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Image-based 3D Body Tracking: literature review

Goal of the research:

IS to estimate the body configuration, i.e. joint angles, from captured images.

Active topic as reflected by the variety of publications:

Approaches Papers

Model-based method

Multiple Camera | Gavrila96 [11], KakadiarisO0 [13],
Deutscher00  [15], Cheung00 [9],
Delamarre0l [7], Carranza03 [14],
Kehl06 [24]

Single Camera Yamamoto91 [20], Bregler98 [3],
Sidenbladh00 [12], Sminchisescu03 [4],
Lee04 [18], Sigal04 [19]

Depth Camera Grest05 [6], Knoop(6 [26],
Ziegler06 [16]

Learning-based method

Multiple Camera | Ren05 [17]
Single Camera Howe99  [23], RosalesO1  [25],
Mori02 [22], Shakhnarovich03 [10],

Agarwal06 [1], Sminchisescu05 [5]




Image-based 3D Body Tracking:challenges

Yet the problem remains unsolved, and is challenging for vision because of

1.

2
3.
4

the high number of degrees of freedoms arisen from the dynamic range of poses during human activities;
the diversity of visual appearance caused by clothing;
the visual ambiguities arisen from self-occlusion of non-rigid 3D object;

the background clutters.
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Cited from HumanMotionAnalysis by Bill Triggs



Image-based 3D Body Tracking: research topics

Moeslund et al present a thorough survey about the field up to year 2006.

They divide the field into four areas:

1. Initialization. Ensuring that a system commences its operation with a correct
interpretation of the current scene.

2. Tracking. Segmenting and tracking humans in one or more frames.
3. Pose estimation. Estimating the pose of a human in one or more frames.

4.  Recognition. Recognizing the identity of individuals as well as the actions,
activities and behaviors performed by one or more humans in one or more

frames.
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Scaled Motion Dynamics: key point

Additional a-priori information (e.g. motion db) about familiar pose configurations

(1) constrains the search space

(2) and helps considerably to handle more difficult scenarios with partial occlusions,
background clutter, or corrupted image data.
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Scaled Motion Dynamics.: method overview

The paper studied three ideas:
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Scaled Motion Dynamics. twist representation review

Twist representation of rigid body motion:
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Scaled Motion Dynamics. twist representation review

se(3) to SE(3):
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Scaled Motion Dynamics. twist representation review

Advantages with twist representation:
(1) Coordinate transformation with twist representation:

¢ = log(PaP7Y)
& = ghg t=M PtePiM!
(2) Motion scaling with twist representation:

EH — j_r'(E.l'

(3) Standard motion predict with twist representation:

Apred — exp(é‘”) Acurrent



Scaled Motion Dynamics: level set segmentation review
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(1) Define level set function: y(X, t)

(2) Evolving the level set function according image observation and other factors
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Scaled Motion Dynamics: Level set segmentation
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(1) The data within each region
should follow its distributions

(2) The contour should be minimal
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(1) H is a step function

(2) p,and p,are density functions of corresponding regions

Two iterative steps:

(1) Minimize over & using level set segmentation to estimate the partition
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Level set segmentation for pose estimation

Input Image Extracted Silhouettes
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Level set segmentation for pose estimation

minimize  E(®,p1,p2,x) =
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Two iterative steps:

(1) The data within each region
should follow its distributions

(2) The contour should be minimal
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(3) The contour should be close to the
projected model contour

(1) Segmentation or minimize over & using level set segmentation to estimate the partition with fixed
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Pose estimation with ICP

(1) Project the model to image plane
(2) Compute the closest point correspondence

(3) Set up a set of equation using correspondences
(exp(0€) exp(61€1) . .. exp(0;6;)Xi)axs X ni —my = 0.

(4) Solve pose parameters



Why training pattern is needed

The authors said:

(1) This quality of pose estimation based on how well the image data determines the

solution. In misleading situations, the minimum of the energy above might not be the
true pose.

(2) Moreover, it uses the local minimization scheme, and the system can in general not
recover after it has lost track.

Suggestion:

(1) To compute a pose prediction from training data and keep the solution close to this
prediction in case the image data is misleading or insufficient, such as frame drops



Pose estimation with training data

Given a set of training examples:
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Assuming we have already tracked m frames:
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Questionl. How to predict the pose at next frame:

(1) Matching
(2) Prediction

Question2. How to incorporate prediction to pose estimation



Pose estimation with training data.: matching

Matching with twist representation:
' the motion:

(2) Find the best matching over velocity and time
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Pose estimation with training data.: matching

Prediction with twist representation:

(1) Predict the joint angles: /v From matched motion

0 = 0,467, =0, +
(2) Predict the root body motion . From matched motion

£ = glog ( ) g1 g represents the transformation from
B : prior to the current coordinate system

(3) Scaling the predicted root body motion
based on velocity difference between

current estimation and prior:
., —Velocity from current tracking

£ = &=
= - ¥ ——»Velocity from matched motion



Pose estimation with training data. Pose estimation

Pose estimation:

E(®,p1,p2,x) =
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Scaled Motion Dynamics. results
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Figure 5. Knee joint angles during tracking including a static
frame drop and the dynamic noise from Figure 4.

Averaging errors of the knee angles are 2.58 and 2.83 degrees
for the artificial and dynamic frame drop, respectively



Scaled Motion Dynamics. results

[l H = =
Y W/ \ Figure 6. Example frames of an outdoor jogging sequence: The
|

i II "ﬁd
! (>"/ I ' .iw top images visualize the overlay of our estimated model in one of
\ ,ff I \\/, P

four cameras, the bottom images show the pose result in a virtual
environment.

Frame 190

Figure 10. Knee angles of the jogging sequence. Black: Silhou-
ette based MoCap system. Blue/red: The same sequence without
frame drops (blue) and with frame drops (red).

During the frame drops, the averaging absolute difference
between the result with and without image data is 7.3 degrees.



Scaled Motion Dynamics: results
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Deformable mesh tracking. key point

To jointly capture the motion and deformation, for example,

(1) able to track people wearing apparel

Figure 1. Our method realistically captures the motion and the dy-
namic shape of a woman wearing a Japanese kimono from only
eight video streams.

The authors claimed:

(1) To the best of out knowledge, this is the first system of its
kind that can capture the motion and non rigid surface
deformations of arbitrary subjects from only a handful of
cameras

(2) The previous methods needs either heavy manual work or
cannot achieve same accuracy



Deformable mesh tracking.: method overview

INPUT

ALIGNMENT

STEP A

MARKER
SELECTION

TRACKING
STEPB RESULT

Figure 2. Overview of our marker-less deformable mesh tracking framework: Given a laser-scan of a person and a multi-view video
sequence showing her motion, the method deforms the scan in the same way as its real-world counterpart in the video streams.

Given: multi-view video sequences

mesh model from laser scanning

(1) Alignment: initial alignment between mesh model and shape-from-silhouette

reconstruction using ICP (not in detail)

(2) Step A:3D flow-driven mesh tracking

(3) Marker selection from 3D flow estimation

(4) Step B: 3D flow-driven Laplacian mesh deformation/tracking



Deformable mesh tracking.: Step A

Step A:3D flow-driven mesh tracking

Generate the texture for the model pet g
using recorded images: 17 ---1/~! -

-

|

Project the texture model to the : §‘
camera views: 70 ... 7% -1 g

i lmM

No &
Estimate the model vertex 3D il
flow: J?('i-‘s:) — liil?-.-:fihw*-:‘)

Eov(t+1)<TROV} Yes !

Filter 3D flow field with a low-
pass Gaussian kernel on the valid "
vertices

Keep the motion field

—

d(t,vi) = (f(f — L) + (E-\CCUM(,P-E:

Move the model vertices using the
estimated flow field, accumulate

flow: dccum(vi) = daccom(vi) + f(v; ) |




Deformable mesh tracking.: marker selection

(1) Curvature based segmentation

;- (2) Candidate vertices are selected that are closed to
&

_ the centroids of segments
: ‘4 »

" (3) Compute the errors for the candidate vertices
z 1 Ngp K
{ Al 1‘3@(1!1-) = — — Z(l —PROJ_&;(P@—F(I(L 1-‘@),1‘)}
;'\'F * I"L ; —0
(1)
1 J‘"."_r_:' 1 4?"':1»'
mov(v;) = - Z(Hd(f,l-‘é} - ;\_,-_*I_,Zd{f* vill]) (2)
T t=0 S §=0

(4) Select marker vertices and create marker graph
tsc(v;) < TRysc

mov(v;) < TRyov.




Deformable mesh tracking.: Step B

Step B:3D flow-driven Laplacian mesh tracking

Generate the texture for the model
using recorded images: 1°...7K-1

v

Project the texture model to the
camera views: 77 .. ,Tf—l

v

Estimate the model vertex 3D
flow: f(vi) = (i, yi, 2)

v

Filter 3D flow field with a low-
pass Gaussian kernel on the valid

vertices

For each marker, estimate its local
rotation using its local frame,

NoO

(E(f. (2F ] =

d(t — 1,v;) + daccum(vi)

Keep the motion field

\

Yes

E, (t+1)<TR,,

J

f

Accumulate the flow field:
dACCUM (Vi) = piREC — P _d(t -1, Vi)

f

Deform the model using Laplacian
equation with constraints fromLpREc )

markers position

REC _

pm- —

1

Fqdq

pi +d(t_l1 mi)+dACCUM (mi)

Interpolate rotations over all
- vertices using Laplacian equation
with constraints from markers

Lq=0
Om, = Ay,




Deformable mesh tracking.: Results

METHOD | TIME | VOLCHG | MQLT | ERROR |

RAWEFL 109s 17.65% 0.46 | 98.66mm
ST-A 111s 4.97% 0.30 | 49.39mm
BR/ST-AB | 1lls 2.79% 0.035 | 26.45mm
BA 426s 2.77% 0.029 | 35.28mm
LK 80s 10.73% 1.72 | 76.24mm

Table 1. Different algorithmic alternatives are compared in terms
of run time. volume change (VOLCHG). mesh quality (MOLT).
and position error (ERROR). Our proposed pipeline with the dense
optical flow method by Brox et al. (BR/ST-AB) leads to the best

results.
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