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Objective:

To document the perceptual consequences of certain
design choices concerning variety in crowds. The results
will provide new insights and useful thresholds that will
help in creating more realistic, heterogeneous crowds.

Impetus:

e Creating realistic virtual environments with
thousands of humans using data driven crowd
systems has its limitations

e Factors affecting the perception of variety have not
been evaluated till date.

Layout of the experiment:
e Baseline Experiments
e Multiple Clone Experiments



Experimental Setup:
Models:
e 20 different models
e 14 male, 6 female
e 32 unique outfits for each model(hair, skin, clothing
and shoes)

Motions:
e 20 different walking gaits (14M,6F) using motion
capture

Framework:
e Characters displayed in orthographic matrix format
e Participants were at a distance of 57cm from the
screen-largely constant throughout the experiment
e Counting false positives



Baseline Experiments:

Appearance Baseline:
Questions probed:

e Does color variation help in disguising an appearance
clone?
e Are some model types more distinctive than others?

Setup:
e 15 naive participants from different educational
backgrounds
e Maximum of 30 seconds to make a choice
e A total of 120( 20*2*3) trials for each participantin a
random order

Observations:

e Mean reaction time for identification of exact clones
was 5.7 seconds, whereas for color modulated
clones it was 12.3 seconds.

e |t was found that, for the exact clone condition,
there was no significant difference between reaction
times for any of the models.

e Horizontal pairs were identified most quickly.
Vertical pairs were identified second quickest and
diagonal pairs took the longest to identify.



Motion Baseline:
Questions probed:

e Are similar motions harder to find than similar
appearances?
e Are certain gaits more individual than others?

Setup:
e 9 naive participants from different educational
backgrounds
e Just 6 onscreen characters were used.
e A total of 60( 20*3) trials for each participantin a
random order

Observations:
e Mean reaction time for this task was 18 seconds

e 3 particular walkers were spotted more easily than
the others



Multiple Clone Experiment:

Appearance (A) Motion (M)

Ao varied, some cloned (C) no motion
AcMe | warted, some cloned (C) | wvaried, some cloned (C)
AcMp | wvarted. some cloned (C) | random, all different (R)
Me all same | wvaried, some cloned (C)
McAg | random, all different (R) | wvaried. some cloned (C)

Table 1: A list of the different Multiple Clone experimental condi-
fions.

Appearance Clones:

e Ac: Appearance Clones

e A Mc: Appearance Clones with cloned motion

e A: Mg: Appearance Clones with random motion

Questions probed:

e Will combining appearance clones with motion
clones (ACMC), so that each appearance clone has
the same motion each time, hinder or aid
recognition over the case where no motion is
present (AC)?

e Will random motions applied to appearance clones
(ACMR) make this harder or easier?

Observations:

e models facing in random directions made clones
more difficult to spot.

e playing motionsout-of-step made clones more
difficult to spot than when they were played in-step.

e random motions made it more difficult to identify
clones than when the clones had no motion applied.



Motion Clones:
e M.: Motion Clones
e M Ag: Motion Clones with random appearance

Questions probed:

e Will motion clone matching at different levels of
multiplicity be a much harder task than appearance
clone matching?

e Will motion clones be disguised when appearance is
varied?

Observations:
e The average reaction time for motion clones was far
slower than for appearance
e clones (28 seconds).
e Surprisingly, motion clones were not disguised
e when appearance varied
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Figure 8: Appearance Clone effects: Reaction times averaged ovey

the 10 number of clone levels.
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Figure 9: Interaction between number of clones and the presence
or absence of motion.
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Figure 12: Main effect of number of motion clones in the Motion
Clone Detection Experiment.



Conclusion and summary of results:

e Appearance clones were easier to detect than
motion clones

e Increasing clone multiplicity reduced variety
significantly

e No appearance model was more easily detected
than others

e Certain gaits were more distinctive than others

e Color modulation and spatial separation effectively
masked appearance clones

e Combined appearance/motion clones were only
harder to find than static appearance clones when
their cloned motions were

e out-of-step

e Appearance clones were also harder to find when
combined with random motions

e Motion clones were not affected at all by
appearance, even with random appearances

Exposure | # Appearance clones | # Motion Clones
5 seconds 8 10

10 seconds 4 10

15 seconds 2 0

20 seconds none 7

Table 2: Summary of thresholds.
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Objective:
To come up with techniques for generalizing a controller
for physics-based walking to significantly different tasks,
such as climbing a large step up, or pushing a heavy
object. The paper describes and evaluates a number of
choices in applying continuation methods to adapting

walking gaits for tasks involving interaction with the
environment.

Impetus:

e Animated characters should exhibit rich and
purposeful behavior if they are to mimic human
abilities.

e Data-driven approaches are a solution that come at
a price-highly resource intensive.



What is the idea of continuation methods?

Questions addressed:
e How quickly should the continuation be advanced,
i.e., what should the step height increment be?
e Are gradient-descent techniques sufficient to make
the required adaptations?

e For any given step height, what objective function
should drive the adaptation?
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Figure 2: (a) Abstract view of the continuation problem. The
shaded regions denote failure regions where no meaningful gradi-
ent can be computed. Yy is an environmeni-based continuation pa-
rameter. 0 is the vector of free control parameters. (b) Gradient
descent with fixed-step continuation (GRAD). (c) Stochastic local
search continuation (STOC).



e A central issue is deciding how style optimization

and continuation advancement should be coupled.
The paper investigates gradient-descent, local-
stochastic search, and hybrid continuation methods,
each of which offer a different degree of coupling
between the two problem features.

The methods must satisfy the multiple goals of
advancing the continuation process, staying out of
failure regions, and optimizing stylistic aspects of the
motion.

Continuation methods:
GRAD:

Advancement of continuation with a fixed step-size
Gradient descent is used to optimize the style of
motion

Tracks the optimal style 8* in a systematic fashion

Gradients are expensive to compute, local minima
are possible

Solution can easily be led into a failure region

HYBRID

Builds on the GRAD method with a couple of
changes

First change:

Oii1 = i+ (Vi1 — %) (6i — 1)/ (i —1i-1)



e Second change:

Allow for adaptation to the continuation step-regular

sampling is done in a trust region fro linear prediction
Trust region: 8y < [0.2Ay.2Ay]

STOC1,STOC2,STOC3:

e STOC1, STOC2, and STOC3 reward continuation to
different degrees, given by ¢, = c0, ¢, = 10c0, and ¢, =
100c0, respectively

f(0)=2g(8)+wgd0T W80 4cyy.

e At any given step, the search is advanced by drawing
sample points in a uniform random fashion from a
given window around the current solution:

(y € [yi.7i +Ay/2]. 0 €[0; —AB.6; + AB])

e Search proceeds in a greedy fashion

e Avoids failure regions and local minima in windowed
sample regions



Problem Representation:

e The default controller is an implementation of the
four-state finite state machine (FSM) walk controller

e Each of the states specifies target angles for all the
joints, which are used by PD-controllers in order to
compute applied joint torques.

e All states have a dwell-time in our implementation,
including those based on foot contacts

f10)=g(8)+wgd0T W80 4¢y7.

e First term rewards a desired motion style

e The second term penalizes making large changes to
the original control parameters. W is a diagonal
weighting matrix (we use W =)

e The optional third term rewards advancing the
continuation in the case of STOC1, STOC2, and
STOCS.

STEPUP:
e One complete gait cycle i.e a right step followed by a
left step constitutes four states and each state has
10 parameters —a total of 40 parameters
e The per-state parameters encompass the sagittal-
plane target angles for the left-and-right ankles, left-
and-right knees, the swing hip, and the waist. Four



additional parameters are given by cd (lateral and
sagittal), the lateral swing-hip angle, and the state
dwell-time.

| 3
g(8) = Z (I1Mi _!r1'||£I + [|hi = hil | wy * ci) +wa Z (Il _;!'”3]

i= i=2

where i is a step index, |, is a desired step length, |; is the
actual step length, "h; is the desired height of the swing
foot center-of-mass when it passes the edge of the step,
h; is the corresponding actual height, ¢; is the time
integral, in seconds, of the combined unwanted contact
durations of the swing foot with the environment, and
w1l and w2 are constants. We use " h;=g +0.2m, w1l = 10,
w2=0.1,and " [;=(0.4,0.1,0.2,0.2,0.2,0.2).

STEPOVER :

The choices of optimization parameters, optimization

FSM states, and other parameters are the same as for
STEPUP. The style term of the objective function is the
same as that used for STEPUP.

PUSH:
e The density of the object is the continuation variable
* Ay =3.0kg/m>, V =0.72m’
e 1=0.8



e Only two modifiable states because of the left-right
symmetry-16 dimensional parameter space

PR o F
g(6) =} (Il )

i=2

HILL:
e Slope of the incline is the continuation variable
e Ay=3 degrees
e The modifiable parameters consist of the target
sagittal angles for the left-and-right ankles, the left-
and-right knees, swing hip, and waist, giving six
parameters per state. As for the PUSH task, there are
only two modifiable states because of left-right
symmetry, yielding a 12-dimensional parameter
vector.
ICE:
e The coefficient of friction is the continuation variable
e u=0.18, which is the lowest friction supported by
the initial walking gait.
e Au=-0.03.

2(8) =Y (= 4II>+57)

i=2

e where "I =0.2m and si is the foot-slippage, measured
as the movement in the ground plane of the center
of mass of the stance foot.



Results:
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