowing SABRE to consider fault
scenarios that fail different sensors at different modes before
the aforementioned two strategies. Note that SABRE only

Algorithm 1: SABRE

Workload: the workload to execute
Failures : the sensor failures to inject
1 transitionQueue
Queue(ProfileExperiment(Workload));
2 seenBugs < {};
3 while transitionQueue is not empty do

4 timestamp, injectedFailures <«
Dequeue(transitionQueue);
5 for failureSet in PowerSet(Failures) do
6 if CanPrune(timestamp, failureSet, seenBugs,
injectedFailures) then
7 ‘ continue;
end
9 failures + injectedFailures U {(failure,
timestamp) : failure € failureSet};

10 result <— RunExperiment(Workload, failures);
11 if Ok(result) then

12 for modeTimestamp €

result.modeTransitions do
13 Enqueue(transitionQueue,
(modeTimestamp, failures));

14 end

15 else

16 reportBug(failures, result);

17 seenBugs « seenBugs U {failures};
18 end

19 end

20 Enqueue(transitionQueue, (timestamp + 1,

injectedFailures));

21 end

prioritizes the search to uncover bugs earlier — exhaustive
search is still possible, but is prohibitively expensive.

Algorithm [I] shows how Avis uses SABRE to guide its
fault-space exploration. Here, we walk through the algorithm
using the example shown in Figure [3] Avis first executes the
workload to determine when mode transitions occur (Line 1).
Mode transitions are discovered at t1, to, and t4. As a result,
Avis initializes its transition queue to {(t1,0), (t2,0), (t4,0)),
where each (¢;, set) means to inject new faults at ¢; alongside
the fault combinations (sensor,timestamp) in set. Next,
Avis dequeues the injection scenario (t1,()) from the queue
(Line 4) and applies all possible sensor failures to this point
(Line 5) but only if they are not redundant (Lines 6-8). Thus,
Avis tests the following executions:

({GPS}, {GPS}, {GPS}, {GPS}, {GPS})
({Baro}, {Baro}, {Baro}, {Baro}, { Varo})
({GPS,Baro}, {GPS, Baro}, ..., {GPS, Baro})

Avis also re-enqueues each bug-free scenario it tests for
generating new fault scenarios in later runs (Lines 11-14). Fi-
nally, Avis re-enqueues the dequeued scenario with a changed
timestamp so that it will explore injecting faults at different



times in later runs. The next tuple dequeued by Avis is (t2, 1)
since it is the second mode transition discovered during the
profiling run. So, Avis injects faults at {2 as it did at ¢;.
Next, Avis dequeues the mode transition (¢4, @). So, rather than
conducting fault injection at ¢3 next like breadth-first search,
Avis considers this fault combination:

(0,0,0, {GPS}, {GPS}).

In this way, Avis prioritizes injecting faults around the mode
transitions. This process repeats until the queue is exhausted.

1) Redundancy Elimination: While SABRE guides the or-
der that injection sites are searched, it does not avoid redundant
injection scenarios. Avis uses two policies, i.e., found bug
pruning and sensor instance symmetry, to eliminate these
redundancies.

In the found bug pruning policy, if injecting a sensor failure
Fy at time ¢ triggers a bug, Avis will not try to inject Fy plus
other failures at time ¢ in the later test runs. The intuition
behind this policy is that if a vehicle cannot handle a single
sensor failure then it is unlikely to correctly handle multiple
failures in the same program context.

The sensor instance symmetry policy exploits the role of
a sensor, i.e., primary or backup, to reduce the combinatorial
size of the fault space. UAV systems are usually equipped
with multiple sensor instances of the same sensor type to
tolerate sensor failures. One of these redundant sensors is
the primary, while the other instances are the backups. We
find that, when handling sensor failures, the UAV’s behavior
depends on the role of the failed sensors instead of which
instances fail. Therefore, Avis skips a sensor failure scenario if
the same failed sensor roles have been tested before, regardless
of the actual instances.

Figure|[6]illustrates the sensor instance symmetry policy with
an example. Consider a UAV with three compasses labeled as
“P)” “B1,” and “B2,” corresponding to the primary and the two
backups respectively. Assume Avis is injecting sensor failures
at time ¢. In the first two runs, Avis fails sensor P (Figure
[6a) and sensor B1 (Figure [6b), respectively. These are two
different scenarios since P is a primary sensor while B1 is a
backup sensor. Then, Avis considers failing B2 but decides
to skip it (Figure [6c). This is because B2 is a backup sensor
and Avis has tried failing one backup sensor in a previous
run (Figure [6b). Later, Avis injects failures at “P” and “B1”
simultaneously, since it has not yet injected a failure of a
primary with a backup (Figure [6d). When Avis considers
injecting a failure of “P” and “B2” in Figure [6¢} it sees that it
has already failed “P” and “B1” and skips this combination.

In general, if a vehicle is equipped with N instances of a
sensor, sensor instance symmetry reduces the number of faults
that must be injected from N x (2 — 1) (e.g. N primary
instances of a sensor with 2V subsets to fail minus the empty
set of failures) to 2N — 1 (e.g. N — 1 ways to fail the backup
sensors with or without the primary, plus one way to fail the
primary alone) thus diminishing the effects of state explosion.
For the above example, sensor instance symmetry reduces the
number of checks from 21 to 5.

C. Invariant Monitor

At the end of each simulation iteration, Avis’s invariant
monitor checks two simple rules:

o Safety - The UAV does not collide with an obstacle.

o Liveliness - The UAV must always make progress to-
wards its goal. This may be compromised under special
circumstances to preserve safety.

1) Safety: The invariant monitor detects both software
crashes and physical collisions for the safety rule. To detect
software crashes, the invariant monitor checks if the firmware
process is still running. To detect physical collisions inside
the simulator, the invariant monitor checks if (1) the vehicle
rapidly (de)accelerates but (2) has the same position as another
simulated object, e.g, the ground.

2) Liveliness: Checking the liveliness condition is chal-
lenging for two reasons. First, the behavior of the UAV may
change in the presence of sensor failures or non-determinism
introduced by the operating system scheduler (e.g. slight
delays between the workload sending and the firmware re-
ceiving messages), although the mission is still correctly being
executed. Second, liveliness sometimes must be sacrificed in
the presence of sensor failures to preserve safety. Avis must
detect when this has occurred and not report an error.

To combat the first issue, Avis detects liveliness violation
by measuring the differences in the UAV’s behavior between
the test run and a set of correct profiling runs. If the test run
significantly diverges from the correct runs, then liveliness is
violated. We assume runs without sensor failures are correct.

To measure the difference between two runs, Avis compares
the states of the vehicle at the same time offset ¢ in both
runs. The state of the vehicle is represented using the tuple
(P,a, M), where P € R3 is the vehicle’s position, @ € R3
is the vehicle’s acceleration, and M is the vehicle’s mode.
Velocity is excluded because it is redundant: if the difference in
velocity is large, then the difference in acceleration or position
must also be large. We could detect liveliness violations
using position alone. However, it takes tens of seconds to
detect liveliness violations with this approach. Using multiple
variables lets us detect violations in seconds. The invariant
monitor reports a liveliness violation if the state in the test
run deviates from the states in the profiling runs.

Before defining the distance between two states, we first
define the distance of each component in the state tuple. For
both the position P and the acceleration «, we use Euclidean
distance (d.). For example, the distance between two positions
P, and P; is computed as

de(P1, Py) = \/(PF — P§)2 + (P} — P)? + (P} — P§)2,

where PP, P/, and P}? are the three coordinate values of
P;. To define the distance between two modes, we utilize
the mode graph. A mode graph is a directed graph, where
each node represents a mode and each edge represents a
mode-change event. The mode graph is constructed from the
observed transitions between modes in the profiling runs. Note

that not every mode is adjacent in the mode graph — for
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Fig. 6: The process of pruning redundant faults. Compasses colored red are candidates for fault injection; colored black are
not under current consideration; colored blue are considered but pruned. Not shown: {P, B1, B2} and {B1, B2}.

instance, a drone cannot land before it is flying. The distance
between modes (denoted d,,,) is defined as the length of the
shortest path between them in the firmware’s mode graph.

We also normalize the distance of each component before
computing the distance between two states. Intuitively, we
want to transform the distance between the acceleration and
position components to measure “on a scale from 0 to the
longest path in the mode transition graph, how far apart are
these values?” To normalize the distance on positions, we first
compute P, the largest distance between any two positions
that occur at the same time ¢ of two different runs. Let P; ;
denotes the position of the vehicle in simulation ¢ at time {.
Then, P can be computed as

P:max{de(Pi7t,Pj)t)|1gi,jgN/\lgtST},

where N is the number of profiling runs and 7 is the duration
of the profiling runs. To ensure that every profiling runs have
the same duration, we repeat the last state an appropriate
number of times for the shorter runs. Then the normalized
position distance can be computed as

de(Piy, Pj4)D

B

where D denotes the length of the longest path in the mode
graph. Similarly, the normalized distance of two accelerations
can be computed as

dp(Pi¢, Pji) =

de(Aiy, Aj)D

A )
where A, ; denotes the acceleration of the vehicle in simulation
4 at time t, and

A=max {de(Ais, Aj )1 <i,j < NA1<t<T}

da(Aie, Ajy) =

is the largest distance between any two accelerations at the
same time ¢ of two different runs.
Finally, the distance between two state tuples is defined as

d(Sit,Sj.¢) = (dp(Pit, Pjt),da(Aie, Ajt)s dar (Mg, My )|

where M, ; denotes the mode of the vehicle at time ¢ in
simulation ¢ and ||.|| denotes the Euclidean norm.

With this distance defined, we can compute 7, the largest
distance between any two states at the same time ¢ of two
different runs to be

T=max {d(Si:, Sj|1 <4,j < NA1<t<T)}.
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Fig. 7: An overview of one step in the Avis process.

Avis considers the liveliness to have been violated in simula-
tion Sg if
VZ . d(SF7t, Si,t) > T. (1)

That is, liveliness is violated at time ¢ if the state is further
from all profiling runs than the maximum seen distance.

To allow UAVs to preserve safety at the expense of live-
liness, we allow developers to specify safe modes that are
always permitted. For instance, we provide a safe return to
launch location mode. If a vehicle enters a safe mode, Avis
does not signal that a bug has been found, even if liveliness
has been violated. Additional invariants must be supplied for
safe modes. For example, a vehicle executing in the return to
launch mode must make progress back to the launch site.

D. Replaying Bugs

Avis records the failures that it injects. Avis saves the fail-
ures for replay if an unsafe condition is found. To reconstruct
the unsafe condition, Avis re-executes the mission, injecting
the same faults at the same time offsets from mode transitions.
Even in the presence of minor non-determinism this technique
is successful since failures are injected at the same time
relative to the modes they affect.

V. IMPLEMENTATION

Avis contains several components: (1) a high-level frame-
work for building UAV workloads, (2) a fault injection engine
for generating fault injection scenarios, and (3) an invariant
monitor for detecting incorrect firmware behaviors. Avis’
source code is available at [22].



Figure [/| shows an overview of one time-step of the sim-
ulator. The goal of Avis is to test the UAV’s firmware under
different sensor failure scenarios. At the start of each test,
Avis provisions a new instance of the simulator and firmware.
Next, Avis launches its invariant monitor and its workload.
The workload executes until it returns control back to Avis
by calling the step () RPC (Step 1). Typically, workloads
created using our framework only need to call our high-level
APIs, e.g., takeoff (), which call step (). When step ()
is called, Avis notifies the simulator to advance its time by
a fixed unit (Ims) and to permit the firmware to retrieve its
current state (Step 2). The simulator then generates synthetic
sensor readings based on the UAV’s physical state (Step 3).
After reading the sensor values, instrumented code in sensor
drivers report the readings to the fault injection engine and
inject sensor failures as directed (Step 4). Then the firmware
continues executing and eventually sends the actuator outputs
to the simulator (Step 5). The simulator uses this information
to compute the next physical state of the vehicle (Step 6) and
it informs Avis the step has completed. At the end of each
step, the invariant monitor checks the vehicle’s state is safe.

A. Workload Framework and Workloads

UAVs communicate a workload’s commands using the
MAVLink protocol [21], [30]. However, MAVLink is chal-
lenging for developers to use to create workloads. The UAV
is responsible for controlling most interactions between the
ground-control station and the vehicle. For instance, to upload
new missions the ground-control station first communicates
the number of mission items to the vehicle and then waits for
the vehicle to request each item. This presents two problems.
First, it introduces the possibility of deadlock during model
checking. Since the vehicle’s execution is carefully synchro-
nized with both the simulator and Avis, both parties must avoid
simultaneously waiting on messages from each other. Second,
this makes even simple missions difficult to implement.

Avis’s workload framework provides high-level APIs that
safely abstract the most common MAVLink transactions. By
default, we provide two workloads that we show are effective
at triggering bugs with Avis. Developers can create additional
workloads using our Python framework.

We show an example of a simple workload that uses our
framework in Figure [8] First, the workload waits 40 seconds
for the UAV to initialize (Line 1). Next, the workload uploads
takeoff and land commands (Line 2). Then, the workload arms
the UAV (Line 8) and enters the fly-to-waypoint mode (Line
9). Finally, the workload waits for the vehicle to reach its
target altitude (Line 10) and then for the vehicle to land (Line
11). The final step of the workload is to communicate the test
succeeded to AVIS (Line 12).

Our first workload uses a manual mode that holds the
vehicle’s position. First, the UAV ascends to an altitude of 20
meters (m). Then, the UAV flies the perimeter of a 20mx20m
box. Finally, the UAV lands at its launch point.

This mission is sufficient to test manual modes. Other man-
ual modes maintain the vehicle’s orientation (e.g. pitch/rol-

class AutoWorkload (workload_framework.Target) :
def test (self):
self.wait_time (40000)
self.upload_mission (
self.takeoff_mission(20,self.cur_lati,
self.cur_longi,self.home_alti) +
self.land_mission())
self.arm_system_completely ()
9 self.enter_auto_mode ()
10 self.wait_altitude (20)
11 self.wait_altitude (0)
12 self.pass_test ()

O~NOOOHE WN =

Fig. 8: An example workload built with Avis’s workload
framework.

I/yaw) or altitude. Holding the position requires holding ori-
entation and altitude. UAV firmware typically reuses the code
that implements this behavior. So, by testing the position
mode, we test these two modes as well.

UAV firmware also provide stunt and race modes. We
choose to leave these modes untested. Stunts and race modes
relax the firmware’s safety guarantees. This places more trust
in the UAV’s operator. A sensor failure at this time cannot
expose a new bug.

Our second workload uses waypoints and a fence. Fences
are used to prevent the UAV from entering restricted airspace.
Fences can also be used to contain a UAV. First, the UAV
ascends to an altitude of 20m. Then, our workload guides the
UAV along a 20mx20m box. The box overlaps with a fenced
area the UAV must avoid. The UAV lands at its launch site.

We do not consider the effect of special workload details or
environments on bug manifestation. We observe that known
sensor bugs are not sensitive to these factors. Nevertheless,
future work may rigorously pursue this direction to establish
the absence of this class of bugs.

B. Fault Injection Engine

Avis’s fault injection system is composed of two com-
ponents. The first component is 1ibhinj (Hardware Fault
Injector), a library for instrumenting UAV firmware. The
second component is the scheduler. The scheduler injects fail-
ures by communicating with simulated drivers instrumented
with 1ibhinj. Here, we discuss (1) the implementation of
libhinj and (2) the implementation of the scheduler.

1) libhinj: We implement 1ibhinj, a library that functions
as the interface between Avis and the UAV firmware. 1ibhinj
reports the firmware’s mode transitions and sensor readings to
Avis and injects sensor failures. 1ibhinj is available at [23]].

libhinj reports the firmware’s mode to Avis through its
hinj_update_mode () APL. UAV firmware has a specific
function that updates the vehicle’s mode. We simply insert
the hinj_update_mode () call within this call site. As a
result, whenever the mode changes, hinj_update_mode ()
is invoked to report the updated mode to Avis.

We use 1ibhinj to instrument the firmware’s driver mod-
ule. This allows Avis to inject faults on-demand. We insert a



Features Avis | Strat. BFI | BFI | Rnd
Targets operating mode transitions v X X X
Prior bugs inform injection sites v v v X
Search dissimilar scenarios first v v X v

TABLE I: Distinguishing features of Avis versus competing
fault-injection approaches.

libhinj API call in the read() procedure of each sensor
driver. The API call queries the scheduler to determine if the
read should fail. The API call returns the scheduler’s decision.
If the sensor should be failed, the API overwrites the sensor
reading and the instrumented code executes the firmware’s
error-handling code. libhinj supports fault injection for
various types of sensors including gyroscopes, accelerometers,
GPSs, compasses, and barometers.

To facilitate testing UAVs, we integrate 1ibhinj into two
dominant open-source UAV firmware, ArduPilot and PX4
(available at [1]] and [2]]). 1ibhinF also provides a C interface
so that developers can instrument other UAV firmware.

2) Scheduler: The scheduler is responsible for determining
if a sensor instance should be failed and for recording mode
transitions. The scheduler uses RPCs to communicate with
libhinj. Here, we discuss how the scheduler implements
Algorithm [T]

The scheduler records the fault injection scenarios it has
already explored to prevent redundant exploration. The fault
scheduler represents a fault injection scenario as a set of tuples
(Timestamp, Fault), where the fault component describes the
injected fault (e.g. sensor and instance) and the timestamp is
the simulation time when the fault was injected. We store each
scenario in a hash-set. The scheduler simulates a scenario if
it does not already appear in the hash-set.

The scheduler uses algorithm [I] to determine the next fault
scenario. When it is time to insert a failure, the scheduler
responds to the RPC from libhinj indicating to fail the
sensor read operation.

C. Invariant Monitor

At the end of each step, Avis’s invariant monitor checks
that the vehicle is operating correctly. Besides the UAV’s
mode reported by 1ibhinj’s APIs, the invariant monitor also
requires the vehicle’s physical state, i.e., the position and the
acceleration, for detecting invariant violation. The physical
state of the vehicle is reported from the vehicle’s Gazebo
plugin over a Unix socket. We apply equation[I]to detect when
liveliness is violated. Safety violations are reported using a
simple crash detector.

VI. EVALUATION

We evaluated Avis using two popular UAV platforms:
ArduPilot’s ArduCopter-3.6.9 [5] and PX4-1.9.0 [28]. We
selected these systems because they are popular, sophisticated,
and open-source [27]], [7]. We used the 3DR Iris quadcopter
[4] as the UAV in all experiments. We selected the Iris because
quadcopters are the most common body type used for UAVs
and both ArduPilot and PX4 have robust support for the

Iris. We conducted all experiments on a server equipped with
CentOS 7.3, 8 GB of memory, and a quad-core Intel Xeon
running at 2.66 GHz.

As shown in Table [l we compared Avis to three com-
peting approaches. Random fault injection (Rnd) chose fault
injection sites from all sensor readings with equal probability.
It also chose failure scenarios for simulation randomly. We
implemented Bayesian Fault Injection (BFI), a state-of-the-art
approach for injecting sensor faults in autonomous cars [15].
This approach used machine learning to predict which injec-
tion sites were most likely to trigger unsafe conditions. We
implemented BFI using depth-first search to explore injection
scenarios. However, BFI does not require depth-first search.
We also implemented an improved version of BFI called
Stratified BFI that uses SABRE to explore injection candidates
using BFI’s algorithm. While Stratified BFI improved upon the
state of the art, it missed a key feature of Avis. Specifically,
it did not exhaustively target the critical periods where UAV
transitioned between operating modes.

We ran each approach for 2 hours per workload (see [V).
First, we studied unsafe conditions uncovered by Avis, looking
for previously unknown sensor bugs. We also studied the
unsafe conditions found by competing approaches to see if
they revealed the same sensor bugs. This analysis shows
the efficacy of Avis. We compared the number of unsafe
conditions found by each approach, a measure that reveals
the efficiency (i.e., unsafe conditions per unit time). We also
re-inserted known bugs into the code base, ran each approach
and looked for unsafe conditions caused by the known bugs.
Our evaluation also considered slowdown caused by Avis.

A. Detecting Unknown Bugs

Table [ lists the bugs detected by Avis. For each bug,
the table also shows the affected firmware (Firmware), the
symptom of the bug (Symptom), the injected sensor failure
(Sensor Failure), and the starting time of the fault (Failure
Starting Moment).

In total, Avis discovered 10 previously unknown bugs: 6
affected ArduPilot and 4 affected PX4. These bugs were
serious — 2 that affected ArduPilot resulted in a vehicle crash
and 3 made the UAV ignore user commands and fly away. A
PX4 bug caused a crash and another caused a fly-away. The
system logs showing unsafe behavior are available at [22] in
the 1ogs directory.

The unsafe conditions that Avis found revealed sensor bugs
triggered by GPS, accelerometer, barometer, compass and
gyroscope failures. Manifestations of the newly found sensor
bugs were also sensitive to timing conditions, a factor that
explained why competing approaches were unable to find
them. Avis reported no false positives. However, each bug can
manifest multiple unsafe conditions.

Case Study APM-16682: UAVs use fail-safe mechanisms
to survive sensor failures, but sometimes simply triggering
a fail-safe can yield unsafe conditions. Instead, the firmware
should check flight conditions to ensure fail-safe tasks can



TABLE II: Unknown bugs found by Avis.

Report # Firmware Symptom Sensor Failure Failure Starting Moment Avis | Stratified BFI
APM-16020 | ArduPilot Fly Away GPS Takeoff — Autopilot v X
APM-16021 | ArduPilot Crash Accelerometer Takeoff — Waypoint 1 v v
APM-16027 | ArduPilot Fly Away Barometer Pre-Flight — Takeoff v X
APM-16967 | ArduPilot Crash Compass Waypoint 1 — Waypoint 2 v v
APM-16682 | ArduPilot Crash Accelerometer Return To Launch — Land v X
APM-16953 | ArduPilot Crash Gyroscope Return to Launch — Land v X
PX4-17046 PX4 Fly Away Gyroscope Waypoint 3 — Return To Launch v v
PX4-17057 PX4 Crash Gyroscope Pre-Flight — Takeoff v v
PX4-17192 PX4 Takeoff Failure Compass Pre-Flight — Takeoff v X
PX4-17181 PX4 Takeoff Failure Barometer Pre-Flight — Takeoff v X

be supported. Recall Figure [I] an IMU fault during the
landing mode triggered a fail-safe that eventually caused a
crash. None of the competing approaches captured unsafe
conditions caused by this sensor bug within a 2-hour run. The
landing sequence represented less than 4 seconds of the 80
second scene (i.e. < 5%). Random fault injection must run
for nearly 10 hours to achieve a 98% certainty of capturing
a manifestation of the bug. BFI also failed to uncover this
scenario, because the model learned by BFI did not include
training data where unsafe conditions arose during landing. In
contrast, AVIS uncovered this scenario in an hour.

Case Study APM-16021 Figure [9] shows APM-16021, a new
bug Avis found. The workload commanded the UAV to ascend
to a target altitude of 20m. Before the UAV reached 20m, Avis
injected an accelerometer fault (1). This caused the UAV to
overshoot the target altitude (2). The firmware responded by
landing (3). The firmware’s state model incorrectly predicted
a high altitude, causing it to allow the UAV to crash (4). The
firmware made a final attempt to prevent the crash that had
already occurred and unsafely actuated on the ground (5).
Without any fault injection, the UAV’s mode changed from
takeoff to guided after it ascends to 20m. Avis detected this
mode transition and injected faults around this time. Because
our workload held the altitude constant inside the guided
mode, an IMU fault at this time did not cause a crash. After
several unsuccessful fault injections, Avis injected a fault at
18m and triggered the bug.

2. UAV overshoots target altitude
20 J-- === e e e en
1. Acc. fault at 18m 3. Firmware overcorrects

()
EE
= 5. Late attempt at
2 crash prevention
Om 4. Crash

Takeoff Land

Fig. 9: Sequence of events in APM-16021. The black line
shows the altitude of the UAV under fault injection. The blue
line shows the altitude of the UAV during the golden run.
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Fig. 10: Sequence of events in APM-16967. The black line
shows the altitude of the UAV under fault injection. The blue
line shows the altitude of the UAV during the golden run.

Approach | ArduPilot Unsafe # | PX4 Unsafe # | Total #
Avis 104 61 165
Strat. BFI 61 9 70
BFI 1 1 2
Random 2 3 5

TABLE III: Unsafe scenarios identified by each approach.

Case Study APM-16967: Figure [10] shows an unsafe con-
dition found by both Avis and Stratified BFI. This bug is
triggered if a compass fails anytime between waypoints. Avis
triggered this bug by injecting a compass failure after the
UAV reached waypoint 1 (1). Then, the vehicle turned to
fly towards its second waypoint. As the UAV turned, the
firmware continued to use old compass readings (2). This
caused the firmware to lose its heading estimate. The land fail-
safe activated (3). The firmware reset its state estimate near
the end of the landing procedure (4) which caused a crash (5).
Stratified BFI is able to trigger this bug because its training
data contains examples of compass failures in the body of the
auto mode, but vanilla BFI does not reach this state.

B. Comparison with Alternative Approaches

Table [l1I] reports the number of unsafe conditions identified
by each approach. Recall, each approach was run for two
hours. Avis found more than 2.4X more unsafe conditions
than stratified BFI, an improved implementation of the current
state-of-the-art. Avis found 82X more conditions than BFI
using standard depth-first search.

BFI did not uncover many unsafe conditions for two
reasons. First, depth-first search inefficiently checked fault
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Approach Takeoff # | Manual # | Waypoint # | Land #
Avis 60 37 44 24
Stratified BFI 4 32 35 1
BFI 1 1 0 0
Random 0 2 3 0

TABLE IV: Number of unsafe scenarios identified by each
approach in each mode.

Bug ID Avis Strat. BFI
Found | Simulations | Found | Simulations
APM-4455 v 10 X N/A
APM-4679 v 21 v 3
APM-5428 v 5 X N/A
APM-9349 v 4 v 5
PX4-13291 v 18 X N/A

TABLE V: Existing bugs triggered by Avis.

injection scenarios that were effectively redundant. The 3D
Iris sampled sensors 103 to 10* times per second. In our ex-
periments, BFI’s model took ~ 10 seconds to label an injection
scenario. BFI was unable to explore even a single second of
data within its 2 hour budget. Stratified BFI addresses this
problem by using SABRE, Avis’s injection schedule. However,
Stratified BFI failed to correctly predict the behavior of sensor
failures during modes that were not executed long in the
workload. Table [[V] shows a breakdown of unsafe scenarios
found in each mode by each approach.

C. Detecting Existing Bugs

In order to approximate Avis’ false negative rate, we
evaluated Avis using bugs that were previously reported on
Github. We used 5 sensor bugs that (1) did not require special
environmental conditions, e.g., heavy winds, (2) applied to the
Iris quadcopter and (3) had serious symptoms. We reinserted
these bugs into the code base and used Avis to find unsafe
conditions. As shown in Table[V] Avis found unsafe conditions
triggered by all 5 bugs. Stratified BFI found 2. BFI and random
found none. Further, Avis triggered the bugs quickly, using at
most 21 simulations. Stratified BFI, using the SABRE search
algorithm, also discovered bugs quickly when it was effective.

Table [V]shows that Stratified BFI does not identify bugs that
require multiple failures, like PX4-13291. PX4-13291 reports
that a fly-away occurs when the UAV’s battery drops to an
unsafe level without local position. Avis triggers this bug by
injecting a GPS fault. This causes the UAV to lose its local
position estimate. Then, Avis injects a battery sensor failure.
This causes the firmware to trigger the battery fail-safe. At
this point, Avis has triggered the bug. Stratified BFI does not
uncover this scenario because the UAV handles the GPS or
battery failure, but not both together. Having not seen the
effects of joint failures in the training data, the model is unable
to predict this outcome.

VII. RELATED WORK

Our work is related to in-situ model checking, cyber-
physical attacks and mitigation, sensor fault detection, and
empirical UAV bug studies.

11

a) In-Situ Model Checking: In-situ model checkers have
been successfully used to check many real systems such
as network protocol implementations [25] and file systems
[41], [42]. More recently, this technique has been applied to
distributed computing [13]], [18], [40], [38], [12]. However,
existing in-situ model checkers are not effective in triggering
sensor bugs in UAVs because they do not consider the behavior
of the vehicle. As the first in-situ model checker designed for
UAVs, Avis injects sensor faults at mode boundaries to be both
effective and efficient at triggering sensor bugs.

b) Cyber-Physical Attacks and Mitigation: UAVs have
become a hot topic of security research in recent years. Sensors
have been shown to be a major attack vector for UAVs [34],
[37], [39]. These attacks work by disturbing the UAV’s sensors
to cause their models to diverge from their physical state
and actuate according to the attacker’s desires. RVFuzzer [16]]
shows a method to measure the similarity between mission
executions by using state deviation, an idea that we refined in
our own fly-away detector. A large body of work demonstrates
how to use control semantics to detect or mitigate attacks
against vehicle [10], [8], [[14]. We rely on similar principles
to design our pruning policies.

c) Detecting Sensor Faults: Prior research shows how
to detect byzantine sensor faults. Control semantics are used
for this in [14]. [31] and [17]] leverage neural networks to
detect or mitigate sensor faults. Recently, [19] shows how to
use physical measurements to detect sensor faults. Prior work
shows how vehicles can survive our fault model [9]. Our work
demonstrates how to detect when a UAV fails to correctly
handle sensor failures.

d) Empirical RV Bug Studies: Both [11]] and [36] look at
bug reproducibility. They find that UAV bugs are reproducible.
We provide similar data for sensor bugs specifically and show
they are reproducible. [35] shows that sensor bugs afflict
participants in the robotic soccer league.

VIII. CONCLUSION

Unmanned aerial vehicles rely on sensors to model their
physical states and must contend with sensor failures. Our
empirical bug study on ArduPilot and PX4, two popular open-
source UAV control firmware, showed severe consequences for
mishandling sensor failures, a.k.a, sensor bugs. We presented
AVIS: an in-situ model checking approach for UAVs. Even
though UAVs access sensors frequently and many sensor bugs
manifest only if failures occur within narrow timing windows,
we used AVIS to find 10 previously unknown sensor bugs of
which 2 have been reproduced by firmware developers. Avis
used modern firmware support for operating modes to inject
sensor failures at critical points during flight execution. Avis
provides a missing tool for software developers, enabling a
preemptive approach to diagnose sensor bugs and analyze their
root causes. We hope our work improves reliability for this
emerging technology and unlocks new UAV applications. In
addition, we hope our work can draw more attention to UAV
reliability in the community.
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