
Two recent papers in
physical simulation

Benjamin Schroeder
December 4, 2008



Today weʼll discuss two papers:

    Fast Viscoelastic Behavior with Thin Features
    Chris Wojtan and Greg Turk
    SIGGRAPH 2008

    Two-way Coupling of Rigid and Deformable Bodies
    Tamar Shinar, Craig Schroeder, and Ronald Fedkiw
    SCA 2008

Both of these papers are (broadly) about physically-based
simulation of deformable objects. The first one presents a
technique for animating highly plastic objects which develop
thin sheets and strands of material; the second one discusses
how to couple deformable-object and rigid-body simulations
while retaining the advantages of both.



Fast Viscoelastic Behavior with Thin Features describes a
model for deformable objects based on a coarse inner mesh
and a refined surface mesh. The model is applicable over a
wide range of materials.

The model includes a fast re-meshing scheme; this allows for
re-meshing to be performed frequently, which enables the use
of the coarse mesh in highly plastic situations.

Most of the simulation takes place using the coarse mesh, for
efficiency; several important quantities are computed on the
smooth mesh in order to maintain realism.



Objects are modeled (on the coarse level) as tetrahedral finite element meshes.

Each tetrahedral element contributes forces to its nodes depending on how it is
deformed from its rest position.

The forces are based on a deformation gradient F. The force gi on a node i due to
some tetrahedron is given by

where
    each Ak is the area of a face, and Nk a normal;
    P is the first Piola-Kirchoff stress of the node,
      which maps from material-space normals to
      world-space traction vectors. P is a function of F.

(Ak and Nk are given in material-space coordinates.)

For more details, including a discussion of particular models for computing the stress, see Irving et al, Invertible Finite
Elements for Robust Simulation of Large Deformation, 2004.

! 

g
i
= "P(A

1
N
1

+ A
2
N
2

+ A
3
N
3
) /3



F can be decomposed into an elastic part, which acts to restore nodes to their rest
position, and a plastic part, which represents permanent changes.

The plastic part of F is given by

Where

        is the volume-conserving portion of the diagonalized deformation tensor;
    P is the stress tensor (as before);
    PY is the plastic yield point,
    ν is the flow rate,
    K is a hardening parameter,
    and α represents accumulated plastic stress.

Since plastic change is permanent, the plastic part of F is used to recompute the
basis functions for the elements of the tetrahedral mesh, changing the rest state of
each element.

For more details, see Bargteil et al, A Finite Element Method For Animating Large Viscoplastic Flow, 2007.

! 

Fp

^

= (F
*
^

)
"
;

"(P,PY ,#,$,K) =min
# ( P % PY %K$

P

& 

' 
( 

) 

* 
+ 

! 

F
*

^



The surface of the object is modeled explicitly, at a finer level of detail than the
coarse finite element mesh, with a triangular surface mesh. This mesh is used for
collision handling and for rendering.

Each vertex in the surface mesh is assigned to a tetrahedral element (which
completely encloses it) in the coarse mesh. The vertex position, x, is then
expressed in terms of the tetrahedral vertex positions xi,

where bi are the barycentric coordinates of the surface vertex in material
coordinates. This allows the rendering position of the vertex as well as velocities
and forces to be expressed in terms of the parent tetrahedron.

Collisions are handled using the surface mesh, by pushing the vertex out of the
colliding object; this requires moving the entire parent element. The contribution to
each node is weighted; the weight for node i is

The same weights are used to add velocity impulses during friction handling.

! 

x = b
1
x
1

+ b
2
x
2

+ b
3
x
3

+ b
4
x
4

! 

w
i
=

b
i

b
1

2
+ b

2

2
+ b

3

2
+ b

4

2
.



Note that a parent element may have many surface vertices associated with it. To
avoid conflicts, collision handling is only applied using information from the deepest
penetrating vertex. All surface vertices for an element, of course, must be updated
during a collision.

Since surface vertices are completely enclosed by their parents, the parents can
act as bounding objects. This can greatly speed up collision detection, especially
for complex surface meshes.



The coarse mesh is constructed using the Delaunay tetrahedralization of a body-
centered cubic lattice. This involves voxelizing the surface mesh onto two offset
regular cubic grids, then creating appropriate BCC tetrahedra. Tetrahedra are
classified as internal or external during this process, and appropriate surface
embedding is noted.

Previous approaches have spent much computational time ensuring that the BCC
mesh conforms to the surface. Since rendering and collisions are handled here
using the surface mesh, there is no need to do this, which the authors report is
around 100 times faster than creating a conformal mesh. The speed allows for more
frequent re-meshing, which allows the simulation of greater flow rates. (Re-meshing
must be performed in order to prevent the element basis functions from becoming
ill-conditioned - for example, if elements become flat - causing the simulation to be
unstable.)

The mesh generation approach, and the timings used in the analysis, are from Labelle and Shewchuk, Isosurface stuffing: fast
tetrahedral meshes with good dihedral angles, 2007.



Re-meshing requires the transfer of the deformation gradient F, stress accumulation
α, and node velocities vi from old elements to new ones. This is done by
considering overlapping elements and using the amount of overlap to weight the
transfer. The node-based velocities are transferred by considering which old
element a new node lies in, and using barycentric interpolation between the old
nodes to calculate the new nodeʼs velocity.



The mass of each node in an element is calculated using a “lumped-mass”
formulation: each elementʼs mass is calculated, and each node of an element is
assigned one quarter of that mass.

However, if the tetrahedral mesh is especially coarse or if a local feature is
especially thin, this might cause gross overestimation of the local mass for the
object. This can lead to errors during re-meshing (since the center of mass can
move) as well as during significant plastic flows.

Mass is therefore assigned according to the correct center of mass, computed by
clipping the surface mesh to an element and calculating the center of mass of the
resulting closed polyhedron. The mass is itself adjusted to compensate for elastic
deformation (see below), and distributed to the nodes using barycentric weights
based on the new center of mass.

Very small masses can also cause problems;
a minimum nodal mass is therefore used.

! 

m =
"V

F



The authors report simulation times for the below figure, with 70k surface triangles,
at 30 minutes. (All times appear to be for CPU simulation, without rendering.)

On average, the examples in the below figure took around 1.5 hours to simulate,
with the very fluid example on the far right taking about 10 hours.



Two-way Coupling of Rigid and Deformable Bodies describes a fully coupled
scheme for including rigid and deformable objects in the same simulation. This is
desirable for simple mixed-object situations, such as those we saw in the previous
paper, but also for more sophisticated animations such as skeletal control of a
character with realistic skin and flesh, which then interacts with forces from its
environment.

One common approach to this problem is to use individually good methods for
simulating each kind of object, and to run them in an interleaved fashion. This can
lead to stability problems due to the lag in communication between the two
methods, similar to problems one sees with explicit integration of (for example) stiff
systems.

Another approach is to use a method that can handle both kinds of objects; this has
been done with, for example, SPH. However, many algorithms developed for one
kind of object, such as articulation or proportional derivative control for rigid
skeletons, are then difficult to use.

This paper proposes a scheme for coupling a rigid-body simulation and a
deformable-object simulation at each substep of a time integration algorithm. By
considering the subtleties of each part of the coupling, the scheme remains stable
while allowing appropriate algorithms to be used with each kind of object.



The time integration scheme used is a Newmark method, which separates position
and velocity updates. Such schemes allow for such things as making the position
update with a proposed velocity, different than the final ones; the authors give the
example of using constraint-violating components to correct drift in the proposed
velocity, but removing these in the final update. Furthermore, Newmark schemes
are well-supported by algorithms from computational mechanics.

The scheme is composed of five major steps:

    1. Advance velocity

    2. Apply collisions

    3. Apply contact and constraint forces

    4. Advance positions                     using

    5. Advance velocity

We will briefly discuss each of these steps as well as their constituent sub-steps.

! 

v
n
" v

~
n+ 1

2

! 

v
n
" v

^ n

,v
~ n+ 1

2

" v

^ n+ 1
2

! 

v

^
n+ 1

2

" v
n+ 1

2

! 

x
n
" x

n+1

! 

v
n+ 1

2 ,v
^ n

" v 
n

! 

v 
n
" v

n+1



Step 1: Advance velocity

This step is intended to predict the velocity to be used to update positions.

    1. Advance velocities

    2. Apply volume correction

    3. Apply self-repulsions

Starred variables here and throughout indicate temporary quantities used only
within a single major step.

Steps 2 and 3 are optional, and apply to the simulation of such things as
incompressible solids and cloth.

! 

v
*

n+ 1
2 = v

n
+ "t

2
a(t

n+ 1
2 ,x

n
,v
*

n+ 1
2 )

! 

v
*

n+ 1
2 " v

**

n+ 1
2

! 

v
**

n+ 1
2 " v

^
n+ 1

2



Step 2: Collisions

In this step, velocities are adjusted for collisions (rigid/rigid, rigid/deformable,
deformable/deformable). This step comes before contact handling to allow for
bouncing of elastically colliding bodies.

    1. Process collisions

    2. Apply post-stabilization

    3. Re-evolve velocities

Collisions are detected by evolving positions forward in time and looking for
interferences. Collisions are processed iteratively (details are in the paper).

Post-stabilization here involves ensuring that collision velocities do not violate joint
constraints.

Rigid/deformable collisions are processed as inelastic rigid/rigid collisions between
the rigid body and the colliding particles of the deformable bodies.
Deformable/deformable collisions are processed at a separate step.

! 

v
n
" v

*

n

! 

v
*

n
" v

^
n

! 

v

^
n+ 1

2

= v
^
n

+ v

~
n+ 1

2

" vn
# 

$ 
% 

& 

' 
( 



Step 3: Contact and constraint forces

This step accounts for contact and constraint processing, including articulation and
PD control (although these are optional).

    1. Compute contact graph using     and

    2. Apply PD to velocities

    3. Apply contact and pre-stabilization

Rigid/deformable pairs are treated as for collisions.

! 

v

^
n

! 

v

^
n+ 1

2

" v
*

n+ 1
2

! 

v
*

n+ 1
2 " v

n+ 1
2

! 

v

^
n+ 1

2



Step 4: Advance positions

Now that we have adjusted velocities for collisions, constraints, and contact, this
step evolves bodies to their final positions.

    1. Advance positions

    2. Interpenetration resolution

    3. Post-stabilization

Deformable/deformable collisions are handled here through interpenetration
resolution, although other algorithms could be applied elsewhere.

! 

x

^
n+1

= x
n

+ "tv
n+ 1

2

! 

x

^
n+1

" x
n+1

! 

v

^
n

" v 
n



Step 5: Advance velocity

This step updates velocities to their final values.

    1. Make incompressible

    2.

    3.

    4. Apply constraints: post-stabilization, PD control, contact, post-stabilization
        and self-repulsions

! 

v
n
" v

*

n

! 

v
*

n+1
= v

*

n
+ "ta

^

(t
n+ 1

2 , 1
2
(x

n
+ x

n+1
), 1
2
(v

*

n
+ v

*

n+1
))

! 

v
**

n+1
" v

n+1

! 

v
*

n+1
= v

*

n
+ "ta(t

n+ 1
2 , 1
2
(x

n
+ x

n+1
), 1
2
(v

*

n
+ v

*

n+1
))


