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Outline

We!ll mostly concentrate on one paper, “Bubbling and Frothing Liquids”

from SIGGRAPH 2007, and the Smoothed Particle Hydrodynamics

technique it uses. I!ll also say a few words about the approach of a paper

from SCA that uses SPH for foam simulation.

1 Review: Smoothed Particle Hydrodynamics

2 Bubbling and Frothing Liquids

Cleary et al, SIGGRAPH 2007

3 Real-time Simulation of Bubbles and Foam

within a Shallow Water Framework

Thürey et al, SCA 2007



Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics, also known as SPH, is a particle-

based (Lagrangian) method for simulating fluid motion.

A fluid is represented as a set of discrete particles. When quantities

such as the pressure at a given point are needed by the simulation,

they are obtained by summing contributions from nearby particles.

We!ll follow the treatment in

Particle-based Fluid Simulation for Interactive Applications

Müller et al, SCA 2003

Previous papers in graphics used the technique to model fire and

highly-deformable surfaces.



Smoothed Particle Hydrodynamics

As usual in a particle system, we want to track each particle!s position,

velocity, and acceleration. The velocity and position can be determined

by integrating the acceleration; the acceleration is a result of the forces

acting on the particle.

For a particle i, we have
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where

fi is the sum of all forces acting on the particle, and

!i is the density at the particle!s location.



Smoothed Particle Hydrodynamics

We can derive this by considering a form of the equations

usually used in Eulerian (grid-based) systems:

where

! is the density field,

v the velocity field,

p the pressure field,

g an external force field,

and µ the fluid!s viscosity constant.

! 

"#

"t
+$ % #v( ) = 0;

#
"v

"t
+ v % $v

& 

' 
( 

) 

* 
+ = ,$p + #g + µ$2

v



Smoothed Particle Hydrodynamics

The first equation represents conservation of mass.

Since we have a constant number of particles, each with constant mass,

we can ignore this for our computation.
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Smoothed Particle Hydrodynamics

The remaining equation is a form of the Navier-Stokes equation for

incompressible fluids.

Note that the velocity term on the left-hand side is the substantial

derivative of the velocity. This is the rate of change of the velocity of a

fluid element as it moves through the fluid. Here, the particles move with

the fluid and so the substantial derivative is simply the time derivative.
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Smoothed Particle Hydrodynamics

Rearranging terms, we get the acceleration equation from before.

The force is made up of three components: pressure, external forces, and

viscosity.

We will apply external forces, such as gravity, directly to each particle

(they don!t vary with the density). This leaves us needing to consider how

to compute pressure, viscosity, and the density itself.
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Smoothed Particle Hydrodynamics

We said earlier that the SPH rule was to compute quantities like the

density or pressure by summing contributions from nearby particles.

It uses a kind of weighted sum to do this, multiplying the contribution of

each particle by a smoothing function. In particular, for a scalar quantity

AS, we can sum the contribution of each particle j using

where

mj is the mass of particle j,

rj is the position of particle j,

!j is the density at the particle!s position,

Aj is the scalar quantity for the particle, and

W(r, h) is the smoothing kernel with core radius h.
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Smoothed Particle Hydrodynamics

The smoothing kernel here is a function something like a Gaussian,

in that it should be large around zero and fall off with distance.

Intuitively, this means that particles closer to a point contribute

more. (Below, the bold lines are the kernels, the thin lines their

gradients, and the dashed lines their Laplacians.)

For details on the choice of smoothing kernels for particular

quantites, see the paper.



Smoothed Particle Hydrodynamics

One nice property of the SPH approach is that, when the gradient of a

quantity is needed, it may be computed simply by using the gradient of the

smoothing kernel.
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Smoothed Particle Hydrodynamics

Recall the quantities we wanted to compute: the pressure, the viscosity,

and the density.

We will first consider the density, since it is used inside the computation of

each other quantity. Subsituting AS = !S into the SPH rule, we get

The densities inside the sum cancel out, leaving us with a sort of smoothed

sum of mass over the local area.! 
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Smoothed Particle Hydrodynamics

For the pressure term, for a particle i, the SPH rule gives us

However, this is not symmetric between particles, which is a problem for

us because it violates symmetry of forces. (The problem stems from the

pressure at particle i being left out since the gradient of the kernel is zero

at its center.) A simple way to make the forces symmetric is to average the

local pressure with the pressure at each surrounding particle.
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Smoothed Particle Hydrodynamics

Of course, we still need to know how to compute each pj.

Given the density at the particle (from before), we can use the ideal gas

state equation

where k is a temperature-dependent constant.

(The paper actually uses the similar p = k(! - !0), where !0 is a rest

density, as this is equivalent for this computation and numerically more

stable.)
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Smoothed Particle Hydrodynamics

The computation of the viscosity term is similar:

This is also asymmetric. We can use

to make it symmetric, since the viscosity depends only on the

velocity difference between particles. As the paper notes, you can think of

this as accelerating particle i in the direction of the relative speed of its

environment.
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Smoothed Particle Hydrodynamics

There are a couple of loose ends necessary for a full simulation.

Surface tension forces are modeled explicitly for particles near the surface

using an additional SPH quantity. For details on the method used, see the

paper.

Particles can collide with their container. When this happens, the particle is

moved back into the body of the fluid and the component of the velocity

normal to the container surface is negated.



Smoothed Particle Hydrodynamics

A principal advantage of this method is that it can run quickly. The authors,

writing in 2003, report frame rates of 5 fps for their simulation of water

pouring into a glass, using 3000 particles and marching cubes to render

the results (shown here).

With a rougher rendering technique and only 1300 particles, they report

achieving interactive frame rates of 25 fps.



Bubbling and Frothing Liquids

Cleary et al present a method for simulating bubbles in fizzy liquids,

such as soda or beer, where gas is dissolved in the liquid. They consider

the creation of bubbles, their transport through the liquid, the formation and

flow of foam, and bubble dissipation.

The dissolved gas is modeled as an SPH quantity, and a bubble is formed

at a nucleation site when enough gas has collected there. The bubbles

then move as discrete particles, eventually gathering as foam.

Foam is also modeled as a set of discrete particles, but with different rules

than for bubbles in the body of the liquid. Finally, bubbles in the foam may

occasionally burst.



Bubbling and Frothing Liquids

As mentioned, the dissolved gas is modeled as an SPH quantity and

tracked across the simulation. It is important to track this to provide

realistic behavior; consider the difference between how much fizz is

generated when a fresh drink hits a glass and later in the drink!s life.

The rate of change of the dissolved gas for particle i is

(Note that the equation here differs slightly from that in the paper. The

subscripts have been changed to match the earlier discussion of SPH.)! 
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Bubbling and Frothing Liquids

In

D is the diffusivity of the gas in the fluid, a constant,

rij is (rj - ri), the vector from one particle!s position to the other, and

" is a small number added to smooth out the singularity when rij is zero.

The first term (the summation) models natural transport through diffusion

of dissolved gas. The second and third terms model discrete losses due

to creation of new bubbles (“nucleation”) and expansion of existing

bubbles.
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Bubbling and Frothing Liquids

Bubbles are created when enough gas is present near a nucleation site.

(How much is “enough” is a parameter to the simulation. A typical new

bubble might be on the order of 0.5 mm in diameter.) When a bubble

is created, a corresponding volume of gas is subtracted from the particle

nearest to the nucleation site. (This is the Ni term in the rate-of-gas-change

equation.)

Bubbles grow as they move through the liquid; a bubble removes some

portion of the gas in nearby particles at each step. (This is the Ei term in

the rate-of-gas-change equation.)

As we will see, larger bubbles are more buoyant and so rise faster.

Therefore, this growth leads to a nice effect where bubbles accelerate

and become more separated as they rise through the liquid.



Bubbling and Frothing Liquids

Each bubble is simulated as a discrete entity that may collide with

other bubbles or the glass. SPH is not used to model the bubbles

themselves, although SPH quantities from the surrounding liquid

do come into play.

The forces that may act on a bubble in the liquid are collision

forces, buoyancy, drag against the surrounding fluid, and (for

bubbles above the surface) cohesion with surrounding bubbles.

The liquid may affect a bubble through buoyancy and drag, but

we ignore any effect of the bubbles on the liquid!s flow. (This is reasonable

because the bubbles here are low-inertia compared to the liquid.)



Bubbling and Frothing Liquids

Collisions (both bubble-to-bubble and bubble-container) are modeled using

a simple spring-damper system,

where

k is the spring constant,

C is a damping constant,

#x is the overlap between the two objects, and

vn is the normal component of the relative velocity.

The normal is taken to be the vector between the two bubble!s centers.

This force is only taken into account when #x is positive (that is, when

there is an active collision).
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Bubbling and Frothing Liquids

Bubbles are much less dense than the liquid they displace, and so are

buoyant. The buoyancy is given by

where

g is gravity,

Vbub is the volume of the bubble,

!bub is the density of the bubble, and

!liq is the density of the nearby liquid.
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Bubbling and Frothing Liquids

A bubble!s motion is impeded by a drag force from the surrounding liquid.

In the simulation, this is intended to make the bubbles follow the flow

patterns of the liquid.

The drag depends on the bubble!s Reynolds number, a ratio of intertial

forces to viscous forces.

where

rbub is the bubble!s radius and

µliq is the liquid!s viscosity.
! 
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Bubbling and Frothing Liquids

If Rebub is less than 1.0, viscosity is high and Stokes! law applies:

If Rebub is greater than 1.0,

where

Cd is a constant drag coefficient, 0.2, and

$bub is the surface area of the bubble.
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Bubbling and Frothing Liquids

Foam that has risen above the surface of the main body of the liquid is

called “dry foam”. Bubbles in dry foam are held together with a cohesive

force.

This takes the same form as the collision force from before, but only

applies when #x < 0, that is, when bubbles are apart.

As with collisions, bubbles may also adhere to the walls of the container.

Bonds between dry bubbles are assigned a bond strength and may break

apart to create foam flow and separate bodies of foam.

! 

F
coh

= "k#x + Cv
n



Bubbling and Frothing Liquids

Bubbles in dry foam may burst and disappear. This occurs probabilistically

based on the bubble half-life, a parameter to the simulation.

Bubbles may also disappear or be formed due to coalescence or

fragmentation during bubble collisions. These also occur probabilistically.



Shallow Water Framework

Thürey et al describe a technique for simulating bubbles in real time.

Because a full SPH simulation for both bubbles and liquid might be

computationally expensive, they combine a few different techniques.



Shallow Water Framework

The main body of the fluid is modeled as a 2D height field in the x-y

plane. It is assumed that there is a constant pressure gradient from the top

of the fluid to the bottom, and that the only forces present are pressure

and gravity. (In particular, viscosity forces are ignored.)

This leads to the following simplified equations, which are then solved

using a Stam-style solver.
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Shallow Water Framework

Bubbles in the fluid are simulated as discrete particles, each with a

position, velocity, radius, and mass.

They are affected by buoyancy and by velocity forces arising from other

elements in the simulation.



Shallow Water Framework

The buoyant force for a bubble i is computed as

where

g is gravity,

%b is a parameter denoting the density difference between the

bubble and the fluid, and

mi is the mass of bubble i.
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Shallow Water Framework

The velocity force comes from two places: first, vortices created by nearby

bubbles, and second, the velocity field of the shallow water simulation.

where

v is the velocity field of the shallow water simulation,

uh is a function describing vorticity,

dij is a vector from the position of bubble j to the center of the vortex

created by bubble i, and

ai is the radius of the spherical vortex.

Formulations for uh and ai are given in the paper.

Note that here we are looking at the force for a primary bubble j, not a bubble i

as in the discussion of buoyant force.
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Shallow Water Framework

Submerged bubbles only affect the shallow water simulation by simple

height displacement.

When a bubble breaks through the surface, it creates a small wave,

modeled by adding to the height field of the shallow water simulation.



Shallow Water Framework

Surface (“dry”) foam is modeled using SPH. In this case, the bubbles

themselves are the SPH particles. When a bubble breaks the surface,

it adds a particle to the SPH simulation. (Strictly speaking, it might also

burst; this is decided probabilistically.)

Bubbles in dry foam typically cluster, and this effect is achieved by

adding surface tension forces to the SPH simulation.

Furthermore, a force based on gravity and the height field acts on each

SPH particle. For a bubble at position x,

These forces combine to create floating and spreading effects.
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Shallow Water Framework

The authors, writing in 2007, report good frame rates for an

interactive simulation. A table describing their results is reproduced

below.


