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Conclusions

• Locality is important
– global properties are hard to gather (and test)

• Specifying and testing safety is not
enough
– complete specifications include progress

properties too

• It is possible to test progress in a limited
sense
– even though the testing is limited, still useful

• Work in progress: application to
CORBA

performance

validation

formal methods
& specification

Observation #1: Importance of Locality

• Often, properties of interest are global.
– invariant: # tokens in system = 1

• Testing such properties requires gathering global
state.
– for stable properties, can calculate a snapshot

– expensive communication overhead

• Alternative: collections of local properties only.
– no component creates (or destroys) tokens

– can be easily tested (locally) for each component

• This simple observation has some ramifications…

Requires-Ensures Specifications

• Sequential specifications are often based on
pre/post conditions.

IDL

interface Stack {
   void push (long v);
   long pop ( );
};

IDL++

interface Stack {
   state:   sequence<int> Q;
   state:   int MaxSize = 100;
   void push (long v);
        requires: |Q| < MaxSize
        modifies: Q
        ensures: Q = ‘Q ++ v
    long pop ( );
        …etc...
};

Stack s;
…

    s.push(3)

Client.cpp                              

Problem: Precondition Paradox

• In sequential systems, the requires clause is the
client’s responsibility.

//assert: Stack s is not full
if (!s.full())  {

}

if (!s.full())  {

    s.push(3)
}

Client1.cpp

Problem: Precondition Paradox

• In distributed systems, there may be more than
one client!

//can Stack s be full?

Stack s

Client2.cpp

• “Requires” is a property of entire system!
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Implication: Trivial “Requires” Clauses

• So, a more appropriate way to specify push:

• If non-trivial “requires” clause is used:
– is often a system property

– expensive (potentially impossible) for client to check

void push (long v);
        requires: true
        modifies: Q
        ensures: |‘Q| < MaxSize   ==>   Q = ‘Q ++ v

Observation #2: The Need for Progress

• It is tempting to think of servers as objects and
messages as method invocations.
– encouraged by popular middleware implementations

• Then use familiar specs from sequential objects.

• These specs do not address progress.
– “something eventually happens”

• Progress really is needed for peer-to-peer systems.
– a component that guarantees a reply (e.g. bidders)

– a component that accepts messages while working (e.g.
a distributed branch & bound tree search)

Transience

• Fundamental operator: transient

• transient.P means:
–  if P is ever true, eventually it becomes false

• transient.(#tokens_received > #tokens_sent)

– and, this transition is guaranteed by a single action

• each process responsible for returning its tokens

• Enjoys a nice compositional property:
– transient.P.C   ==>   transient.P.(C||S)

– unlike leads-to, transient properties preserved under
composition

Observation #3: Testing Transience

• Like any progress property, can never detect its
violation
– how long to we wait before giving up?

• Since we it cannot be tested, don’t.

• But what do programmers do in practice?
– observe possible progress bug

– abort program and insert print statements!

– so programmers do have some intuition about how
“quickly” to expect progress

• Programmers would benefit from tool support.

Our Extensions to CORBA IDL

stubs
skeletons
+ checks

IDL
+ spec Augmented

IDL Parser

Example: Dining Philosopher

• Philosophers do not “eat” forever.

void Philosopher::grant_fork()  {

}

//user-supplied code

interface Philosopher  {
 

    void grant_fork();
}

//generated testing code

//generated testing code

    state: enum{t,h,e} s;
    transient: (s == e)
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Transient History Class

struct TransientHistory  {
     boolean holds;
     long time_stamp;
     boolean (*predicate)(const AbstractState&);

     void initialize (const AbstractState& state)  {
          holds = (*predicate)(state);
          if (holds)
               time_stamp = get_current_time();
     }

     void update (const AbstractState& state)  {
          boolean b = (*predicate)(state);
          if (!holds && b)
               time_stamp = get_current_time();
          holds = b;
     }
};
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Functional Transience History

struct FunctionalTransientHistory  {
     boolean holds;
     long time_stamp;
     int free_var;
     int (*dummy)(const AbstractState&);
     boolean (*predicate)(const AbstractState&, int);

     void initialize (const AbstractState& state)  {
          free_var = (*dummy) (state);
          holds = (*predicate) (state, free_var);
          if (holds)
               time_stamp = get_current_time();
     }

     void update (const AbstractState& state)  {
          int v = (*dummy) (state);
          int b = (*predicate) (state, v);
          if ((!holds && b) || ((v != free_var) && b))
               time_stamp = get_current_time();
          holds = b;
          free_vars = v;
     }
};
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Augmented IDL Parser

• User provides annotations in IDL
– given as pragmas

• Automatically generated in skeleton code:
– classes for abstract state and predicate histories

– functions that calculate these predicates

– functions to calculate functional transient dummies

– calls to initialize and update these histories

– function headers for required abstraction function

• Tester provides in skeleton code:
– body of the abstraction function

Introduction

• Locality is important
– global properties are hard to gather (and test)

• Specifying and testing safety is not
enough
– complete specifications include progress

properties too

• It is possible to test progress in a limited
sense
– even though the testing is limited, still useful

• Work in progress: application to
CORBA

performance

validation

formal methods
& specification


