Distributed Resource-Allocation
With Optimal Failure Locality

»

Paolo A. G. Sivilotti, Scott M. Pike and
Nigamanth Sridhar

Computer and Information Science
The Ohio State University

Motivation

= Process failures should have limited impact

= Robust systems require algorithms that mask
remote failures

= One metric of impact: faiure locality
= A new algorithm for resource allocation
= Optimal worst-case failure locality
= Configurable to improve expected failure locality

‘ Dining Philosophers Problem

An abstraction for resource-allocation problems

= A conflict graph models
a set of resources shared
among competing processes
= Each node represents a
process
= Each edge represents a
potential conflict

Dining Philosophers Problem

= A process is modeled by its state: @

= Thinking: executing independently
= Hungry: requesting resource
= Eating: using shared resource

= Restriction: Eating is always finite

= Conflict-resolution layer must satisfy:
= Safety: no two neighbors eat simultaneously
= Progress: every hungry process eats eventually

‘ Safety

= Safety can be ensured
by using forks
= Afork is a token shared
between two neighbors
= Exactly one fork per edge
= A process can eat only if
it holds all of its forks

A Metric: Failure Locality

= m-neighborhood of p:
the set of processes reachable |
along at most m edges from p = -]

m 0-neighborhood of p
m 1-neighborhood of p

An algorithm has Failure Locality m
if the failure of any process only affects
processes within its m-nejghborhood

‘ Model of Computation

= Processes are distributed, communicating
only by asynchronous message passing

= Channels are unordered, but messages are
delivered reliably without loss, duplication,
or corruption

= Process failures are fail-stop
= Execution stops without warning
= Failed processes remain stopped forever
= Failures cannot be detected by neighbors

Algorithm Comparison

T

Hygienic Double Bounded Dynamic
Doorways Doorways | Thresholds

Safety YES YES YES YES
Progress YES YES YES YES
Failure
Locality n 4 2 2
FIFO
Channels 0 0 0 U
Broadcast
Messages u u u g
Interrupt 0 0 0 0
Mechanism

‘ The Hygienic Algorithm

= Each process has a priority
= Neighbors have distinct priorities
= In conflict, higher-priority neighbor wins

R @

I After eating,
g lower priority
1 below all

$ neighbors

Before Eating After Eating

Hygienic Solution:
Poor Failure Locality

= A hungry process never yields to a lower-priority
neighbor, so long dependency chains may form
= Worst-case locality is linear in the number of nodes

T

- Failure ------_
P
R @ /‘\ @ /‘\
o ® ® Wait-for
'; Q g Chain
el @\

‘ Impossibility Result

= Failure locality is 2 2

= Algorithms with constant failure locality:
= Styer and Petterson, PODC 1988
« Choy and Singh, TPDS 7(7), 1996

= To improve the failure locality of the Hygienic
algorithm, we need a mechanism for breaking long
dependency chains

= We borrow the notion of thresholds from Choi and
Singh to allow lower-priority hungry neighbors to
overtake higher-priority neighbors in some cases

Thresholds:

Improving Failure Locality

= Process priorities are static
= The threshold set of a
process is the set of its
higher-priority neighbors
p.threshold = p holds the
fork from every process in
its threshold set

p.threshold is vacuously true
if p has no higher-priority
neighbors

<d4mwmOo=mo

‘ A Fork-Collection Scheme

= palways yields forks to

higher-priority neighbors
= Before preaches its
threshold, p also yields to
lower-priority neighbors
Failure locality is 2

p.threshold is not stable
= Yielding a fork to a
higher-priority neighbor
breaks p's threshold

Become hungry

Get forks from
higher-priority |-p.threshold

z neighbors
S
&| iThreshold Threshold
2| iReached Broken
[
&
Get forks from
lower-priority | p-threshold
neighbors

Use resource

Static Priorities:
Problems with Progress

= Higher-priority processes
can starve lower-priority
neighbors

Become hungry

Get forks from
higher-priority | -p.threshold

2| |neighbors
S
&| iThreshold Threshold
2| iReached Broken
&
Get forks from
lower-priority | p-threshold
neighbors

1

Use resource

A New Algorithm:
Dynamic Thresholds

= Dynamic Thresholds:
A composition of the
fork-collection scheme
and dynamic process
priorities
= A process at its threshold
= can be overtaken by
higher-priority neighbors
= but at most once by
each

Become hungry

Get forks from

>

S| | higher-priority |p.threshold
£| | neighbors

[}

% Threshold Threshold

2 Reached Broken

<

[}

S| | Get forks from

©| | lower-priority | p.threshold
| | neighbors

Use resource

Performance Analysis

= Algorithm has failure locality of 2

Lower-priority neighbors

<-4~ PO~ ®T

s

Higher-priority neighbors

‘ Algorithm Comparison

Hygienic Double Bounded Dynamic
Doorways Doorways | Thresholds

Safety YES YES YES YES
Progress YES YES YES YES
Failure
Locality n 4 2 2
FIFO
Channels U U U 0
Broadcast
Messages g g g u
Interrupt
Mechanism U U U 0

A New Metric: Failure Sets

= We care about the number of impacted
nodes, not their distance from the failure

= Failure set of p: the set of processes that
starve if and when p fails

= Failure set O m-neighborhood, where mis
the failure locality of the algorithm

= Metric: cardinality of failure set
= Depends on network topology

‘ Minimizing Failure Sets

= Observation: High-priority processes that fail tend
to have smaller failure sets
= Why? A high-priority process p has relatively more
lower-priority neighbors
= These neighbors cannot reach their threshold without
the fork from p
= They yield forks to all requesting neighbors
= This shields the rest of the network from pg's failure
» Goal: keep unreliable processes high in priority

Refining Dynamic Thresholds

= After eating, reduce priority by an arbitrary amount
= Refined algorithm is still correct

= Hungry processes can be overtaken a bounded number of
times per neighbor

Fating..... (Eating

‘ Refining Dynamic Thresholds

Become hungry
= Parameterize algorithm

by a failure model Get forks from
=« Unreliable processes n"é%ﬁi’;‘;”""ty —p-threshold

reduce priority less

than reliable processes
= This keeps unreliable

processes higher in

priority

Threshold Threshold
Reached Broken

Get forks from
lower-priority | p-threshold
neighbors
]

Use resource

2
8
=
[l
o
2
©
(7}
@
@
o
=}
S
3}
24

Contributions

= New algorithm: Dynamic Thresholds
= Optimal failure locality of 2
= Weaker assumptions on model
= New metric: Failure-set cardinality
= Parametric algorithm:
= Incorporates failure model
= Reduces expected cardinality of failure set

‘ References

= The fault-tolerant fork-collection scheme
= Choi and Singh, ACM TOPLAS 17(3), 1995

= Dynamic priorities in hygienic algorithm
= Chandy and Misra, UNITY book, 1988

= Proof that 2 is optimal failure locality
= Choi and Singh, IEEE TPDS 7(7), 1996

» {paolo,nsridhar,pike}@cis.ohio-state.edu

