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• Tuesday, May 6 – MPI-3 Additions to the MPI Spec 
– Updates to the MPI One-Sided Communication Model (RMA) 

– Non-Blocking Collectives 

– MPI Tools Interface 

• Wednesday, May 7 – MPI/PGAS Hybrid Programming 
– MVAPICH2-X: Unified runtime for MPI+PGAS 

– MPI+OpenSHMEM 

– MPI+UPC 

• Thursday, May 8 – MPI for many-core processor 
– MVAPICH2-GPU: CUDA-aware MPI for NVidia GPU 

– MVAPICH2-MIC Design for Clusters with InfiniBand and Intel Xeon 
Phi 
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Plans for Wednesday and Thursday 

VSCSE-Day2 
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Parallel Programming Models Overview 

P1 P2 P3 

Shared Memory 

P1 P2 P3 

Memory Memory Memory 

P1 P2 P3 

Memory Memory Memory 

Logical shared memory 

Shared Memory Model 

SHMEM, DSM 
Distributed Memory Model  

MPI (Message Passing Interface) 

Partitioned Global Address Space (PGAS) 

Global Arrays, UPC, Chapel, X10, CAF, … 

• Programming models provide abstract machine models 

• Models can be mapped on different types of systems 
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc. 

• We concentrated on MPI yesterday 

• Today’s Focus: PGAS and Hybrid MPI+PGAS 
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Partitioned Global Address Space (PGAS) Models 

VSCSE-Day2 

• Key features 
- Simple shared memory abstractions  

- Light weight one-sided communication  

- Easier to express irregular communication 

• Different approaches to PGAS  

- Languages  
• Unified Parallel C (UPC) 

• Co-Array Fortran (CAF) 

• X10 

• Chapel  

- Libraries 
• OpenSHMEM 

• Global Arrays 



• Hierarchical architectures with multiple address spaces 

• (MPI + PGAS) Model 
– MPI across address spaces 

– PGAS within an address space 

• MPI is good at moving data between address spaces 

• Within an address space, MPI can interoperate with other shared 
memory programming models  

 

• Applications can have kernels with different communication patterns 

• Can benefit from different models 

 

• Re-writing complete applications can be a huge effort 

• Port critical kernels to the desired model instead 
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MPI+PGAS for Exascale Architectures and Applications 



Can High-Performance Interconnects, Protocols and 
Accelerators Benefit from PGAS and Hybrid MPI+PGAS Models?  

• MPI designs have been able to take advantage of high-
performance interconnects, protocols and accelerators 

• Can PGAS and Hybrid MPI+PGAS models take advantage of 
these technologies? 

• What are the challenges? 

• Where do the bottlenecks lie? 

• Can these bottlenecks be alleviated with new designs (similar 
to the designs adopted for MPI)? 
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• PGAS Programming Models and Runtimes 

– PGAS Languages: Unified Parallel C (UPC) 

– PGAS Libraries: OpenSHMEM 

• Hybrid MPI+PGAS Programming Models and Benefits 

• High-Performance Runtime for Hybrid MPI+PGAS Models 

• Application-level Case Studies and Evaluation 

VSCSE-Day2 

Presentation Overview 
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• UPC: a parallel extension to the C standard 
• UPC Specifications and Standards: 

– Introduction to UPC and Language Specification, 1999 
– UPC Language Specifications, v1.0, Feb 2001 
– UPC Language Specifications, v1.1.1, Sep 2004 
– UPC Language Specifications, v1.2, June 2005 
– UPC Language Specifications, v1.3, Nov 2013 

• UPC Consortium 
– Academic Institutions: GWU, MTU, UCB, U. Florida, U. Houston, U. Maryland… 
– Government Institutions: ARSC, IDA, LBNL, SNL, US DOE… 
– Commercial Institutions: HP, Cray, Intrepid Technology, IBM, … 

• Supported by several UPC compilers 
– Vendor-based commercial UPC compilers: HP UPC, Cray UPC, SGI UPC 
– Open-source UPC compilers: Berkeley UPC, GCC UPC, Michigan Tech MuPC 

• Aims for: high performance, coding efficiency, irregular applications, … 
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Compiler-based: Unified Parallel C 



• A UPC program is translated under a static or dynamic THREADS 
environment: 

– THREADS: number of threads working independently SPMD mode 
– MYTHREAD: a unique thread index, ranges from 0 to THREADS-1 
– In static THREADS mode: THREADS is specified at compile time 
– In dynamic THREADS mode: THREADS can be specified at run time 
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UPC: Execution Model 

 
• Hello World: 

#include <upc.h> 
#include <stdio.h> 
int main() { 
  printf(" - Hello from thread %d of %d\n", MYTHREAD, THREADS); 
  return 0; 
} 

 



• Global Shared Space: can be accessed by all the threads  
• Private Space: hold all the normal variables; can only be accessed by the 

local thread 
• Examples: 

shared int x;    //shared variable; allocated with affinity to Thread 0 
int main() { 
  int y;               //private variable 
} 
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UPC: Memory Model 

Global 
Shared Space 

Private 

Space 

Thread 0 Thread 1 Thread 2 Thread 3 

x 

y y y y 



• Shared Array: cyclic layout (by default) 
shared int A1[THREADS] 
shared int A2[2][THREADS] 

• Shared Array: block layout 
shared [*] int A3[2*THREADS] 
shared [2] int A4[2][THREADS]  
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UPC: Memory Model 

Global 
Shared Space 

Private Space 

Thread 0 Thread 1 Thread 2 Thread 3 

A1[0] A1[1] A1[2] A1[3] 

A2[0][0] 

A2[1][0] 

A2[0][1] 

A2[1][1] 

A2[0][2] 

A2[1][2] 

A2[0][3] 

A2[1][3] 

A3[0] A3[1] 

A4[0][0] 

A3[2] A3[3] A3[4] A3[5] A3[6] A3[7] 

A4[0][1] 

A4[0][2] 

A4[0][3] 

A4[1][0] 

A4[1][1] 

A4[1][3] 

A4[1][4] 



• Private pointer to private space: int * p1; 
– Fast as normal C pointers 

• Private pointer to shared space: shared int * p2;  /*a pointer-to-shared*/ 
– Slower for test whether the address is local or for communication 

• Shared pointer to private space: int * shared p3; 
– Not recommended 

• Shared pointer to shared space: shared int * shared p4; 
– Used for shared linked structures 
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UPC: Pointers 

Global 
Shared Space 

Private 

Space 

Thread 0 Thread 1 Thread 2 Thread 3 

p4 

p1 p2 

p3 

p1 p2 p1 p2 p1 p2 



• shared void *upc_all_alloc (size_t nblocks, size_t nbytes); 
– Collective function; the call returns the same pointer on all threads 
– Allocates shared space compatible with the following declaration:  
  shared [nbytes] char[nblocks * nbytes] 

• shared void *upc_global_alloc (size_t nblocks, size_t nbytes); 
– Not a collective function 
– Allocate shared space compatible with the declaration: 
  shared [nbytes] char[nblocks * nbytes] 

• shared void *upc_alloc (size_t nbytes); 
– Not a collective function; like malloc() but returns a pointer-to-shared 
– Allocates shared space of at least nbytes bytes with affinity to the 

calling thread 

• void upc_free (shared void *ptr); 
– Free the dynamically allocated shared storage pointed to by ptr 
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UPC: Dynamic Memory Management 



• The ordering of shared operations is decided by user-
controlled consistency models 

• Strict consistency model 
– All threads observe the effects of strict accesses in a manner 

consistent with a single, global total order 
– #include<upc_strict.h>  /* control at the program level*/ 
– #pragma upc strict  /* for a statement or a block of statements */ 
– Type qualifiers: strict  /* for a variable definition */ 

• Relaxed consistency model 
– Any sequence of purely relaxed shared access issued by a given thread 

in an execution may be arbitrarily reordered by the compiler or 
runtime 

– #include<upc_relaxed.h>  /* control at the program level*/ 
– #pragma upc relaxed  /* for a statement or a block of statements */ 
– Type qualifiers: relaxed  /* for a variable definition */ 
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UPC: Consistency Model 



• Non-blocking barrier: 
upc_notify;  /* upc_notify and upc_wait are collective functions */ 
… 
upc_wait; /* the next collective after upc_notify must be upc_wait */ 

• Blocking barrier: 
upc_barrier; 
– Equivalent to: {upc_notify barrier_value; upc_wait barrier_value;} 

• Fence: 
upc_fence; 
– All shared accesses issued before the fence are complete before any after it are issued 

• Locks: 
void upc_lock (upc_lock_t *ptr); 
int upc_lock_attempt (upc_lock_t *ptr); 
void upc_unlock (upc_lock_t *ptr); 
– Protect shared data from being accessed by multiple writers 
– Locks are allocated by:  
upc_lock_t *upc_global_lock_alloc (void); /* non-collective */ 
upc_lock_t *upc_all_lock_alloc (void); /* collective */ 
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UPC: Barriers and Locks 



• Data Movement 
– upc_memput: Write data to remote memory location 

• void upc_memput(shared void *dst, const void *src, size_t n);  

– upc_memget: Read data from remote memory location 
• void upc_memget(void *dst, shared const void *src, size_t n);  

– upc_memset: Fills remote memory with the value ‘c’ 
• void upc_memset(shared void *dst, int c, size_t n);  

– Shared variable assignments 
• Compiler translates these into remote memory operations 

• Work Sharing 
– upc_forall( expression1; expression2; expression3; affinity) 
– The affinity field specifies the executions of the loop body that are 

to be performed by a thread.  
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UPC Data Movement and Work Sharing 



Berkeley UPC Runtime Overview 

• GASNet (Global-Address Space Networking) is a language-independent, low-
level networking layer that provides support for PGAS language 

• Support multiple networks through different conduit: MVAPICH2-X Conduit 
is available in MVAPICH2-X release, which support UPC/OpenMP/MPI on 
InfiniBand 
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UPC Applications 

Compiler-generated Code 

Compiler-specific Runtime 

                    GASNet Core APIs 

Extended APIs 

SMP Conduit MPI Conduit MXM Conduit MVAPICH2-X Conduit … 

High-level operations 
such as remote 

memory access and 
various collective 

operations 

Heavily based on active 
messages; directly on 
top of each individual 
network architectures 

IB Conduit 



MVAPICH2-X Conduit Support to GASNet 

• Support core APIs and extended APIs through various utility functions 

• Fully utilize InfiniBand features 

• In Berkeley UPC Runtime, UPC threads can be mapped to either an OS 
process or an OS pthread 
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GASNet 

Core APIs 

Extended APIs 

MVAPICH2-X Conduit 

Active  
Message 

Memory & 
Communication Mgmt. 

Atomic 
Operations 

One-Sided 
Operations 

Collective 
Operations 

InfiniBand, RoCE, iWARP 

J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, PGAS 2012 



• Point-to-point benchmarks 
– osu upc memput – Put latency 

– osu upc memget - Get latency 

• Collective benchmarks 
– osu_upc_all_barrier – Barrier Latency 

– osu_upc_all_broadcast – Broadcast Latency 

– osu_upc_all_exchange – Exchange (Alltoall) Latency 

– osu_upc_all_gather – Gather Latency 

– osu_upc_all_gather_all – AllGather Latency 

– osu_upc_all_reduce – Reduce Latency 

– osu_upc_all_scatter – Scatter Latency 

• OMB is publicly available from: 

 http://mvapich.cse.ohio-state.edu/benchmarks/ 
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Support for UPC Operations in OSU Micro-Benchmarks (OMB) 



• OSU UPC micro-benchmarks (OMB v4.2) 
• Similar performance for UPC memput/memget performance for UPC-

OSU and UPC-GASNet-IB conduits 

UPC Micro-benchmark Performance 
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UPC Collective Performance 
Broadcast (2048 processes) Scatter (2048 processes) 
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J. Jose, K. Hamidouche,  J. Zhang, A. Venkatesh, and D. K. Panda, Optimizing Collective Communication in UPC 
(HiPS’14, in association with IPDPS’14) 



• PGAS Programming Models and Runtimes 

– PGAS Languages: Unified Parallel C (UPC) 

– PGAS Libraries: OpenSHMEM 

• Hybrid MPI+PGAS Programming Models and Benefits 

• High-Performance Runtime for Hybrid MPI+PGAS Models 

• Application-level Case Studies and Evaluation 

VSCSE-Day2 

Presentation Overview 
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SHMEM 
• SHMEM: Symmetric Hierarchical MEMory library 

• One-sided communications library – had been around for a while  

• Similar to MPI, processes are called PEs, data movement is explicit through 
library calls 

• Provides globally addressable memory using symmetric memory objects 
(more in later slides)  

• Library routines for  

– Symmetric object creation and management 

– One-sided data movement 

– Atomics 

– Collectives 

– Synchronization 
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OpenSHMEM 
• SHMEM implementations – Cray SHMEM, SGI SHMEM, Quadrics SHMEM, HP 

SHMEM, GSHMEM 

• Subtle differences in API, across versions – example:  

                             SGI SHMEM            Quadrics SHMEM             Cray SHMEM  

Initialization        start_pes(0)                  shmem_init  start_pes    

Process ID              _my_pe                           my_pe                     shmem_my_pe 

• Made applications codes non-portable  

• OpenSHMEM is an effort to address this:  

“A new, open specification to consolidate the various extant SHMEM versions  

into a widely accepted standard.” – OpenSHMEM Specification v1.0 

by University of Houston and Oak Ridge National Lab 

SGI SHMEM is the baseline 
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• Hello World: 
 

#include <shmem.h> 
#include <stdio.h> 
int main() { 
  start_pes(0); 
  fprintf(stderr, ”Hello from thread %d of %d\n", _my_pe(), 
_num_pes()); 
  return 0; 
} 
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OpenSHMEM Hello World 



The OpenSHMEM Memory Model 
• Symmetric data objects 

– Global Variables   

– Allocated using collective shmalloc, shmemalign, shrealloc  routine  

 

 

 

 

• Globally addressable – objects have same  

– Type  

– Size 

– Same virtual address or offset at all PEs 

– Address of a remote object can be calculated based on info of local object 

 

 

 

 

 

 

 

VSCSE-Day2 26 

Symmetric 
Objects 

b 

b 

  PE 0   PE 1 

a a 

Virtual Address Space 

(global) 

(alloce’d) 
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Data Movement: Basic 

int *b; 
 

b =  (int *) shmalloc (sizeof(int)); 
 
if ((_my_pe() == 0) {  
     shmem_int_g (b, 1); 
} 

b 

b 

  PE 0   PE 1 

• Put and Get – single element 
- void shmem_TYPE_p (TYPE *ptr, int PE)  

- void shmem_TYPE_g (TYPE *ptr, int PE)  

- TYPE can be short, int, long, float, double, longlong, longdouble  
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Data Movement: Contiguous 

• Block Put and Get – Contiguous 
- void shmem_TYPE_put (TYPE* target, const TYPE*source, size_t nelems, int pe) 

- TYPE can be char, short, int, long, float, double, longlong, longdouble 

- shmem_putSIZE – elements of SIZE: 32/64/128 

- shmem_putmem - bytes 

- Similar get operations 
 

 

int *b; 
b =  (int *) shmalloc (10*sizeof(int)); 
 
if ((_my_pe() == 0) {  
    shmem_int_put (b, b, 5, 1); 
} 

PE 0 PE 1 
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Data Movement: Non-contiguous 
 

• Strided Put and Get  
- shmem_TYPE_iput (TYPE* target, const TYPE*source, ptrdiff_t tst, ptrdiff_t 

sst, size_t nelems, int pe) 

- sst is stride at source, tst is stride at target 

- TYPE can be char, short, int, long, float, double, longlong, longdouble 

- shmem_iputSIZE 

- SIZE can be 32/64/128 

- Similar get operations 
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Data Movement: Non-contiguous 
symmetric object ‘t’ 

 6x6 integer array 

 

pe1 pe0 

pe0 pe1 

Target stride: 6, Source stride: 6, Num. of elements: 6 
shmem_int_iput(t, t, 6, 6, 6, 1) 
  

Target stride: 1, Source stride: 6, Num. of elements: 6 
shmem_int_iput(t, t, 1, 6, 6, 1) 
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Data Movement - Completion 
 

• When Put operations return 
- Data has been copied out of the source buffer object 

- Not necessarily written to the target buffer object 

- Additional synchronization to ensure remote completion 

• When Get operations return 
- Data has been copied into the local target buffer 

- Ready to be used   
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Collective Synchronization 
 

 

 

 

 

 

 

 

• Barrier ensures completion of all previous operations 

• Global Barrier 
- void shmem_barrier_all() 

- Does not return until called by all PEs 

• Group Barrier  
- Involves only an “ACTIVE SET” of PEs 

- Does not return until called by all PEs in the “ACTIVE SET” 

- void shmem_barrier ( int PE_start,  /* first PE in the set */ 

          int logPE_stride, /* distance between two 
PEs*/ 

          int PE_size, /*size of the set*/ 

          long *pSync /*symmetric work array*/); 

- pSync allows for overlapping collective communication 
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One-sided Synchronization 
 

 

 

 

 

 

 

 

• Fence 
- void shmem_fence (void) 

- Enforces ordering on Put operations issued by a PE to each 
destination PE 

- Does not ensure ordering between Put operations to multiple PEs 
 

• Quiet 
- void shmem_quiet (void) 

- Ensures remote completion of Put operations to all PEs 
 

• Other point-to-point synchronization 
- shmem_wait and shmem_wait_until – poll on a local variable 
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Collective Operations and Atomics 
 

 

 

• Broadcast – one-to-all  

• Collect – allgather  

• Reduction – allreduce (and, or, xor; max, min; sum, product)   

• Work on an active set – start, stride, count 

• Unconditional - Swap Operation 
- long shmem_swap (long *target, long value, int pe) 

- TYPE shmem_TYPE_swap (TYPE *target, TYPE value, int pe) 

- TYPE can be int, long, longlong, float, double 

• Conditional - Compare and Swap Operation 

• Arithmetic – Fetch & Add, Fetch & Increment, Add, Increment 
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Remote Pointer Operations 
 

 

 

• void *shmem_ptr (void *target, int pe) 
- Allows direct load/stores on remote memory 

- Useful when PEs are running on same node 

- Not supported in all implementations 

- Returns NULL if not accessible for loads/stores 

 

 

 

 



OpenSHMEM Reference Implementation Framework 

Communication API 
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Symmetric Memory 
Management API 

GASNET Runtime / ARMCI / MVAPICH2-X Runtime ... 

Minimal Set of Internal API 

OpenSHMEM API 

Network Layer: IB, RoCE, iWARP ...  

Data  
Movement Collectives Atomics Memory 

Management 

Reference: OpenSHMEM: An Effort to Unify SHMEM API Library Development , Supercomputing 2010  

OpenSHMEM Applications 

...  

...  



OpenSHMEM Design in MVAPICH2-X 

• OpenSHMEM Stack based on OpenSHMEM Reference Implementation 

• OpenSHMEM Communication over MVAPICH2-X Runtime 
– Uses active messages, atomic  and one-sided operations and remote 

registration cache 

Communication API 
Symmetric Memory 

Management API 

Minimal Set of Internal API 

OpenSHMEM API 

InfiniBand, RoCE, iWARP 

Data  
Movement Collectives Atomics Memory 

Management 

Active 
Messages 

One-sided 
Operations 

MVAPICH2-X Runtime 

 Remote 
Atomic Ops 

Enhanced 
Registration Cache 
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J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance 
Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012. 



Implementations for InfiniBand Clusters 
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• Reference Implementation  
– University of Houston 

– Based on the GASNet runtime 

• MVAPICH2-X 
– The Ohio State University 

– Uses the upper layer of reference implementations 

– Derives the runtime from widely used MVAPICH2 MPI library 

– Available for download: http://mvapich.cse.ohio-state.edu/download/mvapich2x  

• OMPI-SHMEM 
– Based on OpenMPI runtime 

– Available in OpenMPI 1.7.5 

• ScalableSHMEM 
– Mellanox technologies 

 

 

 

http://mvapich.cse.ohio-state.edu/download/mvapich2x


• Point-to-point Operations 
– osu_oshm_put – Put latency 

– osu_oshm_get – Get latency 

– osu_oshm_put_mr – Put message rate  

– osu_oshm_atomics – Atomics latency 

• Collective Operations 
– osu_oshm_collect – Collect latency 

– osu_oshm_broadcast – Broadcast latency 

– osu_oshm_reduce - Reduce latency 

– osu_oshm_barrier - Barrier latency 

• OMB is publicly available from: 

 http://mvapich.cse.ohio-state.edu/benchmarks/ 
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Support for OpenSHMEM Operations in OSU Micro-
Benchmarks (OMB) 



OpenSHMEM Data Movement: Performance  
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• OSU OpenSHMEM micro-benchmarks 
 http://mvapich.cse.ohio-state.edu/benchmarks/ 

• Slightly better performance for putmem and getmem with 
MVAPICH2-X 

http://mvapich.cse.ohio-state.edu/benchmarks/


OpenSHMEM Atomic Operations: Performance  
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• MV2-X SHMEM performs up to 40% better compared to UH-SHMEM 



Collective Communication: Performance 
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J. Jose, K. Kandalla, S. Potluri, J. Zhang, and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, PGAS’13. 



• PGAS Programming Models and Runtimes 

– PGAS Languages: Unified Parallel C (UPC) 

– PGAS Libraries: OpenSHMEM 

• Hybrid MPI+PGAS Programming Models and Benefits 

• High-Performance Runtime for Hybrid MPI+PGAS Models 

• Application-level Case Studies and Evaluation 
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Presentation Overview 
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Architectures for Exascale Systems 

• Modern architectures have increasing number of cores per 
node, but have limited memory per core 

– Memory bandwidth per core decreases 
– Network bandwidth per core decreases 
– Deeper memory hierarchy 
– More parallelism within the node 

Coherence Domain 

Coherence Domain 

Node 

Coherence Domain 

Coherence Domain 

Node 

Hypothetical Future Architecture* 

*Marc Snir, Keynote Talk – Programming Models for High Performance Computing, Cluster, Cloud and Grid 
Computing (CCGrid 2013) 



45 

Maturity of Runtimes and Application Requirements 

VSCSE-Day2 

• MPI has been the most popular model for a long time 
- Available on every major machine 

- Portability, performance and scaling 

- Most parallel HPC code is designed using MPI 

- Simplicity - structured and iterative communication patterns 

• PGAS Models 
- Increasing interest in community 

- Simple shared memory abstractions and one-sided communication  

- Easier to express irregular communication 

• Need for hybrid MPI + PGAS 
- Application can have kernels with different communication characteristics 

- Porting only part of the applications to reduce programming effort 



Hybrid (MPI+PGAS) Programming 

• Application sub-kernels can be re-written in MPI/PGAS based 
on communication characteristics 

• Benefits: 
– Best of Distributed Computing Model 

– Best of Shared Memory Computing Model 

• Exascale Roadmap*:  
– “Hybrid Programming is a practical way to 

 program exascale systems” 

 

 

* The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011, 
International Journal of High Performance Computer Applications, ISSN 1094-3420 

Kernel 1 
MPI 

Kernel 2 
MPI 

Kernel 3 
MPI 

Kernel N 
MPI 

HPC Application 

Kernel 2 
PGAS 

Kernel N 
PGAS 
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• Many possible ways to combine MPI 

• Focus on: 
– Flat: One global address space 

– Nested-multiple: Multiple global address spaces (UPC groups) 

Hybrid MPI+PGAS Programming Model: Alternatives 

Hybrid MPI+PGAS (OpenSHMEM/UPC) Process 
 

PGAS (OpenSHMEM/UPC) Process 

Flat Nested-Funneled Nested-Multiple 
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J. Dinan, P. Balaji, E. Lusk, P. Sadayappan and R. Thakur, Hybrid Parallel Programming with MPI and Unified 
Parallel C, ACM Computing Frontiers, 2010 



int main(int c, char *argv[]) 
{ 
    int rank, size; 
 
    /* SHMEM init */ 
    start_pes(0); 
 
    /* fetch-and-add at root */ 
    shmem_int_fadd(&sum, rank, 0); 
 
    /* MPI barrier */ 
    MPI_Barrier(MPI_COMM_WORLD); 
 
    /* root broadcasts sum */ 
    MPI_Bcast(&sum, 1, MPI_INT, 0, MPI_COMM_WORLD); 
 
    fprintf(stderr, "(%d): Sum: %d\n", rank, sum); 
 
    shmem_barrier_all(); 
    return 0; 
} 
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Simple MPI + OpenSHMEM Hybrid Example 

• OpenSHMEM atomic fetch-add 

• MPI_Bcast for broadcasting result 



• Threads access random elements of distributed shared array 

• UPC Only: One copy distribute across all procs.  Lesser local accesses 
 

 

 

 

 

 

 

 

 

 

• Hybrid: Array is replicated on every group.  All accesses are local 

• Global co-ordination using MPI 

Random Access Benchmark 

0 1 2 3 0 1 2 3 

shared double data[8]: 

P0 P1 P2 P3 

Affinity 

shared double data[8]: shared double data[8]: 

0 1 0 1 1 1 

P0 P1 P2 P3 

0 0 2 3 2 3 3 3 2 2 
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J. Dinan, P. Balaji, E. Lusk, P. Sadayappan and R. Thakur, Hybrid Parallel Programming with MPI and Unified 
Parallel C, ACM Computing Frontiers, 2010 



Pure OpenSHMEM version 
while(true){ 

  <Gauss-Seidel Kernel> 

  compute convergence locally 

  sum_all = 

   sumshmem_float_sum_to_all() 
  Compute std. deviation 

  shmem_broadcast(method to use) 

} 
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Hybrid 2D Heat benchmark 

Hybrid MPI+OpenSHMEM 
version 
while(true){ 
  <Gauss-Seidel Kernel> 
  compute convergence locally 
  sum_all = 
   MPI_Reduce() 
  Compute std. deviation 
   MPI_Bcast(method to use) 
} 

• MPI Collectives have been optimized significantly 
– Performs better than OpenSHMEM collectives 

• Improves performance of benchmark significantly 



• PGAS Programming Models and Runtimes 

– PGAS Languages: Unified Parallel C (UPC) 

– PGAS Libraries: OpenSHMEM 

• Hybrid MPI+PGAS Programming Models and Benefits 

• High-Performance Runtime for Hybrid MPI+PGAS Models 

• Application-level Case Studies and Evaluation 

VSCSE-Day2 

Presentation Overview 
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Current approaches for Hybrid Programming 

• Need more network and 
memory resources 

• Might lead to deadlock! 

• Layering one programming model over another 
– Poor performance due to semantics mismatch 

– MPI-3 RMA tries to address 

• Separate runtime for each programming model 

Hybrid (OpenSHMEM + MPI) Applications 

OpenSHMEM 
Runtime 

MPI Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Class 
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The Need for a Unified Runtime 

• Deadlock when a message is sitting in one runtime, but application calls the 
other runtime 

• Prescription to avoid this is to barrier in one mode (either OpenSHMEM or 
MPI) before entering the other  

• Or runtimes require progress threads 
• Bad performance!! 
• Similar issues for MPI + UPC applications over individual runtimes 

 

shmem_int_fadd (data at p1); 
 
/* operate on data */ 
 
MPI_Barrier(comm); 

/*  
   local 
   computation  
 */ 
MPI_Barrier(comm); 

P0 P1 

OpenSHMEM 
Runtime 

MPI Runtime OpenSHMEM 
Runtime 

MPI Runtime 

get request 

PPoPP 2014 
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Goals of a Unified Runtime 

• Provide high performance  
and scalability for  
– MPI Applications 

– UPC Applications 

– OpenSHMEM Applications 

– Hybrid Applications 
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Unified Runtime for Hybrid MPI + OpenSHMEM Applications 
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MPI Applications, OpenSHMEM Applications,  
Hybrid (MPI + OpenSHMEM) Applications 

MVAPICH2-X Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Calls 

Hybrid (OpenSHMEM + MPI) Applications 

OpenSHMEM 
Runtime 

MPI Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Calls 

• Optimal network resource usage 
• No deadlock because of single runtime 
• Better performance 

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance 
Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012. 



Unified Runtime for Hybrid MPI + UPC Applications 

Our 
Design 

J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, PGAS 2010 
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MVAPICH2-X for Hybrid MPI + PGAS Applications 
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MPI Applications, OpenSHMEM Applications, UPC 
Applications, Hybrid (MPI + PGAS) Applications 

Unified MVAPICH2-X Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Calls UPC Calls 

• Unified communication runtime for MPI, UPC, OpenSHMEM available with 
MVAPICH2-X 1.9 onwards!  
– http://mvapich.cse.ohio-state.edu 

• Feature Highlights 
– Supports MPI(+OpenMP), OpenSHMEM, UPC, MPI(+OpenMP) + OpenSHMEM, 

MPI(+OpenMP) + UPC  
– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard 

compliant with initial support for UPC v1.3 
– Scalable Inter-node and intra-node communication – point-to-point and collectives 

http://mvapich.cse.ohio-state.edu/overview/mvapich2x
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Unified Runtime Implementation 

MPI Message UPC Message 

HCA HCA MPI Library (Sender) MPI Library (Receiver) 

connection connection 

MPI Message Queue 

ActiveMsg 
Handler 

AM 
Table 

• All resources are shared between MPI and UPC 
– Connections, buffers, memory registrations 

– Schemes for establishing connections (fixed, on-demand) 

– RDMA for large AMs and for PUT, GET 

PPoPP 2014 



• PGAS Programming Models and Runtimes 

– PGAS Languages: Unified Parallel C (UPC) 

– PGAS Libraries: OpenSHMEM 

• Hybrid MPI+PGAS Programming Models and Benefits 

• High-Performance Runtime for Hybrid MPI+PGAS Models 

• Application-level Case Studies and Evaluation 

VSCSE-Day2 

Presentation Overview 
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• Identify the communication critical section 

• Allocate memory in shared address space 

• Convert MPI Send/Recvs to assignment operations or one-
sided operations 
– Non-blocking operations can be utilized 

– Coalescing for reducing the network operations 

• Introduce synchronization operations for data consistency 
– After Put operations or before get operations 

• Load balance through global view of data 
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Incremental Approach to exploit one-sided operations 



• Graph500 Benchmark 

– Represents data intensive and irregular applications that use graph 
algorithm-based processing methods  

– Bioinformatics and life sciences, social networking, data mining, 
and security/intelligence rely on graph algorithmic methods 

– Exhibits highly irregular and dynamic communication pattern  

– Earlier research have indicated scalability limitations of the MPI-
based Graph500 implementations 
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Introduction to Graph500 



• Breadth First Search (BFS) Traversal 

• Uses ‘Level Synchronized BFS Traversal Algorithm 
– Each process maintains – ‘CurrQueue’ and ‘NewQueue’  

– Vertices in CurrQueue are traversed and newly discovered vertices 
are sent to their owner processes 

– Owner process receives edge information 
• If not visited; updates parent information and adds to NewQueue 

– Queues are swapped at end of each level 

– Initially the ‘root’ vertex is added to currQueue 

– Terminates when queues are empty 
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Graph500 Benchmark – The Algorithm 



• MPI_Isend/MPI_Test-MPI_Irecv for transferring vertices 

• Implicit barrier using zero length message 

• MPI_Allreduce to count number of newqueue elements 

• Major Bottlenecks: 
– Overhead in send-recv communication model 

• More CPU cycles consumed, despite using  
non-blocking operations 

• Most of the time spent in MPI_Test 

– Implicit Linear Barrier 
• Linear barrier causes significant overheads 
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MPI-based Graph500 Benchmark 



• Communication and co-ordination using one-sided routines 
and fetch-add atomic operations  
– Every process keeps receive buffer 

– Synchronization using atomic fetch-add routines 

• Level synchronization using non-blocking barrier 
– Enables more computation/communication overlap 

• Load Balancing utilizing OpenSHMEM shmem_ptr  
– Adjacent processes can share work by reading shared memory 
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Hybrid Graph500 Design 

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid 
MPI+OpenSHMEM Programming Models, International Supercomputing Conference (ISC '13), June 2013 
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Graph500 - BFS Traversal Time 

• Hybrid design performs better than MPI implementations 
• 16,384 processes 

- 1.5X improvement over MPI-CSR 
- 13X improvement over MPI-Simple (Same communication characteristics) 

• Strong Scaling 
Graph500 Problem Scale = 29 
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Out-of-Core Sorting 

• Sorting: One of the most common algorithms in data 
analytics 

• Sort Benchmark (sortbenchmark.org) ranks various 
frameworks available for large scale data analytics 

• Read data from a global filesystem, sort it and write back 
to global filesystem 
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Overview of Existing Design 

• Processes grouped into read and 
sort groups 

• Read group processes read data 
and sends to sort group processes 
in a ‘streaming’ manner 

• Sort processes sample initial data 
and determines the split 

• Input data is sorted and bucketed 
based on the split 

• Merge sort on each split, and final 
write back to global filesystem 

 

 
VSCSE-Day2 67 



Overheads in Existing Design 

• Poor resource utilization and overlap 

– Dedicated Receiver Task limits the compute resources 
available for sorting 

– Multiple BIN_COMMs expected to provide high overlap 

– Profiling Data using HPC-Toolkit  
indicates nearly 30% time spent 
in waiting for input data 

• Book-keeping and Synchronization overheads 
– Reader tasks continuously participate in 

MPI_Gather/MPI_Scatter destination assignment 
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Hybrid MPI+OpenSHMEM Out-of-Core Design 

• Data Transfer using OpenSHMEM one-sided communication 

• Atomic Counter based destination selection 

• Remote buffer co-ordination using compare-swap 

• Non-blocking put+notify for data delivery and 
synchronization 

• Buffer structure for efficient synchronization 

• Custom memory allocator using OpenSHMEM shared heap 
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Weak Scalability 

• Performance of Hybrid (MPI+OpenSHMEM) Sort Application 
• Execution Time 
 - 1TB Input size at 8,192 cores: MPI – 164 seconds, Hybrid-SR (Simple Read) –  
           92.5 seconds, Hybrid-ER (Eager Read) - 90.36 seconds 
 - 45% improvement over MPI-based design 
• Weak Scalability (configuration: input size of 1TB per 512 cores) 
 - At 4,096 cores: MPI – 0.25 TB/min, Hybrid-SR – 0.34 TB/min, Hybrid-SR –0.38 TB/min 
 - 38% improvement over MPI based design 
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• N-body cosmological simulation algorithm  

• Simulate motion of n bodies over T time steps 

• At each step, calculate the gravitational interaction of each 
body with all others to find the net force 

• Approximate the interaction between distant bodies as an 
interaction with the center of mass of whole region 

• Represents sparse volume of 3-dimensional space using a 
large shared oct-tree (each node is split in half along each 
dimension, resulting 8 children) 
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Barnes Hut 



VSCSE-Day2 72 

Barnes Hut – using hybrid MPI+UPC  

• Nested-Funneled: One MPI rank per group, UPC threads for communicating 
within the group, and MPI for communicating across groups 



• Nested-funneled model 
– Tree is replicated across UPC groups 

• 51 new lines of code (2% increase) 
– Distribute work and collect results 

• 55X speedup at 256 processes 

Hybrid MPI+UPC Barnes-Hut 

J. Dinan, P. Balaji, E. Lusk, P. Sadayappan and R. Thakur, Hybrid Parallel Programming with MPI and Unified 
Parallel C, ACM Computing Frontiers, 2010 
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Hybrid-4 
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Hands-on Exercises 
 

PDF version of slides available from  
http://www.cse.ohio-state.edu/~panda/vssce14/dk_karen_day2_exercises.pdf 



• Compile MPI programs using mpicc 
– $ mpicc -o helloworld_mpi helloworld_mpi.c 

• Compile UPC programs using upcc 
– $ upcc -o helloworld_upc helloworld_upc.c 

• Compile OpenSHMEM programs using oshcc 
– $ oshcc -o helloworld_oshm helloworld_oshm.c 

• Compile Hybrid MPI+UPC programs using upcc 
– $ upcc -o hybrid_mpi_upc hybrid_mpi_upc.c 

• Compile Hybrid MPI+OpenSHMEM programs using oshcc 
– $ oshcc -o hybrid_mpi_oshm hybrid_mpi_oshm.c 
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Compiling Programs with MVAPICH2-X 



• MVAPICH2-X programs can be run using  
– mpirun_rsh and mpiexec.hydra (MPI, UPC, OpenSHMEM and hybrid) 
– upcrun (UPC) 
– oshrun (OpenSHMEM) 

• Running using mpirun_rsh/mpiexec.hydra 
– $ mpirun rsh -np 4 -hostfile hosts ./test  
– $ mpiexec -f hosts -n 2 ./test  

• Running using upcrun 
– $ export MPIRUN CMD=“<path-to-MVAPICH2-X-install>/bin/mpirun 

rsh -np %N -hostfile hosts %P %A” 
– $ upcrun -n 2 ./test  

• Running using oshrun 
– $ oshrun -f hosts -np 2 ./test  
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Running Programs with MVAPICH2-X 



OpenSHMEM 

1. Circular Shift - OpenSHMEM: Write a simple program using 
OpenSHMEM, with eight processes. Every process shall have two ints 
(a1, a2). Do a circular left-shift on a1’s globally to get the output on 
a2. An example for circular shift implemented using static int is given 
in /nfs/02/w557091/mpi-pgas-exercises/openshmem/excercise1-
ref.c. Re-write this code to use dynamic memory allocation 

2. PI Calculation: Write a program with multiple processes for 
calculating PI. Process0 shall read the number of iterations from 
stdin, and broadcast to all processes. The PI calculation work is 
shared among all the PEs, where each PE calculates locally, and then  
summed up to generate the global solution (Reference MPI code: 
http://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples
/simplempi/cpi_c.htm) 
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http://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples/simplempi/cpi_c.htm
http://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples/simplempi/cpi_c.htm
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UPC 

• Circular Shift - UPC: Write the circular-shift program 
described in previous slide using UPC. Here, the arrays 
shall be declared as UPC shared array, and the set 
operations shall be done using assignment operations 

• Work Sharing: Write the PI calculation code explained 
in previous slide in UPC, by utilizing the ‘upc_forall’ 
work-sharing construct 
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Hybrid MPI+PGAS 

• Simple Hybrid MPI+OpenSHMEM Code: Write a hybrid 
MPI+OpenSHMEM code, in which every process does an 
OpenSHMEM fetch-and-add of the rank to a variable (sum) at 
process 0. Following the fetch-and-add, every process shall do a 
barrier using MPI_Barrier, and then Process0 broadcasts sum to 
all processes using MPI_Bcast. Finally, all processes print the 
variable sum 

• Simple Hybrid MPI+UPC Code: Write the similar code using 
hybrid MPI+UPC. Here, every UPC thread set its rank to one 
element of a global shared memory array (A) such that 
A[MYTHREAD] has affinity with the UPC thread who set the 
value of it. Then an MPI Allreduce operation is made to sum-up 
the ranks, and then every UPC thread does an MPI barrier, and 
all processes print the sum 
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Solutions and Guidelines 

• Solutions for these exercises available at: 
        /nfs/02/w557091/mpi-pgas-exercises/ 
 
• See README file inside the above folder for Build and 

Run instructions 
 



• Tuesday, May 6 – MPI-3 Additions to the MPI Spec 
– Updates to the MPI One-Sided Communication Model (RMA) 

– Non-Blocking Collectives 

– MPI Tools Interface 

• Wednesday, May 7 – MPI/PGAS Hybrid Programming 
– MVAPICH2-X: Unified runtime for MPI+PGAS 

– MPI+OpenSHMEM 

– MPI+UPC 

• Thursday, May 8 – MPI for many-core processor 
– MVAPICH2-GPU: CUDA-aware MPI for NVidia GPU 

– MVAPICH2-MIC Design for Clusters with InfiniBand and Intel Xeon 
Phi 
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Plans for Thursday 
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