
Introducing Middle School Girls to Fault Tolerant Computing

Paolo A. G. Sivilotti and Murat Demirbas

Department of Computer and Information Science

The Ohio State University

Columbus, OH 43221

{paolo,demirbas}@cis.ohio-state.edu

Abstract

During summer 2002, we ran a workshop module for a group
of 28 eighth-grade girls. Our aim was ambitious: to intro-
duce these students, ages 12 and 13, to computer science
by focussing on the deep intellectual topic of self-stabilizing
distributed algorithms and by imparting an intuitive appre-
ciation for their use in fault tolerance. At the same time,
we hoped to dispel some negative stereotypes of computer
science. The module was a success according to evaluations
and comments from the participants. This paper describes
the sequence of exercises we developed as an elementary-level
introduction to the graduate-level topics of fault tolerance
and self-stabilization. We report them with the hope that
others will try them in college classrooms, as we plan to do.

Categories & Subject Descriptors

K.3.2 [Computers and Education] : Computer and In-
formation Science Education – computer science education.

General Terms

Algorithms, Design, Human Factors.

Keywords:

Distributed algorithms, Algorithm anthropomorphism, Out-
reach, Pedagogy.

1 Introduction

As a discipline, computer science has had limited success
in attracting and retaining female students [1]. Significant
projects have been launched to address this deficiency, as
seen in the June 2002 issue of SIGCSE Bulletin dedicated
entirely to “Women in Computer Science”. Little headway,
however, has been made in changing the negative stereotypes
associated with the field. It is natural for recruitment efforts
to target 11th and 12th grade students. Unfortunately, it

Permission to make digital or hand copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, require prior specific permission and/or a fee.
SIGCSE’03, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002...$5.00.

may be too late at that point to significantly impact student
perceptions of their career options. [2]

In August of 2002, the College of Engineering at The Ohio
State University hosted a week-long workshop for middle
school girls entering the eighth grade. The workshop, en-
titled “Future Engineers’ Summer Camp”, attracted par-
ticipants primarily from the local area. The aim was to
introduce the girls to a variety of science and engineering
subdisciplines.

Since the participants were young, many societal prejudices
about the nature of various science and engineering disci-
plines were less entrenched. On the other hand, working
with students so young presented a challenge: Activities had
to be accessible, but also relevant and honest with respect
to the intellectual nature of the discipline.

As our contribution to this week-long workshop, we de-
veloped a 2.5 hour module to introduce computer science.
A classic approach for introducing CS concepts is to use
a simple programming language such as LOGO [4]. Stu-
dents are quickly exposed to basic concepts in imperative
programming, flow-of-control, testing, and debugging. Un-
fortunately, students must also come to grips with syntax
requirements which can mask the fundamental issues.

Our approach was different. We aimed to introduce these
students to CS concepts near the research frontier. In par-
ticular, we presented a distributed self-stabilizing algorithm
and illustrated its use in fault tolerant computing. Thus,
students glimpsed the intellectual profile of issues being ad-
dressed by researchers in computer science.

The module does not presuppose any background in com-
puter science. (In fact, only two of the participants had
any prior programming experience.) It was presented in
three parts. The first part illustrated the basics of program-
ming and software engineering through programming a small
robot. The second part built on the first, but introduced the
notion of parallel programming through participant anima-
tion of several algorithms. Finally, the last part extended
the notion of parallel programs to motivate two algorithms
for fault tolerance. By the end of the module, the girls had
acted out an implementation of Dijkstra’s self-stabilizing to-
ken ring algorithm [3].

The structure of this paper reflects the structure of the mod-
ule. For each of the three parts, the presentation and the
participant activity are described. We focus on the last part,
the fault tolerance activity. The paper concludes with as-
sessments from the participants and our own observations.

2 Preliminaries: Software Engineering

The nature of a program as a sequence of instructions is fun-
damental to the presentation of many algorithms, including
self-stabilizing ones. Given that no CS background is as-
sumed, programs must be introduced. At the same time,
this introduction should not be obfuscated through syntax
concerns of any particular implementation language.

2.1 Presentation

The elementary analogy of computers and programs to chefs
and recipes was used throughout the module. The versatility
and general-purpose nature of a chef was compared to that
of a computer. The imperative and sequential nature of a
recipe was compared to that of a program. Though simple,
this analogy provided a nice unifying context through all
three activities.

The chef analogy works well for discussing software engineer-
ing. Recipes, like programs, can be characterized by what
ingredients they require (input) and what dish they produce
(output). Basic requirements for a software engineer can be
understood in terms of needed ingredients and final dish.
Similarly, software design issues can be understood in terms
of well-written recipes. Thus, a software engineer can be
cast as a “recipe engineer”.

2.2 Activity

As an exercise in writing programs, students were asked to
program a robot. The robot was built with a light sensor
permitting it to follow lines drawn in electrical tape on a
white floor. The robot was set on a 6x6 grid, where two of
the vertices were colored red (see Figure 1).

Figure 1: Grid Layout for Robot Activity

The robot had a small set of pre-programmed instructions:
turn left, turn right, forward one, forward to end of grid,
and take sample. The task for the students was to write a
program that brought the robot from its starting position to
a red vertex, had it take a sample there, then had it return
to its original position. If the take sample instruction was
correctly issued over a red vertex, the robot would play a
little tune.

To avoid issues of syntax and compilation, each student team
was given a stack of index cards. Each card had one of
the robot instructions pre-printed on it. The student team
wrote their program by creating a stack of cards. Due to
the exceedingly simple programming language (only 5 in-
structions) programs were straight line (no loops) with no
conditional branching. Once satisfied with their program,

the students brought the stack to the teaching assistant at
the computer who showed them how to use the standard
graphical user interface to visually assemble blocks (corre-
sponding to their physical cards) to form a program for the
robot. The program was then downloaded to the robot and
students saw the result of their efforts.

As a further challenge, students were asked to write a pro-
gram that would successfully take a sample at a red vertex,
regardless of where the robot was placed initially. With only
a limited number of “take sample” cards (2) and no explicit
conditional statements, this was quite a challenge. Never-
theless, most groups eventually discovered how to use the
“go forward to end of grid” instructions to accomplish the
task.

The robots were built from off-the-shelf Lego MindstormTM

components. The procedures for following grid lines and for
performing each of the 5 high-level instructions are available
at URL http://www.cis.ohio-state.edu/~paolo/FESC02.
The students worked in groups of four and there were 2 sep-
arate grids and lego robots available. This activity required
an hour to complete.

3 Preliminaries: Parallel Programming

The second activity introduced parallel algorithms. This
activity was adapted from the description in [5], so it is only
summarized briefly here.

Continuing the analogy of programs to recipes, it is easily
observed that multiple chefs will result in a recipe being com-
pleted earlier. The analogy also illuminates issues of scaling
and sequential bottlenecks. As an application of these ideas,
three sorting algorithms were presented: bubblesort, even-
odd transposition, and radix sort. The first is sequential,
while the others are parallel.

Students were then arranged in groups of 10. Each group,
arranged single file, represented an array of integers needing
to be sorted. Each student held a number and they collec-
tively acted out the three different algorithms. This exercise
dramatically illustrates the performance gain of parallel over
sequential programming.

In [5], this activity was developed for high school seniors.
We found that the activity is appropriate for middle school
children with very little modification. This activity was com-
pleted in 45 minutes.

4 Introducing Fault Tolerance

The third and final activity was the introduction of fault tol-
erance. Again, the analogy of chefs and recipes was useful
for presentation. The nature of a fault, and its impact on a
computation, is easily seen in the context of a chef preparing
a dish. Students suggested a variety of things that could go
wrong in the kitchen, and these problems were then related
to hardware or software faults, both internal and environ-
mental. While few students had written a program before
this module, many had experienced, as users, the effects of
faults in a computer system (e.g., operating system crashes).
With the cooking analogy, they saw the wide variety of pos-
sible faults and how these faults can propagate.

The parallel programming activity leads nicely into the fault
tolerance discussion. Having just seen the utility of multiple
“chefs in the kitchen” for performance, students quickly sug-

gested this strategy as a solution for fault tolerance. Indeed,
the basic technique of modular redundancy in computer sys-
tems emerged quite naturally from the previous activity on
parallel programming.

5 Fault Tolerant Token Ring

Armed with a basic appreciation for the nature of faults and
possible strategies for tolerating them, the discussion turned
to self-stabilization. This activity involved two algorithms
for token-based mutual exclusion in a ring. The first was
brittle, while the second was self-stabilizing. By animating
the algorithms, students gained an appreciation for the ef-
fect of self-stabilizing distributed algorithms as well as some
intuition for how these algorithms work.

5.1 Simple Token Ring

The discussion began by describing and motivating mutual
exclusion. A simple strategy for coordinating a collection of
processors by passing a token is easily understood by stu-
dents at this level. A physical token, handed from student
to student (or “chef” to “chef”), sufficed to illustrate the
basic idea. With the introduction of a fault (the loss of the
token), the shortcoming of this algorithm was quickly seen:
Once the token is lost, it is never replaced.

5.2 Binary State Token Ring

To avoid the difficulty of losing the token, a binary state ring
can be used. The single token is replaced by each processor
keeping a binary variable. This variable was introduced as
encoding whether or not the processor has held the token in
the past.1 If the variable for processor p has value 0, but
p’s left neighbor’s variable has value 1, then p now has the
token. Processor p can access the critical resource, and then
modifies its variable to have value 1. In this way, the token
proceeds around the ring.

When the token has made a full cycle around the ring, all
processors will have value 1. In order for it to continue circu-
lating, therefore, the initial processor must follow a slightly
different rule than the others: If its variable has value 1, and
its left neighbor also has value 1, then the initial processor
has the token. After accessing the critical resource, The ini-
tial processor changes its value to 0. A wave of 0’s is then
propagated around the ring.

All processors (except the initial one) are thus following a
simple rule:

If my left neighbor’s value is ever different from mine,
I use the resource, then copy their value.

The initial processor has a modified rule:

If my left neighbor’s value is ever the same as mine, I
use the resource, then makeD my value different.

To illustrate this algorithm, 14 volunteers were chosen.
Desks were arranged in a circle, and each volunteer was

1A more accurate description of this variable is an en-
coding of how many times the processor has held the token,
modulo 2.

given: (i) a piece of paper with a large 0 and 1, (ii) a marker
to be place on either the 0 or the 1, and (iii) a one-note xylo-
phone tone bar and mallet. It is important that the numbers
(0 and 1) and the marker be large enough to be easily visible
by a neighbor. It is also important that the marker be easily
movable, to ensure that the token circulates quickly.

The paper and marker were used to represent state, while
playing the tone bar represented using the critical resource
(i.e., having the token). The notes were arranged in a ma-
jor scale, ascending and descending, with no repition of the
notes at either extreme (see Figure 2 for a C-major arrange-
ment). Notice that the initial processor was not placed at
the beginning of the scale. In fact, we found it more effective
for the tune to emerge at some different point in the ring,
rather than being tied to the initial processor.

initial
processor

F

B

A

G

D
C

E

D

E

F

G

A

B
C

token’s direction
 of travel

(high C)

(low C)

Figure 2: Arrangement for Binary State Token Ring

With every processor beginning in state 0, the algorithm was
initiated. The girls played their note, changed their state,
and observed the progress of the virtual token around the
ring. One nice feature of using a major scale is that every
note has the same duration, so the tune (simple as it is) is
virtually guaranteed to emerge, despite the participants not
being given any timing information. They were told nothing
beyond: “when you have the token, play the note, and copy
your neighbor’s value”. (This rule was modified appropri-
ately for the initial processor and an assistant stayed next to
her to be sure she correctly understood her modified rule.)

Another nice feature of the ascending/descending scale is
that it sounds like a continuous melody, without beginning
or end. This reinforces the notion that the token circulates
around the ring continuously.

After the participants were comfortable with how to exe-
cute the algorithm, a fault was introduced. The state of one
processor was modified (by an assistant acting as a “fault
demon”). For simplicity, this fault was not introduced in
the vicinity of the original token. The effect of such a fault
is to introduce extra tokens in the system. In particular, the
neighbor of the faulty processor will now have a token and
will propagate that token around the ring. In addition, the
faulty processor itself will have a token, and so will prop-
agate that token too around the ring. The result is three
separate waves of tokens circulating around the ring, cre-
ating a cacophony and dramatically illustrating the loss of
mutual exclusion.

This algorithm does not recover from a fault. Multiple to-
kens will continue to circulate around the ring. Students
saw how there was always at least one token in the ring (no
configuration results in silence). But they also saw how the
algorithm might never recover from the insertion of extra
tokens.

5.3 k-State Token Ring.

The difficulty with the binary state token ring is that the ini-
tial processor cannot distinguish between a legitimate wave
and one that was initiated through a fault. With only two
states to distinguish token waves, three (or any odd number)
of waves might circulate indefinitely. The solution is to use
more than two states. The k-state algorithm uses the same
number of states as there are processors in the ring (in our
case, 14). Thus, each wave has a different number and can
be distinguished. The initial processor will only propagate
a wave with the same number as the one it initiated last.

The algorithmic rule for each process is exactly the same as
before: If my left neighbor’s state is different than mine, I
use the resource then copy their state. For the initial process,
if its left neighbor’s state is the same, it uses the resource
then increments by one.

Again the volunteers were arranged in a circle and given a
page for indicating current state. This time, however, pos-
sible state values ranged from 0 to 13 inclusive. Also, this
time a different arrangement of tone bars was used. Thus,
the students did not know what tune they would be play-
ing. The algorithm would have to stabilize for the melody
to become clear.

The tune used was Twinkle Twinkle Little Star (C-C-G-G-A-
A-G-F-F-E-E-D-D-C). It has the advantages of being easily
recognizable, having notes of mostly equal duration, and
having 14 notes. Another nice feature of this tune is that
no one note occurs more than 3 times. Thus, 3 copies of a
single octave of tone bars suffices to assemble the melody.2

Again, the tune was not aligned to begin with the initial
processor.

initial
processor

D

F

E

E

C
C

D G

G

A

A

G
F

token’s direction
 of travel

C

Figure 3: Arrangement for k-State Token Ring

2We also considered Frère Jaques and The Ohio State
University’s alma mater, Carmen Ohio. Both are 14-note
tunes with relatively equal duration notes. However, the
former requires more than three instances of an individual
note and the later’s recognition is less universal.

With everyone in the same initial state (all processors in
state 0) the algorithm was initiated. Before the tune could
become discernible, however, faults (modifications to state)
were introduced. Like before, these modifications result in
extra tokens being added to the system. With multiple notes
being played concurrently, any semblance of a melody was
lost.

The self-stabilizing nature of this algorithm, however, meant
that gradually the extra tokens were removed. Gradually,
the system returned to a single token and, to the students’
surprise and delight, the melody of Twinkle Twinkle Little
Star emerged.

As further evidence of the self-stabilizing nature of this al-
gorithm, it was initiated in a random state (each student
picking a number between 0 and 13 inclusive). When the
algorithm ran, there was musical chaos with practically all
the notes being played and many tokens being propagated.
Even from this extremely chaotic configuration, however, the
tune eventually emerged.

Students observed first-hand the role of the initial proces-
sor in removing extra tokens. Because “using the resource”
meant playing a note, there was immediate feedback when
the safety property was violated (after a fault) and imme-
diate gratification when the algorithm recovered and a tune
emerged.

The fault tolerance exercise requires one assistant to super-
vise the initial processor and another assitant to introduce
faults. This activity required 45 minutes.

6 Feedback From Participants

The entire workshop ran for a total of 5 days, 9 am to 5
pm, plus one evening (a total of 44 hours). The CS module
described in this paper ran for 2.5 hours during the morning
of the fourth day.

At the end of each day, students were given feedback forms
with which to evaluate the day’s activities. The day of the
CS module, their feedback form included the following quan-
titative questions.

How much did you know about computer science
before doing the activities? On a scale of 1 (none) to
5 (a lot), the average response was 2.8, with a standard
deviation of 1.2

Having done the activities, does computer science
seem more or less interesting than before? On a scale
of 1 (much less interesting) to 5 (much more interesting),
the average response was 4.0, with a standard deviation of
0.8.

Each activity was also rated on a scale of 1 (low) to 5 (high).
All the activities were well received, with the fault tolerance
activity being rated the highest. This feedback is summa-
rized in Table 1.

Activity Average Std. Dev.

Robot Programming 4.4 0.8

Parallel Programming 4.4 0.7

Fault Tolerance 4.6 0.7

Table 1: Participant Evaluation of Workshop Modules

In addition to these quantitative questions, students were
also asked: “What is the most important thing you
feel you learned about computer science?” Responses
fell in four categories. Three students wrote something sim-
ilar to, “It’s really fun!” Six students commented on pro-
gramming and software engineering. Comments included:
“How to write programs”, and “Computers need specific in-
structions to work right.” Seven students mentioned par-
allel programming. Comments included: “The more ‘chefs’
you use, the faster will the program finish”, and “Sequen-
tial programs are slow.” Finally, five students mentioned
fault tolerance. Comments included: “I learned that com-
puters have ‘faults’ that can be fixed!”, and “how to make
a program recover itself.”

At the end of the week, students were given a survey to
evaluate the workshop as a whole. When asked to evaluate
presentations on a scale of 1 (low) to 5 (high), students gave
the computer science module an average grade of 4.6, the
highest of all presentations.

Students were also asked: “In which activity did you
learn the most about engineering?” There were 15 dif-
ferent units introducing various science and engineering dis-
ciplines (including chemistry, civil engineering, mechanical
engineering, aeronautical engineering, environmental engi-
neering, astronomy, industrial engineering, etc.). Of these,
the computer science module had the highest number of re-
sponses (8).

It should be noted that this exit survey was completed on
the last day of the workshop, the same day that students
had participated in the “highlight” activity of building a
hovercraft. Building (and riding!) these hovercrafts was
extremely entertaining and was greatly enjoyed by the par-
ticipants. Nevertheless, when asked in which activity they
learned the most, more students selected the computer sci-
ence module from an earlier day.

7 Conclusions

Traditional approaches to introducing computer science con-
cepts at a middle school level have often focussed on simple
imperative programming environments. We developed a 2.5
hour module to introduce middle school girls to advanced
algorithmic concepts in computer science. The material for
this module (slides, handouts, and code) is available at URL
http://www.cis.ohio-state.edu/~paolo/FESC02.

The role of musical tunes to illustrate the token ring algo-
rithms can not be overstated. The musical element made
it immediately apparent when a fault had occurred. It
also created a sense of gratification and satisfaction when
the algorithm stabilized and a melody emerged. We expect
this strategy for anthropomorphizing distributed algorithms
could be used for a variety of algorithms. There are many
variations on stabilizing token rings (e.g., the 4-state ring,
and 3-state ring) to which the technique could be directly
applied. Other advanced problems, such as distributed con-
sensus, might also be amenible to similar treatment.

8 Acknowledgements

The authors gratefully acknowledge the help of Sandip Ba-
pat who assisted in the implementation and tuning of the
robot programming activity. The xylophone tone bars were
borrowed from Amy Giles in the university’s School of Mu-
sic (Music Education). Thanks also to the members of the

Distributed Components research group at The Ohio State
University who helped test and run these activities, in par-
ticular: Florina Comanescu, Scott Pike, Nigamanth Srid-
har, and Hilary Stock. Finally, thanks to Linda Weavers
for spearheading the week-long workshop and inviting our
participation.

This work was supported by NSF ITR grant CCR-0081596,
and an Ameritech Faculty Fellowship. The workshop was
funded by an NSF PECASE award.

References

[1] Camp, T. The incredible shrinking pipeline. Communi-
cations of the ACM 40, 10 (October 1997), 103–110.

[2] Countryman, J., Feldman, A., Kekelis, L., and Spertus,
E. Developing a hardware and programming curriculum
for middle school girls. SIGCSE Bulletin 34, 2 (June
2002), 44–47.

[3] Dijkstra, E. W. Self stabilizing systems in spite of dis-
tributed control. Communications of the ACM 17, 11
(November 1974), 643–644.

[4] Harvey, B. Computer Science Logo Style, 2nd ed. MIT
Press, February 1997.

[5] Rifkin, A. Teaching parallel programming and software
engineering concepts to high school students. In Pro-
ceedings of the 25th SIGCSE Symposium on Computer
Science Education (March 1994), ACM, pp. 26–30.

