BODY DEFORMATION

Winter 08 888 presentation Ying Wei

Outline

o <u>Overview</u>

• Related works

• Important papers

• Discussion

Overview

- During dynamic activities, the surface of the human body moves in many subtle but visually significant ways: bending, bulging, jiggling, and stretching.
- Realistic animation needs more than natural behavior of skeletons
- Human are sensitive to familiar objects like body.

Outline

• Overview

• <u>Related works</u>

• Important papers

• Discussion

Related works

• Surface model

- Deformed by skeletal structure
- "Candy wrapper" effect because the volume of the body is not preserved.
- Cannot show dynamic effects such as jiggling of the flesh or muscle bulging due to exertion.
- Remain common in real-time application like games or virtual environments.
- Skinning by Example
 Creation from pose interpolation

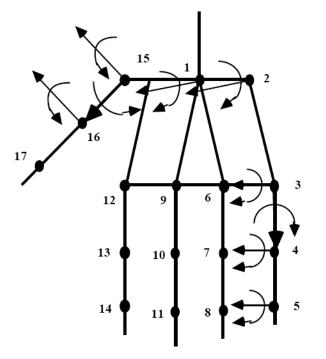
• Multi-layered approach

- Model the complex anatomy
- Simulate functionality (breathing)

Special Case: hands and face

• Face

- Many different parts of the face and head work together to convey meaning.
- Facial anatomy is both structurally and physically complex and motions cannot be approximated by rigid body motion
- Motion capture using dense marker sets (do not include significant occlusion)
- Ben's presentation covers this part in detail
- Hands:
 - Bony anatomical structure makes them more amenable to anatomical modeling
 - Detailed geometry required


More about simulation techniques

o SSD

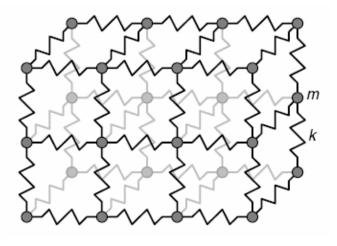
- FFD
- Mass-Spring
- o FED
- Gradient Domain
- BEM
- Meshless Particle System

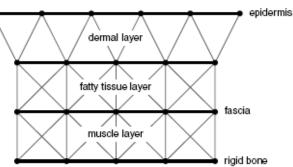
Skeletal Subspace Deformation (SSD)

- move the hand and grasp objects
- compute the deformations of the hands: rounding at joints and muscle inflations.
- Motion is specified by giving key values for each joint angle.
- Semi-automatic hand grasping

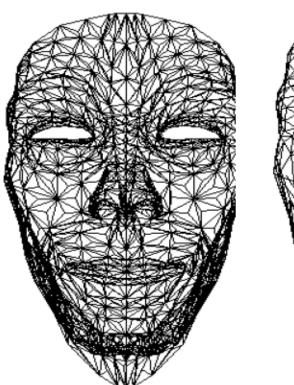
JOINT-DEPENDENT LOCAL DEFORMATIONS FOR HAND ANIMATION AND OBJECT GRASPING

Nadia Magnenat-Thalmann Richard Laperrière Daniel Thalmann MIRALab, HEC/IRO Université de Montréal, Canada


Free Form Deformation (FFD)


- FFD's change the shape of an object by deforming the space in which the object lies.
 - Barr's early work in this area examined deformation in terms of geometric mappings of three-dimensional space. [Barr84]
 - Limited deformation
 - Non-intuitive user control
 - Sederberg and Parry embedded object in a lattice of grid points of some standard geometry, such as a cube or cylinder. [SP86]
 - Coquillart provides a toolkit of lattices with different sizes, resolutions and geometries [Coq90].
 - Hsu et. al. allow direct manipulation of surface or curve points by converting the desired movement of these points to equivalent grid point movement. [HHK92].

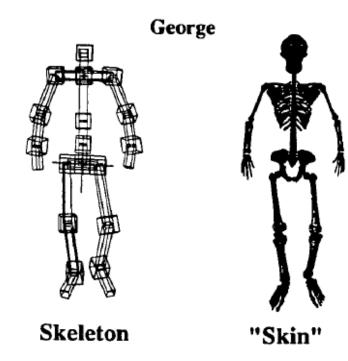
Mass-Spring Models

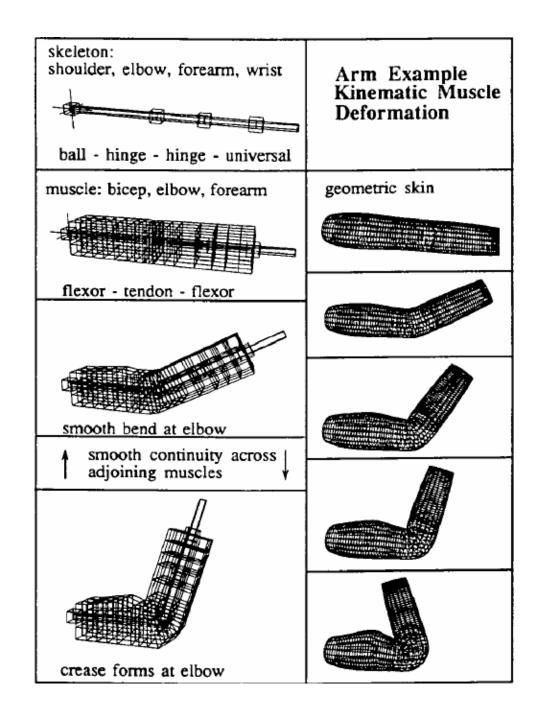

- An object is modeled as a collection of point masses connected by springs in a lattice structure
- Used widely in facial animation
- Newton's Second Law:


$$m_i \ddot{\mathbf{x}}_i = -\gamma_i \dot{\mathbf{x}}_i + \sum_j \mathbf{g}_{ij} + \mathbf{f}_i.$$

• Terzopoulos and Waters were the first to apply dynamic mass-spring systems to facial modeling [TW90].

- Chadwick et. al. combined mass-spring models with free form deformations to animated muscles in human character animation.
- The muscles are embedded in a lattice of 8-node massspring elements and deformed by applying forces to the lattice node points.
- The dynamic deformation of the muscle model is calculated by interpolating the motion of the lattice points [CHP89].

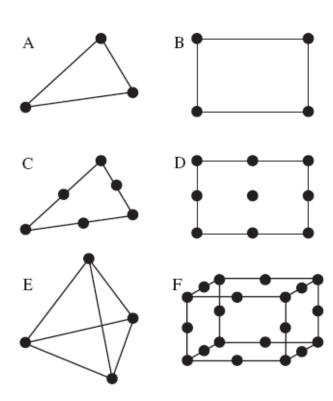

• Motion specification


- (behavior layer in the critter system)
- Motion Foundation, articulated armature
 - (critter skeleton layer)
- Shape transition, squash and stretch
 - (critter muscle and fatty tissue layer)
- Surface description, surface appearance and geometry
 - (critter skin, clothing and fur layer)

several bones (critter skin) are mapped to a simplified articulated critter skeleton.

critter hielaichv				
active critter: geory	j a	leyer:	C skeleten	
eritter hiererchy: pesemen.skl	Detvis			
I right-leg	🔲 r - h (e	C	🔲 r-ank la	
esty: 🗋	💽 L-hip 🖬 vert-f	1-knee 1-knee	🖸 1-ankle	
🖸 head 🔲 left-arm	🖬 neck		- () 1-e 1944	🗐 1-wr (ar
🗇 right-ern	-c14V	C r-sn)4r		C

Panel selection of various layers & parts Visual hierarchical display



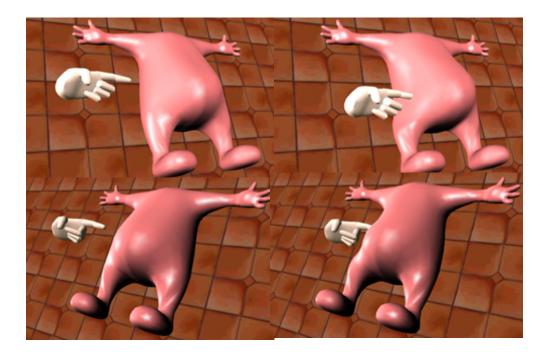
- Terzopoulos et. al. describe a mass-spring model for melting objects by associating each node with a temperature and a position [TPF89].
 - spring stiffnesses dependent on temperature.
 - discretized form of the heat equation computed the diusion of heat through the material, and the changes in nodal temperatures.

Finite Element Method (FEM)

- The full continuum model of a deformable object considers the equilibrium of a general body acted on by external forces.
- The object deformation is a function of these acting forces and the object's material properties.
- The object reaches equilibrium when its potential energy is at a minimum. $\Pi = \Lambda W,$
- FEM divides object into a set of elements and approximate the continuous equilibrium equation over each element.

Common FEM Elements

element type	# nodes	interpolation equation	interpolation functions
linear triangular area A	3	$\Phi = a_1 + a_2 x + a_3 y$	$h_1 = [(x_2y_3 - x_3y_2) + (y_2 - y_3)x + (x_3 - x_2)y]/2A$ $h_2 = [(x_3y_1 - x_1y_3) + (y_3 - y_1)x + (x_1 - x_3)y]/2A$ $h_3 = [(x_1y_2 - x_2y_1) + (y_1 - y_2)x + (x_2 - x_1)y]/2A$
bilinear rectangular width w height h area A	4	$\Phi = a_1 + a_2 x + a_3 y + a_4 x y$	$h_1 = (w + x_1 - x)(h + y_1 - y)/A$ $h_2 = (x - x_1)(h + y_1 - y)/A$ $h_3 = (w + x_1 - x)(y - y_1)/A$ $h_4 = (x - x_1)(y - y_1)/A$
quadratic triangular	6	$\Phi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2$	see FEM text
Lagrangian	9	$\Phi = a_1 + a_2 x + a_3 y + a_4 xy + a_5 x^2 + a_6 y^2 + a_7 x^2 y + a_8 y^2 x + a_9 x^2 y^2$	see FEM text
tetrahedral	4	$\Phi = a_1 + a_2x + a_3y + a_4z$	see FEM text
20-node brick	20	see FEM text	see FEM text


Gradient Domain Methods

• Deformation: an energy minimization problem.

- Energy function contains both a term for a detail-preserving constraint and a term for a position constraint
- The detail-preserving constraint is nonlinear
- For computational efficiency, existing techniques convert this nonlinear constraint into a linear one
 - local linearization of transformation
 - transformation interpolation from handles
 - the decomposition of rotation and scaling computation
- The price: suboptimal deformation results.

Boundary Element Method (BEM)

• [James and Pai 1999]

Meshless Particle System

- First introduced for simulating cosmological fluids: Smoothed Particle Hydrodynamics (SPH)
- Define smoothed particles as samples of mass smeared out in space
- Level set: extract implicit surface from smooth particles
- [Desbrun and Cani 1996], [Tonnesen 1998], [M^{••} uller et al. 2004]
- **Demo** : Sig05 Meshless Deformations Based on Shape Matching
 - input is a set of particles with masses *mi* and an initial configuration

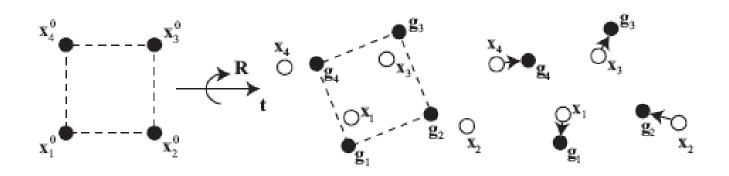
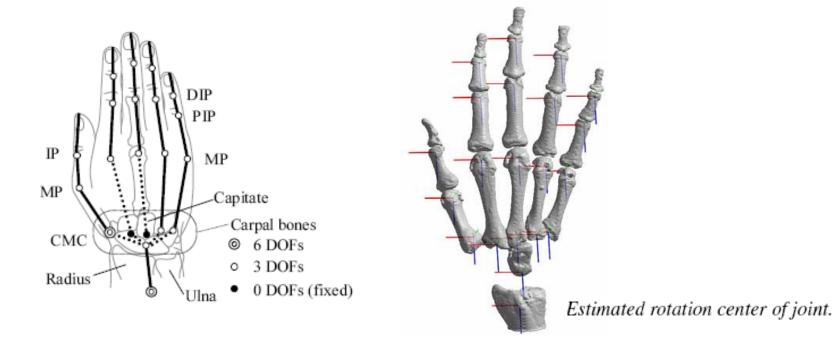


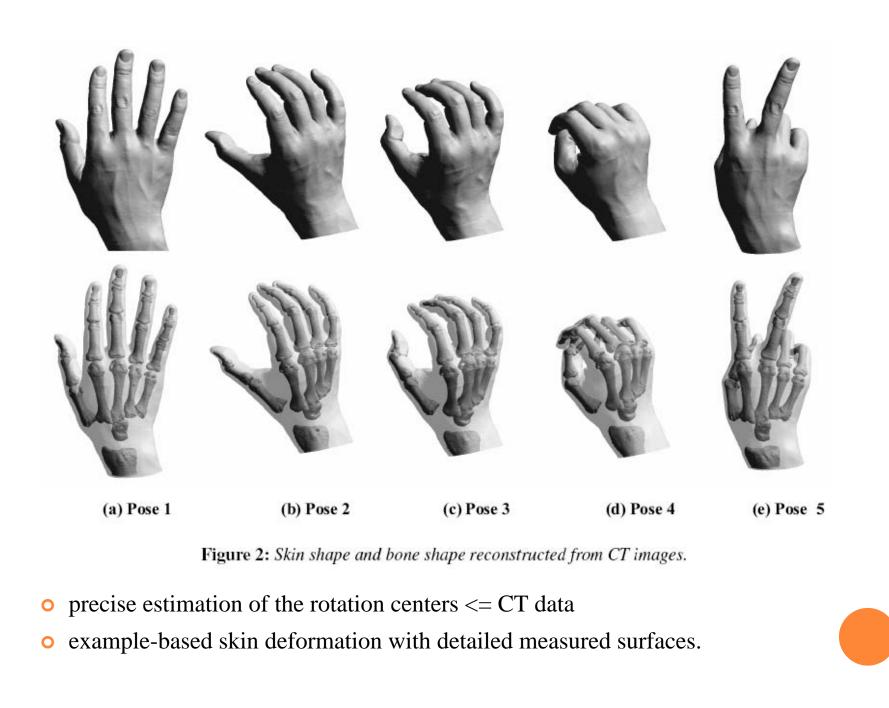
Figure 3: First, the original shape \mathbf{x}_i^0 is matched to the deformed shape \mathbf{x}_i . Then, the deformed points \mathbf{x}_i are pulled towards the matched shape \mathbf{g}_i .

Outline


• Overview

• Related works

• <u>Recent Papers</u>


• Discussion

Modeling Deformable Human Hands from Medical Images

Tsuneya Kurihara1 and Natsuki Miyata2 Central Research Laboratory, Hitachi, Ltd., Tokyo, Japan Digital Human Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

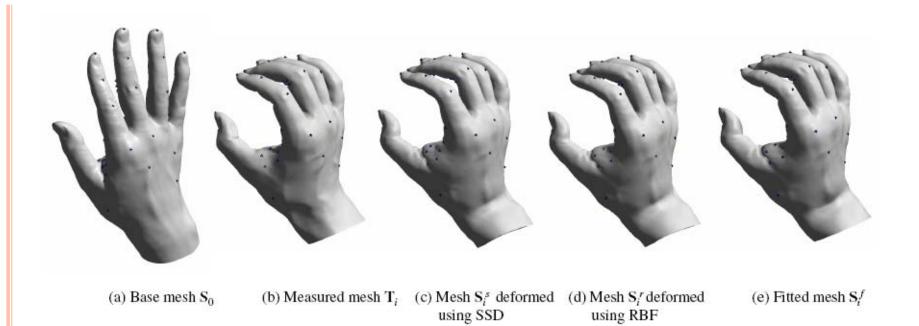
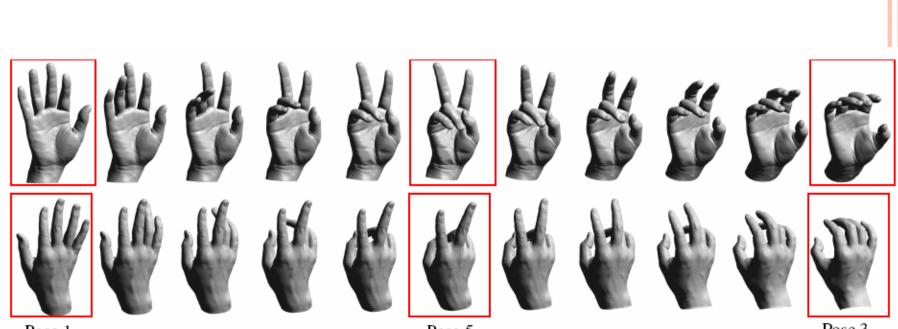



Figure 6: Fitting process.

- 1. Derive the centers of rotation and poses from bone shapes
- 2. Transform the skin surfaces of all poses into mutually consistent meshes
- 3. Implement skeleton-driven deformation by using weighted pose space deformation.
- Bone and skin surfaces were generated as isosurfaces using the marching cubes algorithm

Pose 1

Pose 5

Pose 3

SSD

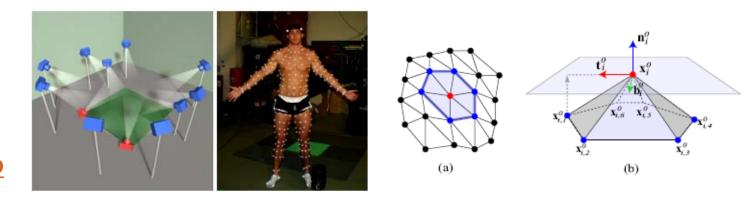
- A framework for real time detail-preserving mesh manipulation
- Builds upon traditional rigging by optimizing skeleton position and vertex weights in an integrated manner.
- New poses and animations are created by specifying constraints on vertex positions, balance of the character, length and rigidity preservation, joint limits, and/or self-collision avoidance.

o <u>Demo</u>

Mesh Puppetry:

Cascading Optimization of Mesh Deformation with Inverse Kinematics

Xiaohan Shi* Kun Zhou† Yiying Tong‡ Mathieu Desbrun‡ Hujun Bao* Baining Guo†



- Interactive 2D shape deformation based on nonlinear least squares optimization.
- Two local shape properties are preserved:
 - Laplacian coordinates of the boundary curve
 - Local area of the shape interior
- <u>Demo</u> (silent)

2D Shape Deformation Using Nonlinear Least Squares Optimization Yanlin Weng · Weiwei Xu · Yanchen Wu Kun Zhou · Baining Guo

Data-driven

- Motion capture with approximately 350 markers to obtain not only the motion of the skeleton but also the motion of the surface of the skin
- A high-res subject-specic surface model is used

o <u>Demo</u>

Capturing and Animating Skin Deformation in Human Motion Sang Il Park Jessica K. Hodgins. School of Computer Science Carnegie Mellon University

Point-based example

- Modeling and animating a wide spectrum of volumetric objects
- Material properties ranging from stiff elastic to highly plastic.
- Both the volume and the surface representation are point based
- o <u>Demo</u>

Point Based Animation of Elastic, Plastic and Melting Objects

M. Müller1, R. Keiser1, A. Nealen2, M. Pauly3, M. Gross1 and M. Alexa2
1 Computer Graphics Lab, ETH Zürich
2 Discrete Geometric Modeling Group, TU Darmstadt
3 Stanford University

Outline

• Overview

• Related works

• Recent papers

o <u>Discussion</u>

Discussion

• FFD

- Simple, easy, fast
- Does not take into account the natural way in which shapes features are controlled.
- Skeleton-based deformation
 - Intuitive control
 - Appropriate weight selection is a painful process
- Physically-based simulations
 - Mass-spring
 - Simple, fast, suited for parallel computation
 - Tuning spring constants are not always easy
 - Certain constraints not naturally expressed. eg. incompressibility
- FEM: computational expensive
- Gradient Domain methods
 - Conversion to linear problem causes sub-optimal solution

• Validation of physically accurate deformation

- surgical simulation
- Real-time performance
- User Interaction
- Integration into broader simulation contexts
 - Interaction with objects, environment, human, etc.