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Abstract. The spine of an object is an entity that can characterise the
object’s topology and describes the object by a lower dimension. It has
an intuitive appeal for supporting geometric modelling operations.
The aim of this paper is to show how a spine for a PDE surface can
be generated. For the purpose of the work presented here an analytic
solution form for the chosen PDE is utilised. It is shown that the spine
of the PDE surface is then computed as a by-product of this analytic
solution.
This paper also discusses how the of a PDE surface can be used to manip-
ulate the shape. The solution technique adopted here caters for periodic
surfaces with general boundary conditions allowing the possibility of the
spine based shape manipulation for a wide variety of free-form PDE sur-
face shapes.

1 Introduction

Generally speaking the spine of an object is the trace of the center of all spheres
(disks in the case of two dimensions) that are maximally inscribed in the object
[6]. The spine of an object has a very close geometric resemblance to the more
widely known shape entity called the medial axis or the skeleton [9]. Bearing
in mind the general definition for a spine, one could therefore imagine that the
spine of a shape brings out the symmetries in that shape. It can also be noted
that the spine in general has far richer topologies than the shape it is derived
from. Other important properties of the spine of a shape include its use in the
intermediate representation of the object and its canonical general form that can
be used to represent the object by a lower dimensional description.

Apart from the rich geometric properties the spine posses, many have also
noted its intuitive appeal in applications in geometric manipulations. For ex-
ample Blum [6] suggested the spine or the skeleton as a powerful mechanism
for representing the shape of two dimensional objects at a level higher than cell-
enumeration. He proposed a technique that can uniquely decompose a shape into
a collection of sub-objects that can be readily identified with a set of basic prim-
itive shapes. Many others have affirmed the flexibility of the spine and its ability
to naturally capture important shape characteristics of an object [12,11,7].

Despite its intuitive appeal the spine is rarely used in CAD systems for sup-
porting geometric modelling operations. Among the reasons for this include the
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lack of robust implementations of spine generating procedures for existing CAD
techniques, and the inability to demonstrate the wide range of shape manipula-
tions that can be potentially performed using the spine of a shape.

In spite of this a number of methods for constructing the spine of polyhedral
models as well as free-form shapes have been proposed. These include topological
thinning [13], Euclidian distance transform [1] and the use of deformable snakes
[10]. The majority of the existing techniques use numerical schemes to scan the
domain of the whole object in order to generate its spine. Thus, these algorithms
not only consume excessive CPU time to perform their operations but also are
prone to errors.

The focus of this paper is on the spine of the PDE surfaces. PDE surfaces
are generated as solutions to elliptic Partial Differential Equations (PDEs) where
the problem of surface generation is treated as a boundary-value problem with
boundary conditions imposed around the edge of the surface patch [2,3,16]. PDE
surfaces have emerged as a powerful shape modelling technique [8,14,15]. It has
been demonstrated how a designer sitting in front of a workstation is able to
create and manipulate complex geometry interactively in real time [14]. Further-
more, it has been shown that complex geometry can be efficiently parameterised
both for intuitive shape manipulation [15] and for design optimisation [5].

The aim of this paper is to show how the spine of a PDE surface can be cre-
ated and utilised in order to characterise PDE surfaces as well as to enable the
development of further intuitive techniques for powerful shape manipulations.
By exploiting the structural form of a closed form solution for the chosen PDE,
it is shown how the spine of a PDE surface can be generated as a by-product of
this solution. Furthermore, it is shown that the spine of the PDE surface patch
is represented as a cubic polynomial that can be used as a shape manipulation
tool to deform the shape in an intuitive fashion. It is also shown that, by exploit-
ing a general form of an analytic solution method, the spine for PDE surfaces
with general boundary conditions can equally be represented as a by-product
of the solution that generates the surface shape. To demonstrate the ideas pre-
sented here, practical examples of shapes involving PDE surfaces are discussed
throughout the paper.

2 PDE Surfaces

A PDE surface is a parametric surface patch X(u, v), defined as a function of
two parameters u and v on a finite domain Ω ⊂ R2, by specifying boundary data
around the edge region of ∂Ω. Typically the boundary data are specified in the
form of X(u, v) and a number of its derivatives on ∂Ω. Moreover, this approach
regards the coordinates of point u and v as a mapping from that point in Ω to
a point in the physical space. To satisfy these requirements the surface X(u, v)
is regarded as a solution of a PDE of the form,

Dm
u,vX(u, v) = F (u, v), (1)

where Dm
u,vX(u, v) is a partial differential operator of order m in the independent

variables u and v, while F (u, v) is a vector valued function of u and v. Since
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boundary-value problems are of concern here, it is natural to choose Dm
u,vX(u, v)

to be elliptic.
Various elliptic PDEs could be used, although the most widely used PDE is

based on the biharmonic equation namely,

(
∂2

∂u2 + a2 ∂2

∂v2

)2

X(u, v) = 0. (2)

Here the boundary conditions on the function X(u, v) and its normal derivatives
∂X
∂n are imposed at the edges of the surface patch.

With this formulations one can see that the elliptic partial differential oper-
ator in Equation (2) represents a smoothing process in which the value of the
function at any point on the surface is, in some sense, a weighted average of
the surrounding values. In this way a surface is obtained as a smooth transition
between the chosen set of boundary conditions. The parameter a is a special
design parameter which controls the relative smoothing of the surface in the u
and v directions [3].

2.1 Solution of the PDE

There exist many methods to determine the solution of Equation (2). In some
cases, where the boundary conditions can be expressed as relatively simple ana-
lytic functions of u and v, it is possible to find a closed form solution. However,
for a general set of boundary conditions a numerical method often need to be
employed.

For the work on the spine to be described here, restricting to periodic bound-
ary conditions the closed form analytic solution of Equation (2) is utilised.
Choosing the parametric region to be 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π, the peri-
odic boundary conditions can be expressed as,

X(0, v) = p
0
(v), (3)

X(1, v) = p
1
(v), (4)

Xu(0, v) = d0(v), (5)

Xu(1, v) = d1(v). (6)

Note that the boundary conditions p
0
(v) and p

1
(v) define the edges of the

surface patch at u = 0 and u = 1 respectively. Using the method of separation
of variables, the analytic solution of Equation (2) can be written as,

X(u, v) = A0(u) +
∞∑

n=1

[An(u) cos(nv) + Bn(u) sin(nv)], (7)

where
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Fig. 1. Description of the spine of a PDE surface. (a) A ‘cylindrical’ PDE surface. (b)
The spine described by the A0 term.

A0 = a00 + a01u + a02u
2 + a03u

3, (8)

An = an1e
anu + an2e

anu + an3e
−anu + an4e

−anu, (9)

Bn = bn1e
anu + bn2e

anu + bn3e
−anu + bn4e

−anu, (10)

where a00, a01, a02, a03 an1, an2, an3, an4, bn1 bn2, bn3 and bn4 are vector-valued
constants, whose values are determined by the imposed boundary conditions at
u = 0 and u = 1.

3 The Spine of a PDE Surface

Taking the form of Equation (7) one could observe the following properties of
the analytic solution that allows us to extract the spine of a PDE surface as a by-
product of the solution. Firstly the term A0 in Equation (7) is a cubic polynomial
of the parameter u. Secondly it can be seen that for each point X(u, v) on the
surfaces the term

∑∞
n=1[An(u) cos(nv)+Bn(u) sin(nv)] in Equation (7) describes

the ‘radial’ position of the point X(u, v) relative to a point at A0.
Thus, the term A0 which is a cubic polynomial of the parameter u and

lies within the periodic surface patch. Therefore, using the solution technique
described in Equation (7) a surface point X(u, v) may be regarded as being
composed of sum of a vector A0 giving the position on the spine of the surface
and a radius vector defined by the term

∑∞
n=1[An(u) cos(nv) + Bn(u) sin(nv)]

providing the position of X(u, v) relative to the spine. What follows in the rest
of this section describes some examples of PDE surfaces and the corresponding
spines relating to the A0 term given in Equation (7).

Fig. 1(a) shows a typical PDE surface where the boundary conditions are
taken as,

p
0
(v) = (0.5 cos v, 0.5 sin v, 0), (11)

p
1
(v) = (0.5 cos v, 0.5 sin v, 0.5), (12)
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Fig. 2. Description of the spine of a PDE surface. (a) A deformed ‘cylindrical’ PDE
surface. (b) The spine described by the A0 term.

Fig. 3. Description of the spine of a composite PDE surface. (a) A composite PDE
surface describing a vase shape. (b) The spine of the vase shape.

d0(v) = (0.5 cos v, 0.5 sin v, 1), (13)

d1(v) = (0.5 cos v, 0.5 sin v, 1). (14)

Fig. 1(b) shows the image of the cubic polynomial described by the A0 term
corresponding to the spine for this surface patch.

Fig. 2(a) shows another example of a single PDE patch where the boundary
conditions were taken to be that described by the previous example with the
exception that the circle defining d1(v) was translated by an amount of 0.2 units
along the negative x-axis. The resulting spine for this surface patch is shown in
Fig. 2(b). As can be noted in both these examples the spine closely describes
the midline or the skeleton of the surfaces patch.

Fig. 3(a) shows a composite shape that looks like the shape of a vase. This
shape is created by means of two surface patches with a common boundary at
u = 1. Again the boundary conditions for these surface patches are circular
and similar to those used to create Fig. 1(a). Furthermore, for the two surface
patches the derivative conditions at u = 1 were taken in such a way to ensure
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Fig. 4. Aircraft created using a composite of 5 PDE surface patches. (a) The aircraft
shape. (b) The corresponding composite spine.

that tangent plane continuity between them is maintained. The corresponding
spine for the vase shape is shown is Fig. 3(b).

Fig. 4(a) shows a composite shape that looks like the shape of an aircraft.
This shape is created by means of four surface patches. The corresponding com-
posite spine for the aircraft shape is shown is Fig. 4(b).

4 Shape Manipulation Using the Spine

One of the many attractive features of the PDE surfaces is the ability to be able
to create and manipulate complex shapes with ease. Previous work on interac-
tive design has demonstrated that the user having little or no knowledge about
solving PDEs and how the boundary conditions effect the solutions of the PDEs
is able to use the method to create complex geometry with ease [14,15].

The aim of this section is to show that the spine of a PDE surface can be
utilised to create design tools for further efficient shape manipulation. As shown
in the previous section the spine of a PDE surface comes as a by-product of the
analytic solution used. By virtue of the very definition of the spine it can be
seen as a powerful and intuitive mechanism to manipulate the shape of surface
once it is defined. There are many ways by which one could utilise the spine to
manipulate a PDE surface. One such possibility is described here.

We can express the cubic polynomial described by A0 in Equation (7) to be
a Hermite curve of the form,

H(u) = B1(u)p
0

+ B2(u)p
1

+ B3(u)v0 + B4(u)v1, (15)

where the Bi are the Hermite basis functions, p
0
, p

1
and v0, v1 define the posi-

tion and the speed of the Hermite curve at u = 0 and u = 1 respectively. By
comparing the Hermite curve given in Equation (15) with the cubic for the spine
given by the A0 term in Equation (7), the terms a00, a01, a02 and a03 described
in Equation (8) can be related to the position vectors and its derivatives at the
end points of the spine as,
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Fig. 5. PDE vesicle shape. (a) The vesicle shape created using three surface patches.
(b) The spine of the vesicle shape.

Table 1. Vector values for the position vectors and its derivatives at the end of points
of the spine for the vesicle shapes shown in Figs. 5 and 6.

vector Fig. 5 Fig. 6

(x, y, z) (x, y, z)

p
0

(0.0, −1.0, 0.0) (0.1, −1.0, 0.0)

p
1

(0.0, 1.0, 0.0) (0.4, 1.0, 0.0)

v0 (0.0, −0.2, 0.0) (−0.1, 0.1, 0.0)

v1 (0.0, 0.2, 0.0) (−0.3, −0.2, 0.0)

a00 = p
0
, (16)

a01 = 3p
1

− v1 − 3v0, (17)

a02 = v1 + 2v0 − 2p
1
, (18)

a02 = v0. (19)

Since the A0 term in Equation (7) is an integral part of the solution that
generates the surface shape, any change in the shape of the spine will of course
results in a change in the shape of the surface. A useful mechanism to change
the shape of the spine would be to manipulate its position and the derivative at
the two end points. Therefore, the position vectors and its derivatives at the end
of points of the spine can be used as shape parameter to manipulate the shape.

To demonstrate this idea consider the vesicle shape, similar to that of a
human red blood cell, shown in Fig. 5(a) where the corresponding spine is also
shown in 5(b). The vesicle shape is created using three surface patches with
common boundaries between the adjacent patches at u = 1 and u = 2. The
boundary conditions for this problem are circles similar to those used in the
example shown in Fig. 1, with the positional boundary conditions at u = 0 and
u = 3 taken to be points in 3-space.
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Fig. 6. New PDE vesicle shape. (a) The vesicle shape created by manipulating the
spine. (b) The manipulated spine of the new vesicle shape.

The vesicle can be then manipulated by making changes to the shape of the
spine via the vectors p

0
, p

1
, v0 and v1. Table 1 shows the value for the x, y and

z components of the vectors p
0
, p

1
, v0 and v1 for the vesicle shown in Fig. 5(a)

and those for the manipulated shape shown in Fig. 6(a). Fig. 6(b) shows the
manipulated spine. Note that throughout this shape manipulation process the
derivative conditions at u = 1 and u = 2 were taken in a manner to ensure
tangent plane continuity between the adjacent surface patches is maintained.
This also ensures that the corresponding spine has tangent continuity at u = 1
and u = 2.

In previous work discussed in [5], involving the problem of determining the
shapes of the stable structures occurring in human red blood cells, a similar vesi-
cle structure as shown in Fig. 5 was used as a starting shape of an optimisation
processes. These shapes were parameterised using the appropriate Fourier coef-
ficients, where some of the intermediate shapes resulted during the optimisation
process resembled the shape of the vesicle shown in Fig. 6. An interesting and
rather intuitive way to parameterise the vesicle geometry would be the spine
approach outlined here.

5 General PDE Boundary Conditions and the Spine

One could note that the examples described above are somewhat simple where
the shapes are generated using simple boundary conditions possessing analytic
forms. However, to cater for a wide range of possible free-form shape manipula-
tions the spine of shapes with general boundary conditions need to be addressed.
For this purpose the approach adopted here is to use a previously developed so-
lution technique which can handle general periodic boundary conditions [4]. The
method is based on a spectral approximation providing an approximate analytic
solution form of the chosen PDE. The basic idea behind this solution method is
presented here with details on how the solution affects the spine. For detailed
discussions of this solution method the interested reader is referred to [4].
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Fig. 7. Description of the spine of a PDE surface with general boundary conditions.
(a) A vase shape with general boundary conditions at u = 2 defined as cubic B-spline
curves. (b) The spine of the vase shape.

For a general set of boundary conditions, in order to define the various con-
stants in the solution, it is necessary to Fourier analyse the boundary conditions
and identify the various Fourier coefficients. Where the boundary conditions can
be expressed exactly in terms of a finite Fourier series, the solution given in
Equation (7) will also be finite. However, this is often not possible, in which case
the solution will be the infinite series given Equation (7).

The technique for finding an approximation to X(u, v) is based on the sum
of the first few Fourier modes and a ‘remainder term’, i.e.,

X(u, v) � A0(u) +
N∑

n=1

[An(u) cos(nv) + Bn(u) sin(nv)] + R(u, v), (20)

where usually N ≤ 6 and R(u, v) is a remainder function defined as,

R(u, v) = r1(v)ewu + r2(v)ewu + r3(v)e−wu + r4(v)e−wu, (21)

where r1, r2, r3, r4 and w are obtained by considering the difference between
the original boundary conditions and the boundary conditions satisfied by the
function,

F (u, v) = A0(u) +
N∑

n=1

[An(u) cos(nv) + Bn(u) sin(nv)]. (22)

An important point to note here is that although the solution is approximate
this new solution technique guarantees that the chosen boundary conditions are
exactly satisfied since the remainder function R(u, v) is calculated by means
of the difference between the original boundary conditions and the boundary
conditions satisfied by the function F (u, v).

It is noteworthy that the introduction of the R(u, v) term in the new solution
described in Equation (20) has virtually no effect in the interior shape of the
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surfaces. This is because, for large enough n, the Fourier modes make negligible
contributions to the interior of the patch. Therefore, by taking a reasonable
truncation of the Fourier series at some finite N , (say N = 6) of the boundary
conditions an approximate PDE surface can be quickly generated satisfying the
boundary conditions exactly. Furthermore, as far as the spine is concerned since
the spine does not represent the detailed geometry of the shape the A0(u) term
is left unchanged in the approximate solution and hence the spine of the shape
is left unchanged. Fig. 7 exemplifies this.

Fig. 7(a) shows a vase shape similar to that shown in Fig. 3(a), where the
position and derivative boundary conditions at u = 2 were taken as periodic
cubic B-spline curves with cusps. The curves along with the rest of the boundary
conditions which are in analytic form were used in the solution outlined to create
the shape shown in Fig. 7(a). The corresponding spine for the new vase shape
is shown in Fig. 7(b).

6 Conclusions

This paper describes how the spine of a PDE surfaces can be generated. Due to
the analytic form of the solution used to generate the surface shape the spine is
computed as a by-product of the solution. This outlines the advantage of using
PDE surfaces for modelling since in the case of most other techniques for shape
generation the spine has to be computed separately.

Due to the canonical and intuitive nature of the spine it can be used to
manipulate the shape once the shape is defined. It has been demonstrated how
simple shape manipulation can be carried out using the spine of a PDE sur-
face. The solution technique adopted here caters periodic surfaces with general
boundary conditions with the spine derived as a by-product of the solution. This
allows the possibility of the spine based shape manipulation for a wide variety
of free-form surface shapes.

As shown here the shape manipulation using the spine can be seen as an
added bonus to the existing intuitive tools available for efficient shape manip-
ulation of PDE surfaces. An interesting future direction of study would be to
parameterise the shapes based on the spine described here. This would allow
one to create geometry that can handle not only complex shapes but also shapes
with changing topology. Such a parameterisation scheme then can be applied to
design optimisation problems where a wide variety of geometry with changing
topology would be available to the optimisation scheme.
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