Combustion Animation

John Loy CSE 888 - Au07

Papers

- Wrinkled Flames and Cellular Patterns.
 - Hong, J-M., Shimar, T., and Fedkiw, R.
 - SIGGRAPH 07
- Combustion-based Technique for Fire Animation and Visualization
 - Min, K. and Metaxas, D.
 - Visual Computer, Aug. 2007

Wrinkled Flames & Cellular Patterns

- Detonation Shock Dynamics
 - First Order
 - Nguyen et al. 2002

 $D = a - b\kappa$

- Second Order
 - Also produces smooth flames
- $D_t + \mathbf{w} \cdot \nabla D = \dot{D}$ $\dot{D} = -\alpha \kappa + \beta (D D_{CJ})$

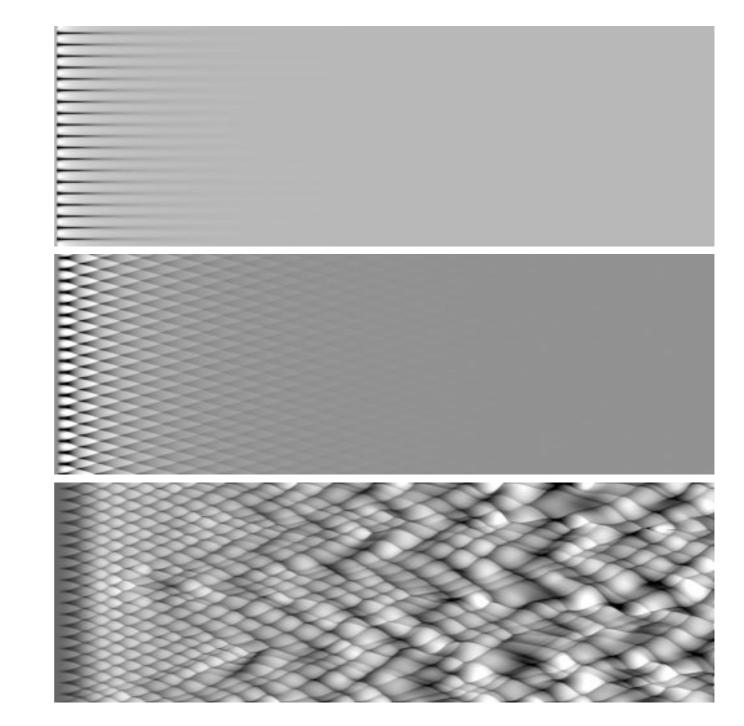
Third Order DSD

• Produces cellular patterns in flames

$$D_{t} + \mathbf{w} \cdot \nabla D = \dot{D}$$

$$\dot{D}_{t} + \mathbf{w} \cdot \nabla \dot{D} = \ddot{D}(\dot{D}, D, \dot{\kappa}, \kappa)$$

$$\ddot{D} = -c_{1} \alpha^{2} (D - D_{CJ}) - c_{2} \alpha \dot{D} - c_{3} \alpha^{2} L_{CJ} - c_{4} \dot{\kappa}$$


$$\alpha = e^{\mu \theta (D - D_{CJ})}, \qquad L_{CJ} = \ln|1 + c_{5} \theta \kappa / \alpha|$$

DSD Comparision

First Order

Second Order

Third Order

Third Order DSD Constants

- c1, c2, c3, c4, c5, μ : constants that depend on material properties
- θ : activation energy

$$\ddot{D} = -c_1 \alpha^2 (D - D_{CJ}) - c_2 \alpha \dot{D} - c_3 \alpha^2 L_{CJ} - c_4 \dot{\kappa}$$
$$\alpha = e^{\mu \theta (D - D_{CJ})}, \qquad L_{CJ} = \ln|1 + c_5 \theta \kappa / \alpha|$$

Modeling Fuel

- Navier-Stokes Equations
 - Inviscid, Incompressible Flow

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p/\rho = \mathbf{f}$$

 $\nabla \cdot \mathbf{u} = 0$

Fuel Continued

Conserve mass, momentum and energy across reaction interface

$$[\rho(u_n - w_n)] = 0$$
$$[\rho(u_n - w_n)^2 + p] = 0$$
$$e + (u_n - w_n)^2/2 + p/\rho] = 0$$

Results

	Number of	Total	Mean time	DSD time	CFL	Grid
	frames	time	per frame	per frame	number	resolution
Figure 1	521	68 hr	469 sec	5 %	2	$300 \times 250 \times 250$
Figure 6	300	24 hr	291 sec	6 %	2	$200 \times 300 \times 200$
Figure 7	225	50 hr	800 sec	6 %	1.5	$250 \times 250 \times 250$

Combustion-based Technique for Fire Animation

- Voxel-based combustion simulation
- Photon mapping using fire temperature

Fluid Equations

- Navier-Stokes again
 - This time with viscosity

$$\frac{\partial \boldsymbol{u}}{\partial t} = -(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \frac{1}{\rho}\nabla p + \nu\nabla^2 \boldsymbol{u} + \boldsymbol{f}$$

• Density

$$\frac{\partial \rho}{\partial t} = -(\boldsymbol{u} \cdot \nabla)\rho$$

• Temperature


$$\frac{\partial T}{\partial t} = -(\boldsymbol{u} \cdot \nabla)T - c_T \left(\frac{T - T_{\text{air}}}{T_{\text{max}} - T_{\text{air}}}\right)^4 + \frac{\mathrm{d}H}{\mathrm{d}t}$$

Fuel Model

- Potential Heat
- Combustion Speed
- Oxygen Requirement
- Threshold Temperatures
 - Pyrolysis
 - Ignition

Voxel Configuration

- Initially, voxels contain only air or fluid
- Fluid may consist of several different fuels
- Air consists of
 Oxygen and auxiliary
 gasses

Combustion Model

- Estimate oxygen availability & requirement
- Compute heat generated by each fuel
- Compute total heat of voxel

Oxygen Estimation

• Available

$$O_a^x(v) = O(v) \frac{\varphi^x(v)}{\Phi}$$
, where $\Phi = \sum_{n=1}^N \varphi^n(v)$

• Required

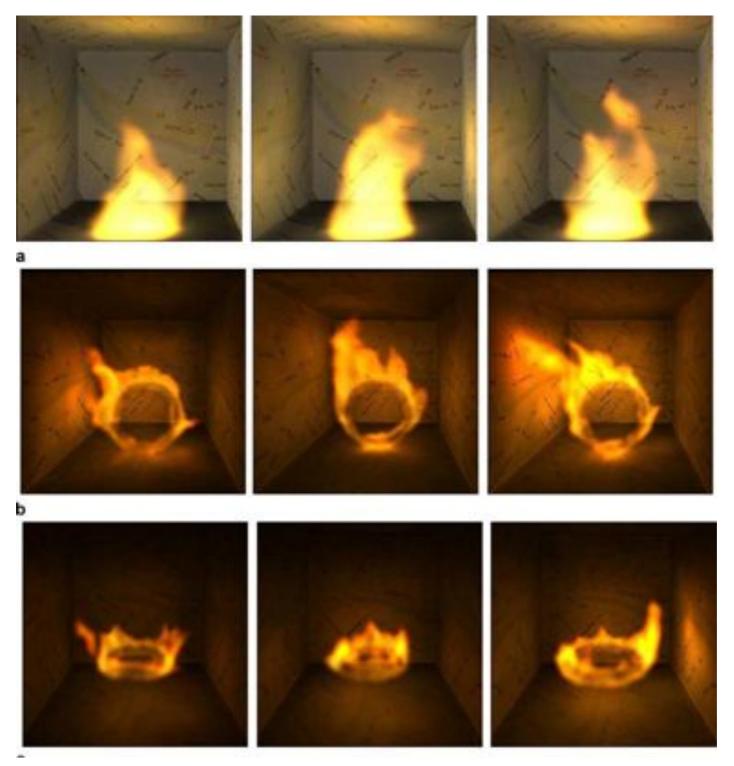
 $O_r^x(v) = O_r^x \varphi^x(v)$

Heat Generation

- Estimate fuel combusted
 - If more than enough oxygen is available, combustion speed determines amount

$$\phi^{x}(v) \leftarrow \gamma^{x} \times \varphi^{x}(v)$$

Otherwise, oxygen availability limits combustion


$$\phi^{x}(v) \leftarrow \frac{O_{a}^{x}(v)}{O_{r}^{x}(v)} \gamma^{x} \times \varphi^{x}(v)$$

Heat Generation Continued

 Heat generated by each fuel is the product of amount of fuel combusted, potential heat, and density over the simulation timestep

$$H^{x}(v) = h^{x} \times \phi_{v}^{x} \times \rho_{v} \times \delta t_{z}$$

Results

