
1

Computer Science and Engineering College of Engineering The Ohio State University

Interfaces First
(and Foremost) with Java

Paul Sivilotti
 The Ohio State University
 paolo@cse.ohio-state.edu

Matt Lang
 Moravian College
 lang@cs.moravian.edu

Computer Science and Engineering The Ohio State University

A Philosophical Question

  What concepts are core to computing
science?

  What skills should our graduates have?
  What is computational thinking?
  What unifying theme, if any, links sub-

disciplines of computing science
together?

 What IS computing science?

Computer Science and Engineering The Ohio State University

My Answer: Abstraction

  Examples are everywhere
  Networking

  OSI 7-layer model
  Architecture

  ISA, µarch, gates, transistors
  Algorithms

  Graphs vs Physical road networks
  Programming

  Procedural abstraction, Abstract data types
  Text encoding

  Glyphs, Unicode code points, UTF-8

  In CS, we develop our own
  In CS, we work with many simultaneously

Computer Science and Engineering The Ohio State University

Where is the Mistake? (JDK 5b)
1: public static int binarySearch(int[] a, int key) {!
2: int low = 0;!
3: int high = a.length - 1;!
4:!
5: while (low <= high) {!
6: int mid = (low + high) / 2;!
7: int midVal = a[mid];!
8:!
9: if (midVal < key)!
10: low = mid + 1!
11: else if (midVal > key)!
12: high = mid - 1;!
13: else!
14: return mid; // key found!
15: }!
16: return -(low + 1); // key not found.!
17: }!

Computer Science and Engineering The Ohio State University

Where’s the Mistake? (PDiJ)
1: public class IntSet {!
2: //IntSets are unbounded mutable sets of integers!
3: private ArrayList<Integer> els;!
4:!
5: public boolean isIn (int x) {!
6: //Returns true if x is in this, else false!
7: return getIndex(x) >= 0;!
8: }!
9:!
10: private int getIndex (int x) {!
11: //If x is in this, returns index of x,!
12: //else returns -1!
13: for (int i = 0; i < els.size(); i++)!
14: if els.get(i).equals(x) return i;!
15: return -1;!
16: }!
17: ...!

Computer Science and Engineering The Ohio State University

Both are Mistakes of Abstraction

  Failure to distinguish between:
1.  math operator (+)
2.  programming language operator (+)
!{low = a ∧ high = b}!
!mid = low + high
{low = a ∧ high = b ∧ mid = low + high}!

  Failure to distinguish between:
1.  client-side abstraction (mathematical set)
2.  implementation representation (ArrayList)
!public boolean isIn (int x)  
 //this is a set with elements  
private int getIndex (int x)  
 //this is an ArrayList!

2

Computer Science and Engineering The Ohio State University

An OO Course

  Variables, assignments, conditionals
  Iteration
  Objects: Classes vs instances
  State and behavior: Fields vs methods
  Encapsulation: Private vs public
  Inheritance

Computer Science and Engineering The Ohio State University

Example: Natural Numbers

  Write a Java class that represents
unbounded natural (ie >= 0) numbers
  Like BigInteger, but for natural numbers

  Requirements:
  Two methods: increment and decrement
  Increment increases the value by 1
  Decrement decreases the value by 1,

unless it is already 0, in which case it
leaves the value unchanged

Computer Science and Engineering The Ohio State University

A Solution
Computer Science and Engineering The Ohio State University

Information Hiding vs Abstraction

  Information Hiding is:

class BigNatural {!
 //@alters this.n!
 //@ensures n = #n + 1!
 public void increment();!

 //@alters this.n!
 //@ensures if #n > 1, n = #n – 1!
 // else, n = 0!
 public void decrement();!
}!

Computer Science and Engineering The Ohio State University

Information Hiding vs Abstraction

  Abstraction is:

//A BigNat is a non-negative unbounded!
//integer !
class BigNatural {!

 //this = #this + 1!
 public void increment();!

 //if #this > 1, this = #this – 1!
 // else, this = 0!
 public void decrement();!
}!

Computer Science and Engineering The Ohio State University

Our Approach: Interfaces

  Require every component to have both
1.  An interface, and
2.  A class implementing that interface

  The interface is a client-side (abstract)
description of behavior
  State given as fields of mathematical

types
  Methods with specifications in terms of

abstract state

  Separate lexical scope enforces
distinction

3

Computer Science and Engineering The Ohio State University

Information Hiding vs Abstraction

  Abstraction is:
//@mathmodel n is an unbounded integer!
//@constraint n >= 0!
//@initially constr() ensures n=0!
interface BigNatural {!
 //@alters this.n!
 //@ensures n = #n + 1!
 public void increment();!

 //@alters this.n!
 //@ensures if #n > 1, n = #n – 1!
 // else, n = 0!
 public void decrement();!
}!

Computer Science and Engineering The Ohio State University

How do You Use Interfaces?

  Motivation: Java has single inheritance
  Interfaces allow multiple “is a”

relationships

  Motivation: Multiple implementations
  Interfaces provide flexibility to choose

different implementations

  Motivation: call-backs
  Swing needs them

Computer Science and Engineering The Ohio State University

Outline of the Talk

  Motivation: Centrality of abstraction
  Abstraction ≠ private + getters/setters
  Take-home message:

  Leverage separation enforced by
interfaces

  Require students to use/write/document
both an interface and a class for each
component

  Benefits
  Limitations

Computer Science and Engineering The Ohio State University

Benefit 1: Javadoc the Contract

  Best practice: Javadoc should describe
behavior but not implementation
details

  Tension: Javadoc for private methods?
  Javadoc is standard documentation tool
  Private fields and methods not part of the

contract

  Interface+Class discipline resolves this
tension
  Javadoc everything in interface for clients
  Javadoc everything in class for coders

Computer Science and Engineering The Ohio State University

Benefit 2: Blackbox JUnit Testing

StudentTest

Student Graded
implements

extends

GradedTest protected Graded g;
@Before
public abstract void setUp();
@Test
public void someTest1() {...}
@Test
public void someTest2() {...}

@Override @Before
public void setUp() {
 g = new Student();
}

Computer Science and Engineering The Ohio State University

Other Benefits

  Behavioral subtyping
  Class inheritance entails code sharing and

overriding
  Interface inheritance entails only behavioral

refinement (ie subtyping)

  Designing exceptions
  Exceptions must make sense in the interface

  Eg ArrayIndexOutOfBoundsException reveals too
much information about internal implementation

  Effective Java Item 52: Code to the
interface

4

Computer Science and Engineering The Ohio State University

Limitations

  Interfaces do not have constructors
  Document initial state in javadoc of

interface
  Just a discipline, no static enforcement

  Real Java programs are not written
this way
  Not our learning objective

Computer Science and Engineering The Ohio State University

Conclusion

  The distinction/separation between
1.  abstract, client-side view and
2.  concrete implementation

  Java provides a first-class language
construct for enforcing this separation:
interfaces

  Secondary point:
  Start with the client-side view

