
Combustion Animation
John Loy

CSE 888 - Au07

Papers

• Wrinkled Flames and Cellular Patterns.

• Hong, J-M., Shimar, T., and Fedkiw, R.

• SIGGRAPH 07

• Combustion-based Technique for Fire
Animation and Visualization

• Min, K. and Metaxas, D.

• Visual Computer, Aug. 2007

Wrinkled Flames &
Cellular Patterns

• Detonation Shock Dynamics

• First Order

• Nguyen et al. 2002

• Second Order

• Also produces smooth flames

Figure 2: Simulated smoked foils. Lighter regions correspond to a
slower flame speed, and the flame moves from left to right in each
figure. An initial sine wave perturbation is smoothed out by the first
order DSD equations (top) and the second order DSD equations
(middle), whereas interesting cellular patterns develop for the third
order DSD equations (bottom).

tional laboratories. A particularly interesting area of asymptotic re-
search is detonation shock dynamics [Yao and Stewart 1996; Aslam
et al. 1996] where researchers derived equations that admit cellular
patterns. DSD theory shows that the normal plus curvature driven
interface velocities used in [Nguyen et al. 2001; Nguyen et al. 2002]
result in smooth, diffuse flames which is obvious considering the
fact that curvature driven motion leads to a parabolic partial differ-
ential equation. The normal plus curvature driven interface velocity
is consistent with first order DSD theory, but DSD theory also con-
tains second and third order equations which are hyperbolic (not
parabolic) and thus not inherently diffusive. Note that hyperbolic
differential equations are computationally more efficient to simu-
late than their parabolic counterparts, because they possess a sig-
nificantly less restrictive CFL condition. More importantly, third
order DSD theory yields a set of partial differential equations that
produce complex time-coherent cellular patterns.

Although low speed fire and flames (i.e. deflagrations) differ in
many ways from their higher speed shock wave coupled counter-
parts (i.e. detonations), the highly intricate time-coherent cellular
patterns produced by DSD are visually compelling and thus the fo-
cus of our work. From the standpoint of computer graphics ap-
plications, obtaining a more interesting velocity for the level set
surface allows for more visually interesting fire and flames, while
low speed phenomena are still faithfully modeled with the incom-
pressible Navier-Stokes equations. Therefore, we extend the work
of [Nguyen et al. 2002] from the parabolic inherently smooth flame
velocities to the more interesting hyperbolic third order DSD ap-
proximations that yield cellular patterns and flame wrinkling.

2 Previous Work

Previous flame models in computer graphics include [Inakage 1989;
Perry and Picard 1994; Chiba et al. 1994; Stam and Fiume 1995;

Figure 3: Four images from the time evolution of a level set sur-
face using the third order DSD equations. Note that the Navier-
Stokes equations are not used in this example, rather it illustrates
that the cellular patterns are produced by the DSD augmented level
set equations without the need for vorticity confinement or other
turbulence models.

Bukowski and Sequin 1997; Beaudoin et al. 2001; Melek and
Keyser 2002; Adabala and Hughes 2004]. In addition, simulation
of explosions was addressed in [Musgrave 1997; Mazarak et al.
1999; Neff and Fiume 1999; O’Brien and Hodgins 1999; Yngve
et al. 2000; Feldman et al. 2003; Geiger et al. 2003; Rasmussen
et al. 2003; Geiger et al. 2005]. Many authors have focused on the
rendering of fire and flames and we refer the interested reader to
[Rushmeier et al. 1995; Pegoraro and Parker 2006] for example. In
[Melek and Keyser 2003; Melek and Keyser 2005; Losasso et al.
2006a], fire was considered in the context of eroding solid objects,
and [Melek and Keyser 2006] also modeled the crumpling of solids
based on heat. Similarly, [Losasso et al. 2006b] simulated burning
liquids, and [Zhao et al. 2003] described a model for the propaga-
tion of fire along solid surfaces.

3 Flame Speed

We first consider the flame front velocities used in [Nguyen et al.
2002] which have the form

D = a−bκ (1)

where a and b are positive constants and κ is the local mean cur-
vature of the flame surface. Using the level set function φ , we
can define the local unit normal n = ∇φ/|∇φ | and the curvature
κ =−∇ · n. The standard equation for level set evolution is

φt +w · ∇φ = 0, (2)

where w = ((un) f −D)n. The (un) f term denotes the normal ve-
locity of the unreacted fuel which we ignore for the rest of Sec-
tion 3, leaving the discussion of coupling to the Navier-Stokes equa-
tions to Section 4. When φ is a signed distance function, n = ∇φ ,
κ = −"φ , and setting a = 0 yields the parabolic heat (diffusion)
equation φt = b"φ , which smooths out detail on the flame surface.
Equation (2) can be made hyperbolic by setting b = 0, but still does
not produce interesting cellular patterns.

Classical detonation theory describes the velocity of a one-
dimensional steady detonation wave called the Chapman-Jouguet

Figure 4: A technical illustration of flame cores computed using
the full coupling of the DSD equations to the Navier-Stokes equa-
tions. The first order parabolic DSD equations are shown on the
left, while the third order DSD equations are shown on the right.
We used different colors to represent different flame speeds em-
phasizing the fact that the first order equations do not produce and
accentuate cellular patterns. Note that in the first order result, we
have set b = 0 removing the parabolic curvature term and used vor-
ticity confinement in order to get as much detail as possible, but
even so distinct cellular patterns are not generated.

(CJ) detonation. DSD augments this theory by considering devia-
tions in curvature from a planar Chapman-Jouguet detonation front
as well as unsteady detonations velocities, thus providing a fully
multidimensional detonation model. The important parameters are
the detonation speed D, its material derivatives (e.g. Ḋ and D̈) and
the geometry of the shock surface (e.g. κ and κ̇). The first order
relation, termed the D− κ relation, is given in equation (1). The
second order relation, Ḋ−D−κ , considers the first time derivative
of the detonation velocity via

Dt +w · ∇D = Ḋ (3)

Ḋ =−ακ +β (D−DCJ) (4)

where DCJ is the planar detonation velocity predicted by the one-
dimensional Chapman-Jouguet detonation theory.

While the second order DSD equations are hyperbolic, it is the
third order theory utilizing a D̈− Ḋ−D− κ̇ − κ relation which
results in a hyperbolic partial differential equation that generates
self-sustaining cellular patterns. The equations for third order DSD
theory are (see e.g. [Aslam 1996]),

Dt +w · ∇D = Ḋ (5)

Ḋt +w · ∇Ḋ = D̈(Ḋ,D, κ̇,κ) (6)

where κ̇ is the material derivative of the curvature κ̇ = κt +w · ∇κ .
These equations state that D and Ḋ are advected with the interface
velocity and integrated with the source terms on the right hand side.
Equation (5) is similar to equation (3) except that instead of obtain-
ing Ḋ from equation (4), equation (5) obtains it from equation (6).
The system of equations (2), (5) and (6) is closed by defining

D̈ =−c1α2(D−DCJ)− c2αḊ− c3α2LCJ− c4κ̇ (7)

α = eµθ(D−DCJ), LCJ = ln|1+ c5θκ/α|

where θ is the activation energy. The first two terms of equation
(7) are elastic and damping terms describing the oscillatory motion
of D about DCJ . The third term is a curvature forcing term which
accentuates the variations in curvature of the front. In particular,

Figure 5: These simulations correspond to those shown in Figure 4,
except that we render the smoke density field instead of illustrating
the flame core. Again, note the improved result using third order
DSD theory.

since κ > 0 corresponds to regions where D < DCJ , that term fur-
ther decelerates D, whereas regions with κ < 0 where D > DCJ are
accelerated. The last term involving κ̇ is a damping term.

Although the coefficients c1 to c5 and µ are functions of two
material-dependent parameters (namely the polytropic exponent of
the material and the Mach number of the Chapman-Jouguet deto-
nation), in practice one can tune them independently to carve the
desired cellular patterns in the flame. Furthermore, θ can be con-
sidered as a part of µθ and c5θ instead of an independent degree
of freedom. After setting DCJ to the desired base flame speed and
setting c1 and c2 for the desired elasticity and damping about DCJ ,
we found that tweaking the curvature forcing term, c3, gives us suf-
ficient control of the cellular patterns in terms of simulation detail.
The curvature damping term including c4 was essential for the deli-
cate control of cellular patterns for non-coupled simulations, but we
found it can be omitted for coupled simulations because the curva-
ture forcing term dominates. µθ was used to limit the deviation of
D from DCJ and c5θ determined the sensitivity of LCJ to curvature.
It was useful to normalize c5θ by ∆x when testing coefficients with
various grid resolutions. We present the simulation coefficients we
used in Table 3.

Each time step, we first advect φ , D, Ḋ and κ forward in time us-
ing the velocity field w ignoring source terms. Although special
techniques are typically used to evolve the level set equation, the
DSD related parameters D, Ḋ and κ can be treated more simply
with semi-Lagrangian advection or a higher order accurate vari-
ant [Stam 1999; Kim et al. 2006; Selle et al. 2007]. As is typical
the fast marching method can be used to maintain the signed dis-
tance property of φ , whereas the DSD related scalars need to be
extended constant normal to the interface. This extrapolation in the
normal direction is similar to the one-way extrapolation done for
the velocity field in [Enright et al. 2002]. To evaluate the source
terms, we first compute the new curvature field κn+1 = κ(φ n+1)
using the new value of the level set function. Then we compute
κ̇ = (κn+1−κ!)/∆t where κ! is the value obtained by advecting
the time n curvature field forward in time. Next the source term D̈
is evaluated using κ̇ and the advected values of D, Ḋ, and κ (i.e. D!,
Ḋ! and κ!). That is, D̈ = D̈(D!, Ḋ!,κ!, κ̇). The advected value of
Ḋ is then augmented by ∆tD̈, and subsequently the advected value
of D is augmented by ∆tḊ. See Table 1 for pseudocode.

A widely used experimental technique for studying the cellular
structure exhibited by gaseous detonations is the smoked foil tech-
nique, in which a controlled detonation is carried out in a tube lined
with soot coated metal foil. As the detonation propagates through

Third Order DSD

• Produces cellular patterns in flames

Figure 4: A technical illustration of flame cores computed using
the full coupling of the DSD equations to the Navier-Stokes equa-
tions. The first order parabolic DSD equations are shown on the
left, while the third order DSD equations are shown on the right.
We used different colors to represent different flame speeds em-
phasizing the fact that the first order equations do not produce and
accentuate cellular patterns. Note that in the first order result, we
have set b = 0 removing the parabolic curvature term and used vor-
ticity confinement in order to get as much detail as possible, but
even so distinct cellular patterns are not generated.

(CJ) detonation. DSD augments this theory by considering devia-
tions in curvature from a planar Chapman-Jouguet detonation front
as well as unsteady detonations velocities, thus providing a fully
multidimensional detonation model. The important parameters are
the detonation speed D, its material derivatives (e.g. Ḋ and D̈) and
the geometry of the shock surface (e.g. κ and κ̇). The first order
relation, termed the D− κ relation, is given in equation (1). The
second order relation, Ḋ−D−κ , considers the first time derivative
of the detonation velocity via

Dt +w · ∇D = Ḋ (3)

Ḋ =−ακ +β (D−DCJ) (4)

where DCJ is the planar detonation velocity predicted by the one-
dimensional Chapman-Jouguet detonation theory.

While the second order DSD equations are hyperbolic, it is the
third order theory utilizing a D̈− Ḋ−D− κ̇ − κ relation which
results in a hyperbolic partial differential equation that generates
self-sustaining cellular patterns. The equations for third order DSD
theory are (see e.g. [Aslam 1996]),

Dt +w · ∇D = Ḋ (5)

Ḋt +w · ∇Ḋ = D̈(Ḋ,D, κ̇,κ) (6)

where κ̇ is the material derivative of the curvature κ̇ = κt +w · ∇κ .
These equations state that D and Ḋ are advected with the interface
velocity and integrated with the source terms on the right hand side.
Equation (5) is similar to equation (3) except that instead of obtain-
ing Ḋ from equation (4), equation (5) obtains it from equation (6).
The system of equations (2), (5) and (6) is closed by defining

D̈ =−c1α2(D−DCJ)− c2αḊ− c3α2LCJ− c4κ̇ (7)

α = eµθ(D−DCJ), LCJ = ln|1+ c5θκ/α|

where θ is the activation energy. The first two terms of equation
(7) are elastic and damping terms describing the oscillatory motion
of D about DCJ . The third term is a curvature forcing term which
accentuates the variations in curvature of the front. In particular,

Figure 5: These simulations correspond to those shown in Figure 4,
except that we render the smoke density field instead of illustrating
the flame core. Again, note the improved result using third order
DSD theory.

since κ > 0 corresponds to regions where D < DCJ , that term fur-
ther decelerates D, whereas regions with κ < 0 where D > DCJ are
accelerated. The last term involving κ̇ is a damping term.

Although the coefficients c1 to c5 and µ are functions of two
material-dependent parameters (namely the polytropic exponent of
the material and the Mach number of the Chapman-Jouguet deto-
nation), in practice one can tune them independently to carve the
desired cellular patterns in the flame. Furthermore, θ can be con-
sidered as a part of µθ and c5θ instead of an independent degree
of freedom. After setting DCJ to the desired base flame speed and
setting c1 and c2 for the desired elasticity and damping about DCJ ,
we found that tweaking the curvature forcing term, c3, gives us suf-
ficient control of the cellular patterns in terms of simulation detail.
The curvature damping term including c4 was essential for the deli-
cate control of cellular patterns for non-coupled simulations, but we
found it can be omitted for coupled simulations because the curva-
ture forcing term dominates. µθ was used to limit the deviation of
D from DCJ and c5θ determined the sensitivity of LCJ to curvature.
It was useful to normalize c5θ by ∆x when testing coefficients with
various grid resolutions. We present the simulation coefficients we
used in Table 3.

Each time step, we first advect φ , D, Ḋ and κ forward in time us-
ing the velocity field w ignoring source terms. Although special
techniques are typically used to evolve the level set equation, the
DSD related parameters D, Ḋ and κ can be treated more simply
with semi-Lagrangian advection or a higher order accurate vari-
ant [Stam 1999; Kim et al. 2006; Selle et al. 2007]. As is typical
the fast marching method can be used to maintain the signed dis-
tance property of φ , whereas the DSD related scalars need to be
extended constant normal to the interface. This extrapolation in the
normal direction is similar to the one-way extrapolation done for
the velocity field in [Enright et al. 2002]. To evaluate the source
terms, we first compute the new curvature field κn+1 = κ(φ n+1)
using the new value of the level set function. Then we compute
κ̇ = (κn+1−κ!)/∆t where κ! is the value obtained by advecting
the time n curvature field forward in time. Next the source term D̈
is evaluated using κ̇ and the advected values of D, Ḋ, and κ (i.e. D!,
Ḋ! and κ!). That is, D̈ = D̈(D!, Ḋ!,κ!, κ̇). The advected value of
Ḋ is then augmented by ∆tD̈, and subsequently the advected value
of D is augmented by ∆tḊ. See Table 1 for pseudocode.

A widely used experimental technique for studying the cellular
structure exhibited by gaseous detonations is the smoked foil tech-
nique, in which a controlled detonation is carried out in a tube lined
with soot coated metal foil. As the detonation propagates through

Figure 4: A technical illustration of flame cores computed using
the full coupling of the DSD equations to the Navier-Stokes equa-
tions. The first order parabolic DSD equations are shown on the
left, while the third order DSD equations are shown on the right.
We used different colors to represent different flame speeds em-
phasizing the fact that the first order equations do not produce and
accentuate cellular patterns. Note that in the first order result, we
have set b = 0 removing the parabolic curvature term and used vor-
ticity confinement in order to get as much detail as possible, but
even so distinct cellular patterns are not generated.

(CJ) detonation. DSD augments this theory by considering devia-
tions in curvature from a planar Chapman-Jouguet detonation front
as well as unsteady detonations velocities, thus providing a fully
multidimensional detonation model. The important parameters are
the detonation speed D, its material derivatives (e.g. Ḋ and D̈) and
the geometry of the shock surface (e.g. κ and κ̇). The first order
relation, termed the D− κ relation, is given in equation (1). The
second order relation, Ḋ−D−κ , considers the first time derivative
of the detonation velocity via

Dt +w · ∇D = Ḋ (3)

Ḋ =−ακ +β (D−DCJ) (4)

where DCJ is the planar detonation velocity predicted by the one-
dimensional Chapman-Jouguet detonation theory.

While the second order DSD equations are hyperbolic, it is the
third order theory utilizing a D̈− Ḋ−D− κ̇ − κ relation which
results in a hyperbolic partial differential equation that generates
self-sustaining cellular patterns. The equations for third order DSD
theory are (see e.g. [Aslam 1996]),

Dt +w · ∇D = Ḋ (5)

Ḋt +w · ∇Ḋ = D̈(Ḋ,D, κ̇,κ) (6)

where κ̇ is the material derivative of the curvature κ̇ = κt +w · ∇κ .
These equations state that D and Ḋ are advected with the interface
velocity and integrated with the source terms on the right hand side.
Equation (5) is similar to equation (3) except that instead of obtain-
ing Ḋ from equation (4), equation (5) obtains it from equation (6).
The system of equations (2), (5) and (6) is closed by defining

D̈ =−c1α2(D−DCJ)− c2αḊ− c3α2LCJ− c4κ̇ (7)

α = eµθ(D−DCJ), LCJ = ln|1+ c5θκ/α|

where θ is the activation energy. The first two terms of equation
(7) are elastic and damping terms describing the oscillatory motion
of D about DCJ . The third term is a curvature forcing term which
accentuates the variations in curvature of the front. In particular,

Figure 5: These simulations correspond to those shown in Figure 4,
except that we render the smoke density field instead of illustrating
the flame core. Again, note the improved result using third order
DSD theory.

since κ > 0 corresponds to regions where D < DCJ , that term fur-
ther decelerates D, whereas regions with κ < 0 where D > DCJ are
accelerated. The last term involving κ̇ is a damping term.

Although the coefficients c1 to c5 and µ are functions of two
material-dependent parameters (namely the polytropic exponent of
the material and the Mach number of the Chapman-Jouguet deto-
nation), in practice one can tune them independently to carve the
desired cellular patterns in the flame. Furthermore, θ can be con-
sidered as a part of µθ and c5θ instead of an independent degree
of freedom. After setting DCJ to the desired base flame speed and
setting c1 and c2 for the desired elasticity and damping about DCJ ,
we found that tweaking the curvature forcing term, c3, gives us suf-
ficient control of the cellular patterns in terms of simulation detail.
The curvature damping term including c4 was essential for the deli-
cate control of cellular patterns for non-coupled simulations, but we
found it can be omitted for coupled simulations because the curva-
ture forcing term dominates. µθ was used to limit the deviation of
D from DCJ and c5θ determined the sensitivity of LCJ to curvature.
It was useful to normalize c5θ by ∆x when testing coefficients with
various grid resolutions. We present the simulation coefficients we
used in Table 3.

Each time step, we first advect φ , D, Ḋ and κ forward in time us-
ing the velocity field w ignoring source terms. Although special
techniques are typically used to evolve the level set equation, the
DSD related parameters D, Ḋ and κ can be treated more simply
with semi-Lagrangian advection or a higher order accurate vari-
ant [Stam 1999; Kim et al. 2006; Selle et al. 2007]. As is typical
the fast marching method can be used to maintain the signed dis-
tance property of φ , whereas the DSD related scalars need to be
extended constant normal to the interface. This extrapolation in the
normal direction is similar to the one-way extrapolation done for
the velocity field in [Enright et al. 2002]. To evaluate the source
terms, we first compute the new curvature field κn+1 = κ(φ n+1)
using the new value of the level set function. Then we compute
κ̇ = (κn+1−κ!)/∆t where κ! is the value obtained by advecting
the time n curvature field forward in time. Next the source term D̈
is evaluated using κ̇ and the advected values of D, Ḋ, and κ (i.e. D!,
Ḋ! and κ!). That is, D̈ = D̈(D!, Ḋ!,κ!, κ̇). The advected value of
Ḋ is then augmented by ∆tD̈, and subsequently the advected value
of D is augmented by ∆tḊ. See Table 1 for pseudocode.

A widely used experimental technique for studying the cellular
structure exhibited by gaseous detonations is the smoked foil tech-
nique, in which a controlled detonation is carried out in a tube lined
with soot coated metal foil. As the detonation propagates through

DSD Comparision

Figure 2: Simulated smoked foils. Lighter regions correspond to a
slower flame speed, and the flame moves from left to right in each
figure. An initial sine wave perturbation is smoothed out by the first
order DSD equations (top) and the second order DSD equations
(middle), whereas interesting cellular patterns develop for the third
order DSD equations (bottom).

tional laboratories. A particularly interesting area of asymptotic re-
search is detonation shock dynamics [Yao and Stewart 1996; Aslam
et al. 1996] where researchers derived equations that admit cellular
patterns. DSD theory shows that the normal plus curvature driven
interface velocities used in [Nguyen et al. 2001; Nguyen et al. 2002]
result in smooth, diffuse flames which is obvious considering the
fact that curvature driven motion leads to a parabolic partial differ-
ential equation. The normal plus curvature driven interface velocity
is consistent with first order DSD theory, but DSD theory also con-
tains second and third order equations which are hyperbolic (not
parabolic) and thus not inherently diffusive. Note that hyperbolic
differential equations are computationally more efficient to simu-
late than their parabolic counterparts, because they possess a sig-
nificantly less restrictive CFL condition. More importantly, third
order DSD theory yields a set of partial differential equations that
produce complex time-coherent cellular patterns.

Although low speed fire and flames (i.e. deflagrations) differ in
many ways from their higher speed shock wave coupled counter-
parts (i.e. detonations), the highly intricate time-coherent cellular
patterns produced by DSD are visually compelling and thus the fo-
cus of our work. From the standpoint of computer graphics ap-
plications, obtaining a more interesting velocity for the level set
surface allows for more visually interesting fire and flames, while
low speed phenomena are still faithfully modeled with the incom-
pressible Navier-Stokes equations. Therefore, we extend the work
of [Nguyen et al. 2002] from the parabolic inherently smooth flame
velocities to the more interesting hyperbolic third order DSD ap-
proximations that yield cellular patterns and flame wrinkling.

2 Previous Work

Previous flame models in computer graphics include [Inakage 1989;
Perry and Picard 1994; Chiba et al. 1994; Stam and Fiume 1995;

Figure 3: Four images from the time evolution of a level set sur-
face using the third order DSD equations. Note that the Navier-
Stokes equations are not used in this example, rather it illustrates
that the cellular patterns are produced by the DSD augmented level
set equations without the need for vorticity confinement or other
turbulence models.

Bukowski and Sequin 1997; Beaudoin et al. 2001; Melek and
Keyser 2002; Adabala and Hughes 2004]. In addition, simulation
of explosions was addressed in [Musgrave 1997; Mazarak et al.
1999; Neff and Fiume 1999; O’Brien and Hodgins 1999; Yngve
et al. 2000; Feldman et al. 2003; Geiger et al. 2003; Rasmussen
et al. 2003; Geiger et al. 2005]. Many authors have focused on the
rendering of fire and flames and we refer the interested reader to
[Rushmeier et al. 1995; Pegoraro and Parker 2006] for example. In
[Melek and Keyser 2003; Melek and Keyser 2005; Losasso et al.
2006a], fire was considered in the context of eroding solid objects,
and [Melek and Keyser 2006] also modeled the crumpling of solids
based on heat. Similarly, [Losasso et al. 2006b] simulated burning
liquids, and [Zhao et al. 2003] described a model for the propaga-
tion of fire along solid surfaces.

3 Flame Speed

We first consider the flame front velocities used in [Nguyen et al.
2002] which have the form

D = a−bκ (1)

where a and b are positive constants and κ is the local mean cur-
vature of the flame surface. Using the level set function φ , we
can define the local unit normal n = ∇φ/|∇φ | and the curvature
κ =−∇ · n. The standard equation for level set evolution is

φt +w · ∇φ = 0, (2)

where w = ((un) f −D)n. The (un) f term denotes the normal ve-
locity of the unreacted fuel which we ignore for the rest of Sec-
tion 3, leaving the discussion of coupling to the Navier-Stokes equa-
tions to Section 4. When φ is a signed distance function, n = ∇φ ,
κ = −"φ , and setting a = 0 yields the parabolic heat (diffusion)
equation φt = b"φ , which smooths out detail on the flame surface.
Equation (2) can be made hyperbolic by setting b = 0, but still does
not produce interesting cellular patterns.

Classical detonation theory describes the velocity of a one-
dimensional steady detonation wave called the Chapman-Jouguet

First Order

Second Order

Third Order

Third Order DSD Constants

• c1, c2, c3, c4, c5, ! : constants that depend
on material properties

• " : activation energy

Figure 4: A technical illustration of flame cores computed using
the full coupling of the DSD equations to the Navier-Stokes equa-
tions. The first order parabolic DSD equations are shown on the
left, while the third order DSD equations are shown on the right.
We used different colors to represent different flame speeds em-
phasizing the fact that the first order equations do not produce and
accentuate cellular patterns. Note that in the first order result, we
have set b = 0 removing the parabolic curvature term and used vor-
ticity confinement in order to get as much detail as possible, but
even so distinct cellular patterns are not generated.

(CJ) detonation. DSD augments this theory by considering devia-
tions in curvature from a planar Chapman-Jouguet detonation front
as well as unsteady detonations velocities, thus providing a fully
multidimensional detonation model. The important parameters are
the detonation speed D, its material derivatives (e.g. Ḋ and D̈) and
the geometry of the shock surface (e.g. κ and κ̇). The first order
relation, termed the D− κ relation, is given in equation (1). The
second order relation, Ḋ−D−κ , considers the first time derivative
of the detonation velocity via

Dt +w · ∇D = Ḋ (3)

Ḋ =−ακ +β (D−DCJ) (4)

where DCJ is the planar detonation velocity predicted by the one-
dimensional Chapman-Jouguet detonation theory.

While the second order DSD equations are hyperbolic, it is the
third order theory utilizing a D̈− Ḋ−D− κ̇ − κ relation which
results in a hyperbolic partial differential equation that generates
self-sustaining cellular patterns. The equations for third order DSD
theory are (see e.g. [Aslam 1996]),

Dt +w · ∇D = Ḋ (5)

Ḋt +w · ∇Ḋ = D̈(Ḋ,D, κ̇,κ) (6)

where κ̇ is the material derivative of the curvature κ̇ = κt +w · ∇κ .
These equations state that D and Ḋ are advected with the interface
velocity and integrated with the source terms on the right hand side.
Equation (5) is similar to equation (3) except that instead of obtain-
ing Ḋ from equation (4), equation (5) obtains it from equation (6).
The system of equations (2), (5) and (6) is closed by defining

D̈ =−c1α2(D−DCJ)− c2αḊ− c3α2LCJ− c4κ̇ (7)

α = eµθ(D−DCJ), LCJ = ln|1+ c5θκ/α|

where θ is the activation energy. The first two terms of equation
(7) are elastic and damping terms describing the oscillatory motion
of D about DCJ . The third term is a curvature forcing term which
accentuates the variations in curvature of the front. In particular,

Figure 5: These simulations correspond to those shown in Figure 4,
except that we render the smoke density field instead of illustrating
the flame core. Again, note the improved result using third order
DSD theory.

since κ > 0 corresponds to regions where D < DCJ , that term fur-
ther decelerates D, whereas regions with κ < 0 where D > DCJ are
accelerated. The last term involving κ̇ is a damping term.

Although the coefficients c1 to c5 and µ are functions of two
material-dependent parameters (namely the polytropic exponent of
the material and the Mach number of the Chapman-Jouguet deto-
nation), in practice one can tune them independently to carve the
desired cellular patterns in the flame. Furthermore, θ can be con-
sidered as a part of µθ and c5θ instead of an independent degree
of freedom. After setting DCJ to the desired base flame speed and
setting c1 and c2 for the desired elasticity and damping about DCJ ,
we found that tweaking the curvature forcing term, c3, gives us suf-
ficient control of the cellular patterns in terms of simulation detail.
The curvature damping term including c4 was essential for the deli-
cate control of cellular patterns for non-coupled simulations, but we
found it can be omitted for coupled simulations because the curva-
ture forcing term dominates. µθ was used to limit the deviation of
D from DCJ and c5θ determined the sensitivity of LCJ to curvature.
It was useful to normalize c5θ by ∆x when testing coefficients with
various grid resolutions. We present the simulation coefficients we
used in Table 3.

Each time step, we first advect φ , D, Ḋ and κ forward in time us-
ing the velocity field w ignoring source terms. Although special
techniques are typically used to evolve the level set equation, the
DSD related parameters D, Ḋ and κ can be treated more simply
with semi-Lagrangian advection or a higher order accurate vari-
ant [Stam 1999; Kim et al. 2006; Selle et al. 2007]. As is typical
the fast marching method can be used to maintain the signed dis-
tance property of φ , whereas the DSD related scalars need to be
extended constant normal to the interface. This extrapolation in the
normal direction is similar to the one-way extrapolation done for
the velocity field in [Enright et al. 2002]. To evaluate the source
terms, we first compute the new curvature field κn+1 = κ(φ n+1)
using the new value of the level set function. Then we compute
κ̇ = (κn+1−κ!)/∆t where κ! is the value obtained by advecting
the time n curvature field forward in time. Next the source term D̈
is evaluated using κ̇ and the advected values of D, Ḋ, and κ (i.e. D!,
Ḋ! and κ!). That is, D̈ = D̈(D!, Ḋ!,κ!, κ̇). The advected value of
Ḋ is then augmented by ∆tD̈, and subsequently the advected value
of D is augmented by ∆tḊ. See Table 1 for pseudocode.

A widely used experimental technique for studying the cellular
structure exhibited by gaseous detonations is the smoked foil tech-
nique, in which a controlled detonation is carried out in a tube lined
with soot coated metal foil. As the detonation propagates through

Modeling Fuel

• Navier-Stokes Equations

• Inviscid, Incompressible Flow

Figure 6: Fireball generated by coupling the third order DSD equations to the Navier-Stokes equations.

the tube, the pressures generated leave an imprint on the foil. A
similar process can be simulated numerically using the DSD equa-
tions. Figure 2 is generated by recording the reaction speed as the
detonation front crosses over each grid point, moving from left to
right in the figures. Note the striking difference between the first,
second and third order DSD equations. While the initial pertur-
bations are smoothed out by the first and second order equations,
they persist and are amplified for the third order equations. Fig-
ure 3 shows the time evolution of a three-dimensional level set sur-
face using the third order DSD equations. Note that the complex
cellular patterns in Figure 2, bottom, and Figure 3 were obtained
using only equations (2), (5), (6) and (7) without any considera-
tion of the Navier-Stokes equations. The ability of DSD theory to
produce such interesting phenomena without the aid of the Navier-
Stokes equation is due to the fact that the equations themselves were
asymptotically derived from the Navier-Stokes equations.

4 Coupling with Navier-Stokes Equations

Now that we have demonstrated the ability of DSD theory to pro-
duce level set surfaces with interesting cellular patterns, in this sec-
tion we couple the level set/DSD evolution to the three-dimensional
Navier-Stokes equations as in [Nguyen et al. 2002]. The equations
for inviscid incompressible flow are given by

ut +(u · ∇)u+∇p/ρ = f (8)

along with the divergence-free condition ∇ · u = 0, where u is the
velocity, p is the pressure, ρ is the density, and f denotes body
forces such as gravity, buoyancy and vorticity confinement. The
conversion of mass due to the reaction induces discontinuities in
pressure and normal velocity across the interface that must satisfy
interface jump conditions (derived through balancing the mass and
momentum flux across the interface) given by

[ρ(un−wn)] = 0 (9)

[ρ(un−wn)2 + p] = 0, (10)

where un = u · n, wn = w · n, and “[·]” denotes the jump across the
interface [Nguyen et al. 2001]. Since ρ is discontinuous across the
interface, these equations imply that un and p are discontinuous as
well. To obtain accurate derivatives across interfaces with sub-grid
accuracy, discontinuous variables are extrapolated using continu-
ous variables based on their physical properties. See [Nguyen et al.
2002; Hong and Kim 2005; Losasso et al. 2006b] for implementa-
tion details.

To obtain a better temperature profile for both buoyancy and render-
ing, we additionally consider the jump condition implied by conser-
vation of energy

[e+(un−wn)2/2+ p/ρ] = 0 (11)

where e is the internal energy per unit mass. For a calorically per-
fect gas, de = cvdT where cv is the specific heat at constant volume
and T is the temperature. Integrating this relationship, setting the
arbitrary zero point energy to zero at 0K, one obtains e = cvT which
can be used to rewrite the jump condition as

[cvT +(un−wn)2/2+ p/ρ] = 0 (12)

noting that cv is different for the reacted and unreacted materials.

As a summary of the whole DSD algorithm, we present the pseu-
docode in Table 1 illustrating that the implementation is a simple
extension to [Nguyen et al. 2002]. The Navier-Stokes equations (8)
are solved exactly as in [Nguyen et al. 2002] except that w is defined
slightly differently in the sense that D is no longer defined by equa-
tion (1) but instead is defined by equations (5), (6) and (7). Equation
(5) is solved for D in the same way as equation (2) is solved for φ
except that there is a source term so it requires a separate step of
addition. That source term obeys equation (6) which is the same
advection as equation (2) for the level set as is the equation for κ .
Once again equation (6) has a source term which is evaluated and
added to Ḋ. Note that the values of Ḋ,D, κ̇,κ are plugged into the
source term in equation (6) via equation (7) which is evaluated by
simple arithmetic operations.

Figures 4, 5 and 6 illustrate the results obtained when coupling the
DSD equations to the full Navier-Stokes equations. In particular,
figures 4 and 5 contrast the differences between the first order DSD
equations and the third order DSD equations.

5 Examples

The examples presented were computed using the third order DSD
equations coupled to the Navier-Stokes equations. We used vortic-
ity confinement as in [Fedkiw et al. 2001] (vortex particles [Selle
et al. 2005] could also be used) in the fuel and product regions.
In order to extend the expanse of the fuel we advect particles that
act to increase the divergence in the fuel region as in [Feldman et al.
2003]. We use photon mapping for the fire lighting and a blackbody
radiation model for the fuel and gaseous products.

Figure 6: Fireball generated by coupling the third order DSD equations to the Navier-Stokes equations.

the tube, the pressures generated leave an imprint on the foil. A
similar process can be simulated numerically using the DSD equa-
tions. Figure 2 is generated by recording the reaction speed as the
detonation front crosses over each grid point, moving from left to
right in the figures. Note the striking difference between the first,
second and third order DSD equations. While the initial pertur-
bations are smoothed out by the first and second order equations,
they persist and are amplified for the third order equations. Fig-
ure 3 shows the time evolution of a three-dimensional level set sur-
face using the third order DSD equations. Note that the complex
cellular patterns in Figure 2, bottom, and Figure 3 were obtained
using only equations (2), (5), (6) and (7) without any considera-
tion of the Navier-Stokes equations. The ability of DSD theory to
produce such interesting phenomena without the aid of the Navier-
Stokes equation is due to the fact that the equations themselves were
asymptotically derived from the Navier-Stokes equations.

4 Coupling with Navier-Stokes Equations

Now that we have demonstrated the ability of DSD theory to pro-
duce level set surfaces with interesting cellular patterns, in this sec-
tion we couple the level set/DSD evolution to the three-dimensional
Navier-Stokes equations as in [Nguyen et al. 2002]. The equations
for inviscid incompressible flow are given by

ut +(u · ∇)u+∇p/ρ = f (8)

along with the divergence-free condition ∇ · u = 0, where u is the
velocity, p is the pressure, ρ is the density, and f denotes body
forces such as gravity, buoyancy and vorticity confinement. The
conversion of mass due to the reaction induces discontinuities in
pressure and normal velocity across the interface that must satisfy
interface jump conditions (derived through balancing the mass and
momentum flux across the interface) given by

[ρ(un−wn)] = 0 (9)

[ρ(un−wn)2 + p] = 0, (10)

where un = u · n, wn = w · n, and “[·]” denotes the jump across the
interface [Nguyen et al. 2001]. Since ρ is discontinuous across the
interface, these equations imply that un and p are discontinuous as
well. To obtain accurate derivatives across interfaces with sub-grid
accuracy, discontinuous variables are extrapolated using continu-
ous variables based on their physical properties. See [Nguyen et al.
2002; Hong and Kim 2005; Losasso et al. 2006b] for implementa-
tion details.

To obtain a better temperature profile for both buoyancy and render-
ing, we additionally consider the jump condition implied by conser-
vation of energy

[e+(un−wn)2/2+ p/ρ] = 0 (11)

where e is the internal energy per unit mass. For a calorically per-
fect gas, de = cvdT where cv is the specific heat at constant volume
and T is the temperature. Integrating this relationship, setting the
arbitrary zero point energy to zero at 0K, one obtains e = cvT which
can be used to rewrite the jump condition as

[cvT +(un−wn)2/2+ p/ρ] = 0 (12)

noting that cv is different for the reacted and unreacted materials.

As a summary of the whole DSD algorithm, we present the pseu-
docode in Table 1 illustrating that the implementation is a simple
extension to [Nguyen et al. 2002]. The Navier-Stokes equations (8)
are solved exactly as in [Nguyen et al. 2002] except that w is defined
slightly differently in the sense that D is no longer defined by equa-
tion (1) but instead is defined by equations (5), (6) and (7). Equation
(5) is solved for D in the same way as equation (2) is solved for φ
except that there is a source term so it requires a separate step of
addition. That source term obeys equation (6) which is the same
advection as equation (2) for the level set as is the equation for κ .
Once again equation (6) has a source term which is evaluated and
added to Ḋ. Note that the values of Ḋ,D, κ̇,κ are plugged into the
source term in equation (6) via equation (7) which is evaluated by
simple arithmetic operations.

Figures 4, 5 and 6 illustrate the results obtained when coupling the
DSD equations to the full Navier-Stokes equations. In particular,
figures 4 and 5 contrast the differences between the first order DSD
equations and the third order DSD equations.

5 Examples

The examples presented were computed using the third order DSD
equations coupled to the Navier-Stokes equations. We used vortic-
ity confinement as in [Fedkiw et al. 2001] (vortex particles [Selle
et al. 2005] could also be used) in the fuel and product regions.
In order to extend the expanse of the fuel we advect particles that
act to increase the divergence in the fuel region as in [Feldman et al.
2003]. We use photon mapping for the fire lighting and a blackbody
radiation model for the fuel and gaseous products.

Fuel Continued

• Conserve mass, momentum and energy
across reaction interface

Figure 6: Fireball generated by coupling the third order DSD equations to the Navier-Stokes equations.

the tube, the pressures generated leave an imprint on the foil. A
similar process can be simulated numerically using the DSD equa-
tions. Figure 2 is generated by recording the reaction speed as the
detonation front crosses over each grid point, moving from left to
right in the figures. Note the striking difference between the first,
second and third order DSD equations. While the initial pertur-
bations are smoothed out by the first and second order equations,
they persist and are amplified for the third order equations. Fig-
ure 3 shows the time evolution of a three-dimensional level set sur-
face using the third order DSD equations. Note that the complex
cellular patterns in Figure 2, bottom, and Figure 3 were obtained
using only equations (2), (5), (6) and (7) without any considera-
tion of the Navier-Stokes equations. The ability of DSD theory to
produce such interesting phenomena without the aid of the Navier-
Stokes equation is due to the fact that the equations themselves were
asymptotically derived from the Navier-Stokes equations.

4 Coupling with Navier-Stokes Equations

Now that we have demonstrated the ability of DSD theory to pro-
duce level set surfaces with interesting cellular patterns, in this sec-
tion we couple the level set/DSD evolution to the three-dimensional
Navier-Stokes equations as in [Nguyen et al. 2002]. The equations
for inviscid incompressible flow are given by

ut +(u · ∇)u+∇p/ρ = f (8)

along with the divergence-free condition ∇ · u = 0, where u is the
velocity, p is the pressure, ρ is the density, and f denotes body
forces such as gravity, buoyancy and vorticity confinement. The
conversion of mass due to the reaction induces discontinuities in
pressure and normal velocity across the interface that must satisfy
interface jump conditions (derived through balancing the mass and
momentum flux across the interface) given by

[ρ(un−wn)] = 0 (9)

[ρ(un−wn)2 + p] = 0, (10)

where un = u · n, wn = w · n, and “[·]” denotes the jump across the
interface [Nguyen et al. 2001]. Since ρ is discontinuous across the
interface, these equations imply that un and p are discontinuous as
well. To obtain accurate derivatives across interfaces with sub-grid
accuracy, discontinuous variables are extrapolated using continu-
ous variables based on their physical properties. See [Nguyen et al.
2002; Hong and Kim 2005; Losasso et al. 2006b] for implementa-
tion details.

To obtain a better temperature profile for both buoyancy and render-
ing, we additionally consider the jump condition implied by conser-
vation of energy

[e+(un−wn)2/2+ p/ρ] = 0 (11)

where e is the internal energy per unit mass. For a calorically per-
fect gas, de = cvdT where cv is the specific heat at constant volume
and T is the temperature. Integrating this relationship, setting the
arbitrary zero point energy to zero at 0K, one obtains e = cvT which
can be used to rewrite the jump condition as

[cvT +(un−wn)2/2+ p/ρ] = 0 (12)

noting that cv is different for the reacted and unreacted materials.

As a summary of the whole DSD algorithm, we present the pseu-
docode in Table 1 illustrating that the implementation is a simple
extension to [Nguyen et al. 2002]. The Navier-Stokes equations (8)
are solved exactly as in [Nguyen et al. 2002] except that w is defined
slightly differently in the sense that D is no longer defined by equa-
tion (1) but instead is defined by equations (5), (6) and (7). Equation
(5) is solved for D in the same way as equation (2) is solved for φ
except that there is a source term so it requires a separate step of
addition. That source term obeys equation (6) which is the same
advection as equation (2) for the level set as is the equation for κ .
Once again equation (6) has a source term which is evaluated and
added to Ḋ. Note that the values of Ḋ,D, κ̇,κ are plugged into the
source term in equation (6) via equation (7) which is evaluated by
simple arithmetic operations.

Figures 4, 5 and 6 illustrate the results obtained when coupling the
DSD equations to the full Navier-Stokes equations. In particular,
figures 4 and 5 contrast the differences between the first order DSD
equations and the third order DSD equations.

5 Examples

The examples presented were computed using the third order DSD
equations coupled to the Navier-Stokes equations. We used vortic-
ity confinement as in [Fedkiw et al. 2001] (vortex particles [Selle
et al. 2005] could also be used) in the fuel and product regions.
In order to extend the expanse of the fuel we advect particles that
act to increase the divergence in the fuel region as in [Feldman et al.
2003]. We use photon mapping for the fire lighting and a blackbody
radiation model for the fuel and gaseous products.

Figure 6: Fireball generated by coupling the third order DSD equations to the Navier-Stokes equations.

the tube, the pressures generated leave an imprint on the foil. A
similar process can be simulated numerically using the DSD equa-
tions. Figure 2 is generated by recording the reaction speed as the
detonation front crosses over each grid point, moving from left to
right in the figures. Note the striking difference between the first,
second and third order DSD equations. While the initial pertur-
bations are smoothed out by the first and second order equations,
they persist and are amplified for the third order equations. Fig-
ure 3 shows the time evolution of a three-dimensional level set sur-
face using the third order DSD equations. Note that the complex
cellular patterns in Figure 2, bottom, and Figure 3 were obtained
using only equations (2), (5), (6) and (7) without any considera-
tion of the Navier-Stokes equations. The ability of DSD theory to
produce such interesting phenomena without the aid of the Navier-
Stokes equation is due to the fact that the equations themselves were
asymptotically derived from the Navier-Stokes equations.

4 Coupling with Navier-Stokes Equations

Now that we have demonstrated the ability of DSD theory to pro-
duce level set surfaces with interesting cellular patterns, in this sec-
tion we couple the level set/DSD evolution to the three-dimensional
Navier-Stokes equations as in [Nguyen et al. 2002]. The equations
for inviscid incompressible flow are given by

ut +(u · ∇)u+∇p/ρ = f (8)

along with the divergence-free condition ∇ · u = 0, where u is the
velocity, p is the pressure, ρ is the density, and f denotes body
forces such as gravity, buoyancy and vorticity confinement. The
conversion of mass due to the reaction induces discontinuities in
pressure and normal velocity across the interface that must satisfy
interface jump conditions (derived through balancing the mass and
momentum flux across the interface) given by

[ρ(un−wn)] = 0 (9)

[ρ(un−wn)2 + p] = 0, (10)

where un = u · n, wn = w · n, and “[·]” denotes the jump across the
interface [Nguyen et al. 2001]. Since ρ is discontinuous across the
interface, these equations imply that un and p are discontinuous as
well. To obtain accurate derivatives across interfaces with sub-grid
accuracy, discontinuous variables are extrapolated using continu-
ous variables based on their physical properties. See [Nguyen et al.
2002; Hong and Kim 2005; Losasso et al. 2006b] for implementa-
tion details.

To obtain a better temperature profile for both buoyancy and render-
ing, we additionally consider the jump condition implied by conser-
vation of energy

[e+(un−wn)2/2+ p/ρ] = 0 (11)

where e is the internal energy per unit mass. For a calorically per-
fect gas, de = cvdT where cv is the specific heat at constant volume
and T is the temperature. Integrating this relationship, setting the
arbitrary zero point energy to zero at 0K, one obtains e = cvT which
can be used to rewrite the jump condition as

[cvT +(un−wn)2/2+ p/ρ] = 0 (12)

noting that cv is different for the reacted and unreacted materials.

As a summary of the whole DSD algorithm, we present the pseu-
docode in Table 1 illustrating that the implementation is a simple
extension to [Nguyen et al. 2002]. The Navier-Stokes equations (8)
are solved exactly as in [Nguyen et al. 2002] except that w is defined
slightly differently in the sense that D is no longer defined by equa-
tion (1) but instead is defined by equations (5), (6) and (7). Equation
(5) is solved for D in the same way as equation (2) is solved for φ
except that there is a source term so it requires a separate step of
addition. That source term obeys equation (6) which is the same
advection as equation (2) for the level set as is the equation for κ .
Once again equation (6) has a source term which is evaluated and
added to Ḋ. Note that the values of Ḋ,D, κ̇,κ are plugged into the
source term in equation (6) via equation (7) which is evaluated by
simple arithmetic operations.

Figures 4, 5 and 6 illustrate the results obtained when coupling the
DSD equations to the full Navier-Stokes equations. In particular,
figures 4 and 5 contrast the differences between the first order DSD
equations and the third order DSD equations.

5 Examples

The examples presented were computed using the third order DSD
equations coupled to the Navier-Stokes equations. We used vortic-
ity confinement as in [Fedkiw et al. 2001] (vortex particles [Selle
et al. 2005] could also be used) in the fuel and product regions.
In order to extend the expanse of the fuel we advect particles that
act to increase the divergence in the fuel region as in [Feldman et al.
2003]. We use photon mapping for the fire lighting and a blackbody
radiation model for the fuel and gaseous products.

Results

Number of Total Mean time DSD time CFL Grid
frames time per frame per frame number resolution

Figure 1 521 68 hr 469 sec 5 % 2 300×250×250
Figure 6 300 24 hr 291 sec 6 % 2 200×300×200
Figure 7 225 50 hr 800 sec 6 % 1.5 250×250×250

Table 2: Simulation times

DCJ a b α β c1 c2 c3 c4 µθ c5θ∆x ∆x Grid size
Figure 2 (top) 1 0.01 0.08 120×40

Figure 2 (middle) 1 1 0.1 0.08 120×40
Figure 2 (bottom) 1 0.2 0.1 87.5 0.625 1 0.01 0.08 120×40

Figure 1 0.2 1 0.1 100 0 2 2.5 0.04 12×10×10
Figure 3 0.1 0.01 0.001 0.013 0.002 1 1 0.0267 8×8×8
Figure 6 0.2 10 0.1 100 0 2 2.5 0.01 2×3×2
Figure 7 0.2 3 0.3 300 0 2 2.5 0.024 6×6×6

Table 3: Simulation parameters

Press / ACM SIGGRAPH, Comput. Graph. Proc., Annual Conf. Series,
ACM, 35–44.

CHIBA, N., MURAOKA, K., TAKAHASHI, H., AND MIURA, M. 1994.
Two dimensional Visual Simulation of Flames, Smoke and the Spread of
Fire. J. Vis. and Comput. Anim. 5, 37–53.

DERVIEUX, A., AND THOMASSET, F. 1979. A finite element method for
the simulation of a Rayleigh-Taylor instability. Lecture Notes in Math.
771, 145–158.

DERVIEUX, A., AND THOMASSET, F. 1981. Multifluid incompressible
flows by a finite element method. Lecture Notes in Phys. 141, 158–163.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Animation and
rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH
Proc.) 21, 3, 736–744.

FEDKIW, R., STAM, J., AND JENSEN, H. 2001. Visual simulation of
smoke. In Proc. of ACM SIGGRAPH 2001, 15–22.

FELDMAN, B. E., O’BRIEN, J. F., AND ARIKAN, O. 2003. Animating
suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.)
22, 3, 708–715.

GEIGER, W., RASMUSSEN, N., HOON, S., AND FEDKIW, R. 2003. Big
bangs. In SIGGRAPH 2003 Sketches & Applications, ACM Press.

GEIGER, W., RASMUSSEN, N., HOON, S., AND FEDKIW, R. 2005. Space
battle pyromania. In SIGGRAPH 2005 Sketches & Applications, ACM
Press.

HONG, J.-M., AND KIM, C.-H. 2005. Discontinuous fluids. ACM Trans.
Graph. (SIGGRAPH Proc.) 24, 3, 915–920.

INAKAGE, M. 1989. A Simple Model of Flames. In Proc. of Comput.
Graph. Int. 89, Springer-Verlag, 71–81.

KIM, B.-M., LIU, Y., LLAMAS, I., AND ROSSIGNAC, J. 2006. Advections
with significantly reduced dissipation and diffusion. IEEE Trans. on Vis.
and Comput. Graph. In Press..

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling of flames
for a production environment. ACM Trans. Graph. (SIGGRAPH Proc.)
21, 3, 729–735.

LOSASSO, F., IRVING, G., GUENDELMAN, E., AND FEDKIW, R. 2006.
Melting and burning solids into liquids and gases. IEEE Trans. on Vis.
and Comput. Graph. 12, 3, 343–352.

LOSASSO, F., SHINAR, T., SELLE, A., AND FEDKIW, R. 2006. Multiple
interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 812–
819.

MARKSTEIN, G. 1964. Nonsteady Flame Propagation. Pergamon Press.
MAZARAK, O., MARTINS, C., AND AMANATIDES, J. 1999. Animating

exploding objects. In Proc. of Graph. Interface 1999, 211–218.
MELEK, Z., AND KEYSER, J. 2002. Interactive simulation of fire. In

Pacific Graph., 431–432.
MELEK, Z., AND KEYSER, J. 2003. Interactive simulation of burning

objects. In Pacific Graph., 462–466.

MELEK, Z., AND KEYSER, J. 2005. Multi-representation interaction for
physically based modeling. In ACM Symp. on Solid and Physical Mod-
eling, 187–196.

MELEK, Z., AND KEYSER, J. 2006. Bending burning matches and crum-
pling burning paper. In Poster, SIGGRAPH Proc., ACM.

MUSGRAVE, F. K. 1997. Great Balls of Fire. In SIGGRAPH 97 Animation
Sketches, Visual Proceedings, 259–268.

NEFF, M., AND FIUME, E. 1999. A visual model for blast waves and
fracture. In Proc. of Graph. Interface 1999, 193–202.

NGUYEN, D., FEDKIW, R., AND KANG, M. 2001. A boundary condition
capturing method for incompressible flame discontinuities. J. Comput.
Phys. 172, 71–98.

NGUYEN, D., FEDKIW, R., AND JENSEN, H. 2002. Physically based
modeling and animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.)
29, 721–728.

O’BRIEN, J., AND HODGINS, J. 1999. Graphical modeling and animation
of brittle fracture. In Proc. of SIGGRAPH 1999, 137–146.

OSHER, S., AND SETHIAN, J. 1988. Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formulations. J.
Comput. Phys. 79, 12–49.

PEGORARO, V., AND PARKER, S. G. 2006. Physically-based realistic fire
rendering. In Eurographics Workshop on Natural Phenomena (2006),
E. Galin and N. Chiba, Eds., 237–244.

PERRY, C., AND PICARD, R. 1994. Synthesizing Flames and their Spread.
SIGGRAPH 94 Technical Sketches Notes (July).

RASMUSSEN, N., NGUYEN, D., GEIGER, W., AND FEDKIW, R. 2003.
Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIG-
GRAPH Proc.) 22, 703–707.

RUSHMEIER, H. E., HAMINS, A., AND CHOI, M. 1995. Volume Render-
ing of Pool Fire Data. IEEE Comput. Graph. and Appl. 15, 4, 62–67.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex particle
method for smoke, water and explosions. ACM Trans. Graph. (SIG-
GRAPH Proc.) 24, 3, 910–914.

SELLE, A., FEDKIW, R., KIM, B.-M., LIU, Y., AND ROSSIGNAC, J.
2007. An unconditionally stable maccormack method. J. Sci. Comput.
in review. http://graphics.stanford.edu/∼fedkiw/ .

STAM, J., AND FIUME, E. 1995. Depicting Fire and Other Gaseous Phe-
nomena Using Diffusion Process. In Proc. of SIGGRAPH 1995, 129–
136.

STAM, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121–128.
YAO, J., AND STEWART, D. S. 1996. On the dynamics of multi-

dimensional detonation. J. Fluid Mech. 309, 225–275.
YNGVE, G. D., O’BRIEN, J. F., AND HODGINS, J. K. 2000. Animating

explosions. In Proc. of ACM SIGGRAPH 2000, 29–36.
ZHAO, Y., WEI, X., FAN, Z., KAUFMAN, A., AND QIN, H. 2003. Voxels

on fire. In Proc. of IEEE Vis., 271–278.

Combustion-based Technique
for Fire Animation

• Voxel-based combustion simulation

• Photon mapping using fire temperature

Fluid Equations

• Navier-Stokes again

• This time with viscosity

• Density

• Temperature

680 K. Min, D. Metaxas

develop a scheme that presents various visualization re-
sults of fire.

This paper is organized as follows. In Sect. 2, we sur-
vey related work on the animation of fire. In Sect. 3 and 4,
we briefly present the fluid equations exploited in this
paper and suggest a framework that simulates the combus-
tion of fuels. In Sect. 5, we explain the method by which
fire and its lighting effects are visualized. In Sect. 6, we
show the results and discuss how the framework is im-
plemented. Finally, in Sect. 7, we conclude and suggest
directions for future work.

2 Related work

Particle systems [21] or noise functions [18] were intro-
duced to model and animate fire and flames in computer
graphics. The methods on fire can be classified into two
categories: procedural model-based methods [3, 5, 6, 10,
13, 14, 19, 24] and fluid-based methods [8, 9, 17, 23].

2.1 Procedural model-based methods

Inakage proposed a simple laminar flame model by ap-
plying textures onto flame-like implicit primitives and ap-
plied a volume rendering technique for visualization [10].
Chiba et al. suggested a planar flame spread model that
decomposes space into a set of cells, each of which con-
tains fuel to be combusted [6]. A cell whose temperature
becomes higher than the ignition temperature starts to
burn and emits light and heat. Perry and Picard developed
a fire propagation simulation on polygonal meshes by
representing a fire front as a particle system and adding
new particles according to the expansion of the front [19].
Bukowski and Sequin proposed a simplified and inter-
active fire simulation based on the design environment
for building fire safety systems [5]. Beaudoin et al. de-
signed flames as implicit surfaces and controlled them by
using time-dependent vector fields [3]. They also simu-
lated fire propagation on triangular mesh surfaces and ren-
dered fire by applying volume rendering techniques. Lee
et al. simulated fire propagation on arbitrarily complex
objects by computing geodesic curves on the surfaces of
the objects [14]. Lamorlette and Foster proposed a flame
modeling scheme that represents the core of a flame as
a parametric 3D curve whose motion is controlled through
wind fields [13]. The visual part of the flame is constructed
as a cylindrical profile of the curve, which is built by
using implicit surfaces. They also added procedural noise
and a Kolmogorov frequency spectrum to make the flame
turbulent. Wei et al. suggested a realtime fire animation
scheme by exploiting textured splats as the basic display
primitives for fire [24]. They applied the lattice Boltz-
mann model to simulate the equations about fire evolution
and intersection with the environment. Premoze et al. [20]
proposed a particle-based method to simulate fluids such

as floods and water. Adabala and Hughes [1] proposed
a chemical model that simulates the flickering of fire.

2.2 Fluid-based methods

Stam and Fiume proposed a diffusion equation-based
method to simulate fluids such as fire and smoke [23]. To
solve the diffusion equation numerically, they developed
the warped blob method. They also developed fire propa-
gation on surfaces by casting fuel particles on the surface
of nonflammable objects and burning them from the ig-
nition point. Nguyen et al. developed a physically-based
fire modeling and animation scheme [17]. They separated
fire into three parts: core, flame, and soot. The core is
represented as a level-set whose interface is deformed ac-
cording to the out-going fluids. The flame is represented
as the fluid cast out from the core using the ghost-fluid
method. The motion of the fluid is controlled by the Eu-
ler equation, and the temperature is controlled through
a time–temperature graph. Soot is the fluid the tempera-
ture of which is cooled below a certain threshold tempera-
ture. Nguyen et al. also proposed a very realistic rendering
scheme for fire by applying a photon mapping and ray
marching scheme. Feldman et al. proposed a combustion-
based model for simulating fire and explosions [8]. The
fuel of the combustion, which is represented as suspended
particle systems, is controlled by modeling the fluid using
the Euler equation. At each time step, the fuels are com-
busted and emit light and heat to the cells that contain
the fuel. Ihm et al. proposed a fluid animation framework
based on simulating chemical reactions [9]. Even though
they deal with the chemical reactions during fluid simu-
lations, their scheme does not simulate combustion. Min
and Metaxas have presented a simple model that simu-
lates combustion process [16]. The limitation of this work
is that the details of the combustion are not considered
and that the visualization of fire is not sufficiently pro-
vided. Recently, Losasso et al. proposed a fire propagation
scheme [15] that converts objects in triangular meshes into
grid-based fluids. They further implemented fire propaga-
tion on solid objects.

3 The fluid equations

The fire model presented in this paper is composed of
a fluid model and a combustion model. The fluid model,
whose purpose is to control the motion of fluids around
fire, is constructed by exploiting the classical fluid model
equations [7, 22]. The Navier–Stokes equations with low
viscosity are exploited to model the fluid of the proposed
fire model.

∇ ·u = 0,

∂u
∂t

= −(u ·∇)u− 1
ρ

∇ p+ν∇2u+ f ,

A combustion-based technique for fire animation and visualization 681

where ν is the kinematic viscosity of the fluid, ρ is its
density and f is an external force. The advection term of
the equation is solved by applying the semi-Lagrangian
method. According to [7], the external force is composed
of two forces: the buoyancy force that raises fluids and the
confinement force that plays the role of a paddle wheel in
fluids.

The fluid density and temperature are controlled
through the following equations:

∂ρ

∂t
= −(u ·∇)ρ,

∂T
∂t

= −(u ·∇)T − cT

(
T − Tair

Tmax − Tair

)4

+ dH
dt

, (1)

where cT is a cooling parameter, and dH
dt is the term for

the heat generated from the combustion, whose process is
described in Eq. 2 in Sect. 4.2.

4 Simulation of the combustion process

In this section, we describe a scheme that simulates the
combustion process during which fuel is converted into
soot by producing heat and light. As a preliminary step, we
build a model that represents the properties of fuel which
is exploited in the simulation of combustion process.

4.1 Building a fuel model

4.1.1 Sampling the properties of fuel

The important properties of fuel considered in this paper
are listed as follows:

The potential heat. The potential heat of a fuel means the
amount of heat that fuel can produce during its com-
bustion. According to combustion theory, fuels with
different chemical properties have different amounts of
potential heat. In this paper, the burning materials of
simple chemical constituents are represented as a set of
fuels that have similar potential heat, while the burning
materials of complex chemical constituents are rep-
resented as a set of fuels that have diverse potential
heat.

The combustion speed. The combustion speed of a fuel
also depends on the chemical properties of the fuel.
Since we simulate the combustion process in a dis-
cretized time space, the combustion speed of a fuel is
implemented as the combustion ratio of a fuel, which
means the amount of fuel that is combusted at a single
time step. We control the burning speed of fuels with
this property. On entering the burning zone, fuels of
high combustion speed are combusted as soon as they
enter the zone, while fuels with low combustion speed
are combusted slowly.

The oxygen required for combustion. A combustion pro-
cess requires oxygen, which reacts with fuel to produce
heat and soot. Fuel with different chemical ingre-
dients requires different amount of oxygen in the
combustion process. We control the location of com-
bustion with this property. Fuel that requires a small
amount of oxygen is combusted near the source of
the fuel, while fuel that requires a large amount of
oxygen is combusted near the boundary of the fire,
where more oxygen is available. In the next sec-
tion, we present a formula for estimating oxygen in
a voxel.

The threshold temperatures. Fuel stays in a solid or a
liquid state while the temperature of fuel is below
a threshold temperature, which is known as the pyrol-
ysis temperature. Above this temperature, the fuel is
vaporized and ready to be combusted. These pyrolyzed
fuels are combusted after the temperature increases
above the ignition temperature. The propagation speed
of fire over burning objects is controlled through the
pyrolysis temperature and the ignition temperature of
the fuel on the objects.

4.1.2 Implementation of fuels in voxelized space

To implement fuel in a voxelized space, we assume that
the voxels are filled with only either fluid or air. Before
simulation, the voxel with a maximum capacity of VMAX
is assumed to be filled with air. If we assume the oxygen
ratio of air to be κ, the amount of oxygen in the voxel is
estimated as κVMAX, and the amount of auxiliary gas as
(1−κ)VMAX (see Fig. 1a).

During simulation, the voxel is occupied with the fluid
of density ρ (see the right box in Fig. 1a). The fluid with
density ρ is composed of N fuels, each of which is rep-
resented as ϕx (see the left box in Fig. 1b). Initially, the
fuels are 1.0 before combustion (unshaded area in Fig. 1b).
During simulation, the values of the fuels are reduced due
to the combustion of the fuels. After a complete com-
bustion, the fuel values become zero (shaded area in the
Fig. 1b). Note that ϕx denotes the ratio of fuel of type x in
the fluid with density ρ. Therefore, the amount of fuel of
type x is estimated as ϕx × ρ. ϕ’s are controlled through
the equation that controls the scalar values in the fluid
equation:

∂ϕx

∂t
= −(u ·∇)ϕx, for 1 ≤ x ≤ N,

where N denotes the number of types of fuels.

4.2 Building a combustion model

At each time step, we simulate the combustion process
at every voxel by performing the procedures suggested
in Fig. 2.

A combustion-based technique for fire animation and visualization 681

where ν is the kinematic viscosity of the fluid, ρ is its
density and f is an external force. The advection term of
the equation is solved by applying the semi-Lagrangian
method. According to [7], the external force is composed
of two forces: the buoyancy force that raises fluids and the
confinement force that plays the role of a paddle wheel in
fluids.

The fluid density and temperature are controlled
through the following equations:

∂ρ

∂t
= −(u ·∇)ρ,

∂T
∂t

= −(u ·∇)T − cT

(
T − Tair

Tmax − Tair

)4

+ dH
dt

, (1)

where cT is a cooling parameter, and dH
dt is the term for

the heat generated from the combustion, whose process is
described in Eq. 2 in Sect. 4.2.

4 Simulation of the combustion process

In this section, we describe a scheme that simulates the
combustion process during which fuel is converted into
soot by producing heat and light. As a preliminary step, we
build a model that represents the properties of fuel which
is exploited in the simulation of combustion process.

4.1 Building a fuel model

4.1.1 Sampling the properties of fuel

The important properties of fuel considered in this paper
are listed as follows:

The potential heat. The potential heat of a fuel means the
amount of heat that fuel can produce during its com-
bustion. According to combustion theory, fuels with
different chemical properties have different amounts of
potential heat. In this paper, the burning materials of
simple chemical constituents are represented as a set of
fuels that have similar potential heat, while the burning
materials of complex chemical constituents are rep-
resented as a set of fuels that have diverse potential
heat.

The combustion speed. The combustion speed of a fuel
also depends on the chemical properties of the fuel.
Since we simulate the combustion process in a dis-
cretized time space, the combustion speed of a fuel is
implemented as the combustion ratio of a fuel, which
means the amount of fuel that is combusted at a single
time step. We control the burning speed of fuels with
this property. On entering the burning zone, fuels of
high combustion speed are combusted as soon as they
enter the zone, while fuels with low combustion speed
are combusted slowly.

The oxygen required for combustion. A combustion pro-
cess requires oxygen, which reacts with fuel to produce
heat and soot. Fuel with different chemical ingre-
dients requires different amount of oxygen in the
combustion process. We control the location of com-
bustion with this property. Fuel that requires a small
amount of oxygen is combusted near the source of
the fuel, while fuel that requires a large amount of
oxygen is combusted near the boundary of the fire,
where more oxygen is available. In the next sec-
tion, we present a formula for estimating oxygen in
a voxel.

The threshold temperatures. Fuel stays in a solid or a
liquid state while the temperature of fuel is below
a threshold temperature, which is known as the pyrol-
ysis temperature. Above this temperature, the fuel is
vaporized and ready to be combusted. These pyrolyzed
fuels are combusted after the temperature increases
above the ignition temperature. The propagation speed
of fire over burning objects is controlled through the
pyrolysis temperature and the ignition temperature of
the fuel on the objects.

4.1.2 Implementation of fuels in voxelized space

To implement fuel in a voxelized space, we assume that
the voxels are filled with only either fluid or air. Before
simulation, the voxel with a maximum capacity of VMAX
is assumed to be filled with air. If we assume the oxygen
ratio of air to be κ, the amount of oxygen in the voxel is
estimated as κVMAX, and the amount of auxiliary gas as
(1−κ)VMAX (see Fig. 1a).

During simulation, the voxel is occupied with the fluid
of density ρ (see the right box in Fig. 1a). The fluid with
density ρ is composed of N fuels, each of which is rep-
resented as ϕx (see the left box in Fig. 1b). Initially, the
fuels are 1.0 before combustion (unshaded area in Fig. 1b).
During simulation, the values of the fuels are reduced due
to the combustion of the fuels. After a complete com-
bustion, the fuel values become zero (shaded area in the
Fig. 1b). Note that ϕx denotes the ratio of fuel of type x in
the fluid with density ρ. Therefore, the amount of fuel of
type x is estimated as ϕx × ρ. ϕ’s are controlled through
the equation that controls the scalar values in the fluid
equation:

∂ϕx

∂t
= −(u ·∇)ϕx, for 1 ≤ x ≤ N,

where N denotes the number of types of fuels.

4.2 Building a combustion model

At each time step, we simulate the combustion process
at every voxel by performing the procedures suggested
in Fig. 2.

Fuel Model

• Potential Heat

• Combustion Speed

• Oxygen Requirement

• Threshold Temperatures

• Pyrolysis

• Ignition

Voxel Configuration

• Initially, voxels contain
only air or fluid

• Fluid may consist of
several different fuels

• Air consists of
Oxygen and auxiliary
gasses

682 K. Min, D. Metaxas

Fig. 1. The configuration of a voxel during simulation

Fig. 2. Simulated procedures of combustion

The procedures in Fig. 2 are implemented as follows:

[1] We denote the available oxygen and required oxygen
for the x-th fuel at a voxel v as Ox

a (v) and Ox
r (v),

respectively. In computing Ox
a(v), we assume that

the amount of available oxygen for the x-th fuel in
a voxel v is proportional to the relative amount of fuel
in the voxel.Therefore, Ox

a (v) is computed as

Ox
a (v) = O(v)

ϕx(v)

Φ
, where Φ =

N∑

n=1

ϕn(v).

Note that O(v) is measured as κ(VMAX −ρ(v)) from
Fig. 1a. Ox

r (v) is estimated as

Ox
r (v) = Ox

r ϕx(v),

where Ox
r is the required oxygen for the combustion

of the x-th fuel.
[2] The heat generated at a voxel is estimated by adding

the heat generated from each fuel in the voxel. Before
computing the heat generated from the x-th fuel in the
voxel, we estimate φx(v), which is the amount of the
fuel that will be combusted at this time step. The im-
portant facts that determine φx(v) are the combustion
speed and the oxygen available at the voxel.
In the case that the available oxygen is greater than
the required oxygen, φx(v) is estimated as:

φx(v) ← γ x ×ϕx(v),

where γ x is the combustion speed. In other cases,
φx(v) is restricted by the available oxygen as follows:

φx(v) ← Ox
a (v)

Ox
r (v)

γ x ×ϕx(v).

The heat generated from the x-th fuel at voxel v, de-
noted as Hx(v), is computed as follows:

Hx(v) = hx ×φx
v ×ρv × δt,

where hx denotes the potential heat of the x-th fuel,
and δt is the time step for the simulation.
Finally, the remaining amount of fuel after the com-
bustion process is measured as follows:

ϕx = ϕx −φx
v, for 1 ≤ x ≤ N.

[3] The total heat generated at voxel v, denoted as H(v),
is computed as the sum of the heat generated from
each fuel as follows:

H(v) =
N∑

i=1

Hx(v). (2)

This value is added to Eq. 1.

5 Visualization

In this paper, fire and its lighting effects are visualized in
the following steps.
1. Mapping temperature to color. We present a tempera-

ture-color graph that maps the temperature of fire to
a color. The graph is designed based on the field func-
tion graph, which was originally developed for build-
ing soft objects [4].

2. Casting and managing photons. A set of photons are
cast at each voxel whose temperature is greater than
a threshold temperature. The color of the photon is

Combustion Model

• Estimate oxygen availability & requirement

• Compute heat generated by each fuel

• Compute total heat of voxel

Oxygen Estimation

• Available

• Required

682 K. Min, D. Metaxas

Fig. 1. The configuration of a voxel during simulation

Fig. 2. Simulated procedures of combustion

The procedures in Fig. 2 are implemented as follows:

[1] We denote the available oxygen and required oxygen
for the x-th fuel at a voxel v as Ox

a (v) and Ox
r (v),

respectively. In computing Ox
a(v), we assume that

the amount of available oxygen for the x-th fuel in
a voxel v is proportional to the relative amount of fuel
in the voxel.Therefore, Ox

a (v) is computed as

Ox
a (v) = O(v)

ϕx(v)

Φ
, where Φ =

N∑

n=1

ϕn(v).

Note that O(v) is measured as κ(VMAX −ρ(v)) from
Fig. 1a. Ox

r (v) is estimated as

Ox
r (v) = Ox

r ϕx(v),

where Ox
r is the required oxygen for the combustion

of the x-th fuel.
[2] The heat generated at a voxel is estimated by adding

the heat generated from each fuel in the voxel. Before
computing the heat generated from the x-th fuel in the
voxel, we estimate φx(v), which is the amount of the
fuel that will be combusted at this time step. The im-
portant facts that determine φx(v) are the combustion
speed and the oxygen available at the voxel.
In the case that the available oxygen is greater than
the required oxygen, φx(v) is estimated as:

φx(v) ← γ x ×ϕx(v),

where γ x is the combustion speed. In other cases,
φx(v) is restricted by the available oxygen as follows:

φx(v) ← Ox
a (v)

Ox
r (v)

γ x ×ϕx(v).

The heat generated from the x-th fuel at voxel v, de-
noted as Hx(v), is computed as follows:

Hx(v) = hx ×φx
v ×ρv × δt,

where hx denotes the potential heat of the x-th fuel,
and δt is the time step for the simulation.
Finally, the remaining amount of fuel after the com-
bustion process is measured as follows:

ϕx = ϕx −φx
v, for 1 ≤ x ≤ N.

[3] The total heat generated at voxel v, denoted as H(v),
is computed as the sum of the heat generated from
each fuel as follows:

H(v) =
N∑

i=1

Hx(v). (2)

This value is added to Eq. 1.

5 Visualization

In this paper, fire and its lighting effects are visualized in
the following steps.
1. Mapping temperature to color. We present a tempera-

ture-color graph that maps the temperature of fire to
a color. The graph is designed based on the field func-
tion graph, which was originally developed for build-
ing soft objects [4].

2. Casting and managing photons. A set of photons are
cast at each voxel whose temperature is greater than
a threshold temperature. The color of the photon is

682 K. Min, D. Metaxas

Fig. 1. The configuration of a voxel during simulation

Fig. 2. Simulated procedures of combustion

The procedures in Fig. 2 are implemented as follows:

[1] We denote the available oxygen and required oxygen
for the x-th fuel at a voxel v as Ox

a (v) and Ox
r (v),

respectively. In computing Ox
a(v), we assume that

the amount of available oxygen for the x-th fuel in
a voxel v is proportional to the relative amount of fuel
in the voxel.Therefore, Ox

a (v) is computed as

Ox
a (v) = O(v)

ϕx(v)

Φ
, where Φ =

N∑

n=1

ϕn(v).

Note that O(v) is measured as κ(VMAX −ρ(v)) from
Fig. 1a. Ox

r (v) is estimated as

Ox
r (v) = Ox

r ϕx(v),

where Ox
r is the required oxygen for the combustion

of the x-th fuel.
[2] The heat generated at a voxel is estimated by adding

the heat generated from each fuel in the voxel. Before
computing the heat generated from the x-th fuel in the
voxel, we estimate φx(v), which is the amount of the
fuel that will be combusted at this time step. The im-
portant facts that determine φx(v) are the combustion
speed and the oxygen available at the voxel.
In the case that the available oxygen is greater than
the required oxygen, φx(v) is estimated as:

φx(v) ← γ x ×ϕx(v),

where γ x is the combustion speed. In other cases,
φx(v) is restricted by the available oxygen as follows:

φx(v) ← Ox
a (v)

Ox
r (v)

γ x ×ϕx(v).

The heat generated from the x-th fuel at voxel v, de-
noted as Hx(v), is computed as follows:

Hx(v) = hx ×φx
v ×ρv × δt,

where hx denotes the potential heat of the x-th fuel,
and δt is the time step for the simulation.
Finally, the remaining amount of fuel after the com-
bustion process is measured as follows:

ϕx = ϕx −φx
v, for 1 ≤ x ≤ N.

[3] The total heat generated at voxel v, denoted as H(v),
is computed as the sum of the heat generated from
each fuel as follows:

H(v) =
N∑

i=1

Hx(v). (2)

This value is added to Eq. 1.

5 Visualization

In this paper, fire and its lighting effects are visualized in
the following steps.
1. Mapping temperature to color. We present a tempera-

ture-color graph that maps the temperature of fire to
a color. The graph is designed based on the field func-
tion graph, which was originally developed for build-
ing soft objects [4].

2. Casting and managing photons. A set of photons are
cast at each voxel whose temperature is greater than
a threshold temperature. The color of the photon is

Heat Generation

• Estimate fuel combusted

• If more than enough oxygen is available,
combustion speed determines amount

• Otherwise, oxygen availability limits
combustion

682 K. Min, D. Metaxas

Fig. 1. The configuration of a voxel during simulation

Fig. 2. Simulated procedures of combustion

The procedures in Fig. 2 are implemented as follows:

[1] We denote the available oxygen and required oxygen
for the x-th fuel at a voxel v as Ox

a (v) and Ox
r (v),

respectively. In computing Ox
a(v), we assume that

the amount of available oxygen for the x-th fuel in
a voxel v is proportional to the relative amount of fuel
in the voxel.Therefore, Ox

a (v) is computed as

Ox
a (v) = O(v)

ϕx(v)

Φ
, where Φ =

N∑

n=1

ϕn(v).

Note that O(v) is measured as κ(VMAX −ρ(v)) from
Fig. 1a. Ox

r (v) is estimated as

Ox
r (v) = Ox

r ϕx(v),

where Ox
r is the required oxygen for the combustion

of the x-th fuel.
[2] The heat generated at a voxel is estimated by adding

the heat generated from each fuel in the voxel. Before
computing the heat generated from the x-th fuel in the
voxel, we estimate φx(v), which is the amount of the
fuel that will be combusted at this time step. The im-
portant facts that determine φx(v) are the combustion
speed and the oxygen available at the voxel.
In the case that the available oxygen is greater than
the required oxygen, φx(v) is estimated as:

φx(v) ← γ x ×ϕx(v),

where γ x is the combustion speed. In other cases,
φx(v) is restricted by the available oxygen as follows:

φx(v) ← Ox
a (v)

Ox
r (v)

γ x ×ϕx(v).

The heat generated from the x-th fuel at voxel v, de-
noted as Hx(v), is computed as follows:

Hx(v) = hx ×φx
v ×ρv × δt,

where hx denotes the potential heat of the x-th fuel,
and δt is the time step for the simulation.
Finally, the remaining amount of fuel after the com-
bustion process is measured as follows:

ϕx = ϕx −φx
v, for 1 ≤ x ≤ N.

[3] The total heat generated at voxel v, denoted as H(v),
is computed as the sum of the heat generated from
each fuel as follows:

H(v) =
N∑

i=1

Hx(v). (2)

This value is added to Eq. 1.

5 Visualization

In this paper, fire and its lighting effects are visualized in
the following steps.
1. Mapping temperature to color. We present a tempera-

ture-color graph that maps the temperature of fire to
a color. The graph is designed based on the field func-
tion graph, which was originally developed for build-
ing soft objects [4].

2. Casting and managing photons. A set of photons are
cast at each voxel whose temperature is greater than
a threshold temperature. The color of the photon is

682 K. Min, D. Metaxas

Fig. 1. The configuration of a voxel during simulation

Fig. 2. Simulated procedures of combustion

The procedures in Fig. 2 are implemented as follows:

[1] We denote the available oxygen and required oxygen
for the x-th fuel at a voxel v as Ox

a (v) and Ox
r (v),

respectively. In computing Ox
a(v), we assume that

the amount of available oxygen for the x-th fuel in
a voxel v is proportional to the relative amount of fuel
in the voxel.Therefore, Ox

a (v) is computed as

Ox
a (v) = O(v)

ϕx(v)

Φ
, where Φ =

N∑

n=1

ϕn(v).

Note that O(v) is measured as κ(VMAX −ρ(v)) from
Fig. 1a. Ox

r (v) is estimated as

Ox
r (v) = Ox

r ϕx(v),

where Ox
r is the required oxygen for the combustion

of the x-th fuel.
[2] The heat generated at a voxel is estimated by adding

the heat generated from each fuel in the voxel. Before
computing the heat generated from the x-th fuel in the
voxel, we estimate φx(v), which is the amount of the
fuel that will be combusted at this time step. The im-
portant facts that determine φx(v) are the combustion
speed and the oxygen available at the voxel.
In the case that the available oxygen is greater than
the required oxygen, φx(v) is estimated as:

φx(v) ← γ x ×ϕx(v),

where γ x is the combustion speed. In other cases,
φx(v) is restricted by the available oxygen as follows:

φx(v) ← Ox
a (v)

Ox
r (v)

γ x ×ϕx(v).

The heat generated from the x-th fuel at voxel v, de-
noted as Hx(v), is computed as follows:

Hx(v) = hx ×φx
v ×ρv × δt,

where hx denotes the potential heat of the x-th fuel,
and δt is the time step for the simulation.
Finally, the remaining amount of fuel after the com-
bustion process is measured as follows:

ϕx = ϕx −φx
v, for 1 ≤ x ≤ N.

[3] The total heat generated at voxel v, denoted as H(v),
is computed as the sum of the heat generated from
each fuel as follows:

H(v) =
N∑

i=1

Hx(v). (2)

This value is added to Eq. 1.

5 Visualization

In this paper, fire and its lighting effects are visualized in
the following steps.
1. Mapping temperature to color. We present a tempera-

ture-color graph that maps the temperature of fire to
a color. The graph is designed based on the field func-
tion graph, which was originally developed for build-
ing soft objects [4].

2. Casting and managing photons. A set of photons are
cast at each voxel whose temperature is greater than
a threshold temperature. The color of the photon is

Heat Generation Continued

• Heat generated by each fuel is the product
of amount of fuel combusted, potential
heat, and density over the simulation
timestep

682 K. Min, D. Metaxas

Fig. 1. The configuration of a voxel during simulation

Fig. 2. Simulated procedures of combustion

The procedures in Fig. 2 are implemented as follows:

[1] We denote the available oxygen and required oxygen
for the x-th fuel at a voxel v as Ox

a (v) and Ox
r (v),

respectively. In computing Ox
a(v), we assume that

the amount of available oxygen for the x-th fuel in
a voxel v is proportional to the relative amount of fuel
in the voxel.Therefore, Ox

a (v) is computed as

Ox
a (v) = O(v)

ϕx(v)

Φ
, where Φ =

N∑

n=1

ϕn(v).

Note that O(v) is measured as κ(VMAX −ρ(v)) from
Fig. 1a. Ox

r (v) is estimated as

Ox
r (v) = Ox

r ϕx(v),

where Ox
r is the required oxygen for the combustion

of the x-th fuel.
[2] The heat generated at a voxel is estimated by adding

the heat generated from each fuel in the voxel. Before
computing the heat generated from the x-th fuel in the
voxel, we estimate φx(v), which is the amount of the
fuel that will be combusted at this time step. The im-
portant facts that determine φx(v) are the combustion
speed and the oxygen available at the voxel.
In the case that the available oxygen is greater than
the required oxygen, φx(v) is estimated as:

φx(v) ← γ x ×ϕx(v),

where γ x is the combustion speed. In other cases,
φx(v) is restricted by the available oxygen as follows:

φx(v) ← Ox
a (v)

Ox
r (v)

γ x ×ϕx(v).

The heat generated from the x-th fuel at voxel v, de-
noted as Hx(v), is computed as follows:

Hx(v) = hx ×φx
v ×ρv × δt,

where hx denotes the potential heat of the x-th fuel,
and δt is the time step for the simulation.
Finally, the remaining amount of fuel after the com-
bustion process is measured as follows:

ϕx = ϕx −φx
v, for 1 ≤ x ≤ N.

[3] The total heat generated at voxel v, denoted as H(v),
is computed as the sum of the heat generated from
each fuel as follows:

H(v) =
N∑

i=1

Hx(v). (2)

This value is added to Eq. 1.

5 Visualization

In this paper, fire and its lighting effects are visualized in
the following steps.
1. Mapping temperature to color. We present a tempera-

ture-color graph that maps the temperature of fire to
a color. The graph is designed based on the field func-
tion graph, which was originally developed for build-
ing soft objects [4].

2. Casting and managing photons. A set of photons are
cast at each voxel whose temperature is greater than
a threshold temperature. The color of the photon is

Results

A combustion-based technique for fire animation and visualization 685

6 Implementation and results

The algorithm proposed in this paper was implemented at
a Pentium-based PC with 3.06 GHz CPU and 2.0 GByte
main memory. The grid size for the simulation was 150×
150 × 150 and the time step was 0.0005 s/frame. We
built several fire animations by combining the fire simu-
lation and visualization schemes. We suggested three
different fire sources: (1) fire from a fixed source, (2) fire
on a rotating torus, and (3) fire on a beating torus.
We also suggest two different visualization schemes:
(1) rendering fire without background, and (2) render-
ing fire with background and without ambient light.
The descriptions of the result animations are listed be-
low:
Result 1. Fire from a fixed source, and rendered without

background.

Fig. 6a–c. Various results of this paper: a Result 1: fire with background and with the lighting effects of ambient light; b Result 2: rotating
fire with background and with lighting effects of only fire; c Result 3: beating fire with background and with lighting effects of only fire

Result 2. Fire from a rotating torus, and rendered with
background and without ambient light.

Result 3. Fire from a beating torus, and rendered with
background and without ambient light.
Captured images from the result animations are illus-

trated in Fig. 6. The time complexity for the animation
clips are suggested in Table 1. In the animation clips, we
removed smoke in order to completely understand the
shape of fire.

Table 1. Time complexity of the accompanying animation results
(frame/minute)

Result no. Result 1 Result 2 Result 3

Simulation 0.54 0.98 0.65
Visualization 2.06 4.75 4.24

