
Advanced MPI Capabilities

Dhabaleswar K. (DK) Panda
The Ohio State University

E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda

VSCSE Webinar (May 6-8, 2014)

Day 2

by

Karen Tomko
Ohio Supercomputer Center

E-mail: ktomko@osc.edu
http://www.osc.edu/~ktomko

http://www.cse.ohio-state.edu/%7Epanda
http://www.osc.edu/%7Ektomko

• Tuesday, May 6 – MPI-3 Additions to the MPI Spec
– Updates to the MPI One-Sided Communication Model (RMA)

– Non-Blocking Collectives

– MPI Tools Interface

• Wednesday, May 7 – MPI/PGAS Hybrid Programming
– MVAPICH2-X: Unified runtime for MPI+PGAS

– MPI+OpenSHMEM

– MPI+UPC

• Thursday, May 8 – MPI for many-core processor
– MVAPICH2-GPU: CUDA-aware MPI for NVidia GPU

– MVAPICH2-MIC Design for Clusters with InfiniBand and Intel Xeon
Phi

2

Plans for Wednesday and Thursday

VSCSE-Day2

VSCSE-Day2 3

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Logical shared memory

Shared Memory Model

SHMEM, DSM
Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• We concentrated on MPI yesterday

• Today’s Focus: PGAS and Hybrid MPI+PGAS

4

Partitioned Global Address Space (PGAS) Models

VSCSE-Day2

• Key features
- Simple shared memory abstractions

- Light weight one-sided communication

- Easier to express irregular communication

• Different approaches to PGAS

- Languages
• Unified Parallel C (UPC)

• Co-Array Fortran (CAF)

• X10

• Chapel

- Libraries
• OpenSHMEM

• Global Arrays

• Hierarchical architectures with multiple address spaces

• (MPI + PGAS) Model
– MPI across address spaces

– PGAS within an address space

• MPI is good at moving data between address spaces

• Within an address space, MPI can interoperate with other shared
memory programming models

• Applications can have kernels with different communication patterns

• Can benefit from different models

• Re-writing complete applications can be a huge effort

• Port critical kernels to the desired model instead

VSCSE-Day2 5

MPI+PGAS for Exascale Architectures and Applications

Can High-Performance Interconnects, Protocols and
Accelerators Benefit from PGAS and Hybrid MPI+PGAS Models?

• MPI designs have been able to take advantage of high-
performance interconnects, protocols and accelerators

• Can PGAS and Hybrid MPI+PGAS models take advantage of
these technologies?

• What are the challenges?

• Where do the bottlenecks lie?

• Can these bottlenecks be alleviated with new designs (similar
to the designs adopted for MPI)?

VSCSE-Day2 6

• PGAS Programming Models and Runtimes

– PGAS Languages: Unified Parallel C (UPC)

– PGAS Libraries: OpenSHMEM

• Hybrid MPI+PGAS Programming Models and Benefits

• High-Performance Runtime for Hybrid MPI+PGAS Models

• Application-level Case Studies and Evaluation

VSCSE-Day2

Presentation Overview

7

• UPC: a parallel extension to the C standard
• UPC Specifications and Standards:

– Introduction to UPC and Language Specification, 1999
– UPC Language Specifications, v1.0, Feb 2001
– UPC Language Specifications, v1.1.1, Sep 2004
– UPC Language Specifications, v1.2, June 2005
– UPC Language Specifications, v1.3, Nov 2013

• UPC Consortium
– Academic Institutions: GWU, MTU, UCB, U. Florida, U. Houston, U. Maryland…
– Government Institutions: ARSC, IDA, LBNL, SNL, US DOE…
– Commercial Institutions: HP, Cray, Intrepid Technology, IBM, …

• Supported by several UPC compilers
– Vendor-based commercial UPC compilers: HP UPC, Cray UPC, SGI UPC
– Open-source UPC compilers: Berkeley UPC, GCC UPC, Michigan Tech MuPC

• Aims for: high performance, coding efficiency, irregular applications, …

VSCSE-Day2 8

Compiler-based: Unified Parallel C

• A UPC program is translated under a static or dynamic THREADS
environment:

– THREADS: number of threads working independently SPMD mode
– MYTHREAD: a unique thread index, ranges from 0 to THREADS-1
– In static THREADS mode: THREADS is specified at compile time
– In dynamic THREADS mode: THREADS can be specified at run time

VSCSE-Day2 9

UPC: Execution Model

• Hello World:

#include <upc.h>
#include <stdio.h>
int main() {
 printf(" - Hello from thread %d of %d\n", MYTHREAD, THREADS);
 return 0;
}

• Global Shared Space: can be accessed by all the threads
• Private Space: hold all the normal variables; can only be accessed by the

local thread
• Examples:

shared int x; //shared variable; allocated with affinity to Thread 0
int main() {
 int y; //private variable
}

VSCSE-Day2 10

UPC: Memory Model

Global
Shared Space

Private

Space

Thread 0 Thread 1 Thread 2 Thread 3

x

y y y y

• Shared Array: cyclic layout (by default)
shared int A1[THREADS]
shared int A2[2][THREADS]

• Shared Array: block layout
shared [*] int A3[2*THREADS]
shared [2] int A4[2][THREADS]

VSCSE-Day2 11

UPC: Memory Model

Global
Shared Space

Private Space

Thread 0 Thread 1 Thread 2 Thread 3

A1[0] A1[1] A1[2] A1[3]

A2[0][0]

A2[1][0]

A2[0][1]

A2[1][1]

A2[0][2]

A2[1][2]

A2[0][3]

A2[1][3]

A3[0] A3[1]

A4[0][0]

A3[2] A3[3] A3[4] A3[5] A3[6] A3[7]

A4[0][1]

A4[0][2]

A4[0][3]

A4[1][0]

A4[1][1]

A4[1][3]

A4[1][4]

• Private pointer to private space: int * p1;
– Fast as normal C pointers

• Private pointer to shared space: shared int * p2; /*a pointer-to-shared*/
– Slower for test whether the address is local or for communication

• Shared pointer to private space: int * shared p3;
– Not recommended

• Shared pointer to shared space: shared int * shared p4;
– Used for shared linked structures

 VSCSE-Day2 12

UPC: Pointers

Global
Shared Space

Private

Space

Thread 0 Thread 1 Thread 2 Thread 3

p4

p1 p2

p3

p1 p2 p1 p2 p1 p2

• shared void *upc_all_alloc (size_t nblocks, size_t nbytes);
– Collective function; the call returns the same pointer on all threads
– Allocates shared space compatible with the following declaration:
 shared [nbytes] char[nblocks * nbytes]

• shared void *upc_global_alloc (size_t nblocks, size_t nbytes);
– Not a collective function
– Allocate shared space compatible with the declaration:
 shared [nbytes] char[nblocks * nbytes]

• shared void *upc_alloc (size_t nbytes);
– Not a collective function; like malloc() but returns a pointer-to-shared
– Allocates shared space of at least nbytes bytes with affinity to the

calling thread

• void upc_free (shared void *ptr);
– Free the dynamically allocated shared storage pointed to by ptr

VSCSE-Day2 13

UPC: Dynamic Memory Management

• The ordering of shared operations is decided by user-
controlled consistency models

• Strict consistency model
– All threads observe the effects of strict accesses in a manner

consistent with a single, global total order
– #include<upc_strict.h> /* control at the program level*/
– #pragma upc strict /* for a statement or a block of statements */
– Type qualifiers: strict /* for a variable definition */

• Relaxed consistency model
– Any sequence of purely relaxed shared access issued by a given thread

in an execution may be arbitrarily reordered by the compiler or
runtime

– #include<upc_relaxed.h> /* control at the program level*/
– #pragma upc relaxed /* for a statement or a block of statements */
– Type qualifiers: relaxed /* for a variable definition */

VSCSE-Day2 14

UPC: Consistency Model

• Non-blocking barrier:
upc_notify; /* upc_notify and upc_wait are collective functions */
…
upc_wait; /* the next collective after upc_notify must be upc_wait */

• Blocking barrier:
upc_barrier;
– Equivalent to: {upc_notify barrier_value; upc_wait barrier_value;}

• Fence:
upc_fence;
– All shared accesses issued before the fence are complete before any after it are issued

• Locks:
void upc_lock (upc_lock_t *ptr);
int upc_lock_attempt (upc_lock_t *ptr);
void upc_unlock (upc_lock_t *ptr);
– Protect shared data from being accessed by multiple writers
– Locks are allocated by:
upc_lock_t *upc_global_lock_alloc (void); /* non-collective */
upc_lock_t *upc_all_lock_alloc (void); /* collective */

VSCSE-Day2 15

UPC: Barriers and Locks

• Data Movement
– upc_memput: Write data to remote memory location

• void upc_memput(shared void *dst, const void *src, size_t n);

– upc_memget: Read data from remote memory location
• void upc_memget(void *dst, shared const void *src, size_t n);

– upc_memset: Fills remote memory with the value ‘c’
• void upc_memset(shared void *dst, int c, size_t n);

– Shared variable assignments
• Compiler translates these into remote memory operations

• Work Sharing
– upc_forall(expression1; expression2; expression3; affinity)
– The affinity field specifies the executions of the loop body that are

to be performed by a thread.

VSCSE-Day2 16

UPC Data Movement and Work Sharing

Berkeley UPC Runtime Overview

• GASNet (Global-Address Space Networking) is a language-independent, low-
level networking layer that provides support for PGAS language

• Support multiple networks through different conduit: MVAPICH2-X Conduit
is available in MVAPICH2-X release, which support UPC/OpenMP/MPI on
InfiniBand

VSCSE-Day2 17

UPC Applications

Compiler-generated Code

Compiler-specific Runtime

 GASNet Core APIs

Extended APIs

SMP Conduit MPI Conduit MXM Conduit MVAPICH2-X Conduit …

High-level operations
such as remote

memory access and
various collective

operations

Heavily based on active
messages; directly on
top of each individual
network architectures

IB Conduit

MVAPICH2-X Conduit Support to GASNet

• Support core APIs and extended APIs through various utility functions

• Fully utilize InfiniBand features

• In Berkeley UPC Runtime, UPC threads can be mapped to either an OS
process or an OS pthread

VSCSE-Day2 18

GASNet

Core APIs

Extended APIs

MVAPICH2-X Conduit

Active
Message

Memory &
Communication Mgmt.

Atomic
Operations

One-Sided
Operations

Collective
Operations

InfiniBand, RoCE, iWARP

J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, PGAS 2012

• Point-to-point benchmarks
– osu upc memput – Put latency

– osu upc memget - Get latency

• Collective benchmarks
– osu_upc_all_barrier – Barrier Latency

– osu_upc_all_broadcast – Broadcast Latency

– osu_upc_all_exchange – Exchange (Alltoall) Latency

– osu_upc_all_gather – Gather Latency

– osu_upc_all_gather_all – AllGather Latency

– osu_upc_all_reduce – Reduce Latency

– osu_upc_all_scatter – Scatter Latency

• OMB is publicly available from:

 http://mvapich.cse.ohio-state.edu/benchmarks/

VSCSE-Day2 19

Support for UPC Operations in OSU Micro-Benchmarks (OMB)

• OSU UPC micro-benchmarks (OMB v4.2)
• Similar performance for UPC memput/memget performance for UPC-

OSU and UPC-GASNet-IB conduits

UPC Micro-benchmark Performance

0

2

4

6

8

10

1 4 16 64 256 1K 4K 16K
Message Size

UPC memget

UPC-GASNet

UPC-OSU

VSCSE-Day2 20

0

2

4

6

8

10

1 4 16 64 256 1K 4K 16K

Ti
m

e
(u

s)

Message Size

UPC memput

UPC-GASNet

UPC-OSU

VSCSE-Day2
21

UPC Collective Performance
Broadcast (2048 processes) Scatter (2048 processes)

Gather (2048 processes) Exchange (2048 processes)

0
2000
4000
6000
8000

10000
12000
14000

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

Ti
m

e
(u

s)

Message Size

UPC-GASNet
UPC-OSU

0

50

100

150

200

250

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

Ti
m

e
(m

s)

Message Size

UPC-GASNet

UPC-OSU

0

50

100

150

200

250

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

Ti
m

e
(m

s)

Message Size

UPC-GASNet

UPC-OSU 2X

0
500

1000
1500
2000
2500
3000
3500

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

Ti
m

e
(m

s)

Message Size

UPC-GASNet
UPC-OSU

25X

2X

35%

J. Jose, K. Hamidouche, J. Zhang, A. Venkatesh, and D. K. Panda, Optimizing Collective Communication in UPC
(HiPS’14, in association with IPDPS’14)

• PGAS Programming Models and Runtimes

– PGAS Languages: Unified Parallel C (UPC)

– PGAS Libraries: OpenSHMEM

• Hybrid MPI+PGAS Programming Models and Benefits

• High-Performance Runtime for Hybrid MPI+PGAS Models

• Application-level Case Studies and Evaluation

VSCSE-Day2

Presentation Overview

22

SHMEM
• SHMEM: Symmetric Hierarchical MEMory library

• One-sided communications library – had been around for a while

• Similar to MPI, processes are called PEs, data movement is explicit through
library calls

• Provides globally addressable memory using symmetric memory objects
(more in later slides)

• Library routines for

– Symmetric object creation and management

– One-sided data movement

– Atomics

– Collectives

– Synchronization

VSCSE-Day2 23

OpenSHMEM
• SHMEM implementations – Cray SHMEM, SGI SHMEM, Quadrics SHMEM, HP

SHMEM, GSHMEM

• Subtle differences in API, across versions – example:

 SGI SHMEM Quadrics SHMEM Cray SHMEM

Initialization start_pes(0) shmem_init start_pes

Process ID _my_pe my_pe shmem_my_pe

• Made applications codes non-portable

• OpenSHMEM is an effort to address this:

“A new, open specification to consolidate the various extant SHMEM versions

into a widely accepted standard.” – OpenSHMEM Specification v1.0

by University of Houston and Oak Ridge National Lab

SGI SHMEM is the baseline

VSCSE-Day2 24

• Hello World:

#include <shmem.h>
#include <stdio.h>
int main() {
 start_pes(0);
 fprintf(stderr, ”Hello from thread %d of %d\n", _my_pe(),
_num_pes());
 return 0;
}

VSCSE-Day2 25

OpenSHMEM Hello World

The OpenSHMEM Memory Model
• Symmetric data objects

– Global Variables

– Allocated using collective shmalloc, shmemalign, shrealloc routine

• Globally addressable – objects have same

– Type

– Size

– Same virtual address or offset at all PEs

– Address of a remote object can be calculated based on info of local object

VSCSE-Day2 26

Symmetric
Objects

b

b

 PE 0 PE 1

a a

Virtual Address Space

(global)

(alloce’d)

VSCSE-Day2 27

Data Movement: Basic

int *b;

b = (int *) shmalloc (sizeof(int));

if ((_my_pe() == 0) {
 shmem_int_g (b, 1);
}

b

b

 PE 0 PE 1

• Put and Get – single element
- void shmem_TYPE_p (TYPE *ptr, int PE)

- void shmem_TYPE_g (TYPE *ptr, int PE)

- TYPE can be short, int, long, float, double, longlong, longdouble

VSCSE-Day2 28

Data Movement: Contiguous

• Block Put and Get – Contiguous
- void shmem_TYPE_put (TYPE* target, const TYPE*source, size_t nelems, int pe)

- TYPE can be char, short, int, long, float, double, longlong, longdouble

- shmem_putSIZE – elements of SIZE: 32/64/128

- shmem_putmem - bytes

- Similar get operations

int *b;
b = (int *) shmalloc (10*sizeof(int));

if ((_my_pe() == 0) {
 shmem_int_put (b, b, 5, 1);
}

PE 0 PE 1

VSCSE-Day2 29

Data Movement: Non-contiguous

• Strided Put and Get
- shmem_TYPE_iput (TYPE* target, const TYPE*source, ptrdiff_t tst, ptrdiff_t

sst, size_t nelems, int pe)

- sst is stride at source, tst is stride at target

- TYPE can be char, short, int, long, float, double, longlong, longdouble

- shmem_iputSIZE

- SIZE can be 32/64/128

- Similar get operations

VSCSE-Day2 30

Data Movement: Non-contiguous
symmetric object ‘t’

 6x6 integer array

pe1 pe0

pe0 pe1

Target stride: 6, Source stride: 6, Num. of elements: 6
shmem_int_iput(t, t, 6, 6, 6, 1)

Target stride: 1, Source stride: 6, Num. of elements: 6
shmem_int_iput(t, t, 1, 6, 6, 1)

VSCSE-Day2 31

Data Movement - Completion

• When Put operations return
- Data has been copied out of the source buffer object

- Not necessarily written to the target buffer object

- Additional synchronization to ensure remote completion

• When Get operations return
- Data has been copied into the local target buffer

- Ready to be used

VSCSE-Day2 32

Collective Synchronization

• Barrier ensures completion of all previous operations

• Global Barrier
- void shmem_barrier_all()

- Does not return until called by all PEs

• Group Barrier
- Involves only an “ACTIVE SET” of PEs

- Does not return until called by all PEs in the “ACTIVE SET”

- void shmem_barrier (int PE_start, /* first PE in the set */

 int logPE_stride, /* distance between two
PEs*/

 int PE_size, /*size of the set*/

 long *pSync /*symmetric work array*/);

- pSync allows for overlapping collective communication

VSCSE-Day2 33

One-sided Synchronization

• Fence
- void shmem_fence (void)

- Enforces ordering on Put operations issued by a PE to each
destination PE

- Does not ensure ordering between Put operations to multiple PEs

• Quiet
- void shmem_quiet (void)

- Ensures remote completion of Put operations to all PEs

• Other point-to-point synchronization
- shmem_wait and shmem_wait_until – poll on a local variable

VSCSE-Day2 34

Collective Operations and Atomics

• Broadcast – one-to-all

• Collect – allgather

• Reduction – allreduce (and, or, xor; max, min; sum, product)

• Work on an active set – start, stride, count

• Unconditional - Swap Operation
- long shmem_swap (long *target, long value, int pe)

- TYPE shmem_TYPE_swap (TYPE *target, TYPE value, int pe)

- TYPE can be int, long, longlong, float, double

• Conditional - Compare and Swap Operation

• Arithmetic – Fetch & Add, Fetch & Increment, Add, Increment

VSCSE-Day2 35

Remote Pointer Operations

• void *shmem_ptr (void *target, int pe)
- Allows direct load/stores on remote memory

- Useful when PEs are running on same node

- Not supported in all implementations

- Returns NULL if not accessible for loads/stores

OpenSHMEM Reference Implementation Framework

Communication API

VSCSE-Day2 36

Symmetric Memory
Management API

GASNET Runtime / ARMCI / MVAPICH2-X Runtime ...

Minimal Set of Internal API

OpenSHMEM API

Network Layer: IB, RoCE, iWARP ...

Data
Movement Collectives Atomics Memory

Management

Reference: OpenSHMEM: An Effort to Unify SHMEM API Library Development , Supercomputing 2010

OpenSHMEM Applications

...

...

OpenSHMEM Design in MVAPICH2-X

• OpenSHMEM Stack based on OpenSHMEM Reference Implementation

• OpenSHMEM Communication over MVAPICH2-X Runtime
– Uses active messages, atomic and one-sided operations and remote

registration cache

Communication API
Symmetric Memory

Management API

Minimal Set of Internal API

OpenSHMEM API

InfiniBand, RoCE, iWARP

Data
Movement Collectives Atomics Memory

Management

Active
Messages

One-sided
Operations

MVAPICH2-X Runtime

 Remote
Atomic Ops

Enhanced
Registration Cache

VSCSE-Day2 37

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance
Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012.

Implementations for InfiniBand Clusters

VSCSE-Day2 38

• Reference Implementation
– University of Houston

– Based on the GASNet runtime

• MVAPICH2-X
– The Ohio State University

– Uses the upper layer of reference implementations

– Derives the runtime from widely used MVAPICH2 MPI library

– Available for download: http://mvapich.cse.ohio-state.edu/download/mvapich2x

• OMPI-SHMEM
– Based on OpenMPI runtime

– Available in OpenMPI 1.7.5

• ScalableSHMEM
– Mellanox technologies

http://mvapich.cse.ohio-state.edu/download/mvapich2x

• Point-to-point Operations
– osu_oshm_put – Put latency

– osu_oshm_get – Get latency

– osu_oshm_put_mr – Put message rate

– osu_oshm_atomics – Atomics latency

• Collective Operations
– osu_oshm_collect – Collect latency

– osu_oshm_broadcast – Broadcast latency

– osu_oshm_reduce - Reduce latency

– osu_oshm_barrier - Barrier latency

• OMB is publicly available from:

 http://mvapich.cse.ohio-state.edu/benchmarks/

VSCSE-Day2 39

Support for OpenSHMEM Operations in OSU Micro-
Benchmarks (OMB)

OpenSHMEM Data Movement: Performance

VSCSE-Day2 40

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 4 8 16 32 64 128 256 512 1K 2K

Ti
m

e
(u

s)

Message Size

UH-SHMEM MV2X-SHMEM

Scalable-SHMEM OMPI-SHMEM

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 4 8 16 32 64 128 256 512 1K 2K

Ti
m

e
(u

s)

Message Size

UH-SHMEM MV2X-SHMEM
Scalable-SHMEM OMPI-SHMEM

shmem_putmem shmem_getmem

• OSU OpenSHMEM micro-benchmarks
 http://mvapich.cse.ohio-state.edu/benchmarks/

• Slightly better performance for putmem and getmem with
MVAPICH2-X

http://mvapich.cse.ohio-state.edu/benchmarks/

OpenSHMEM Atomic Operations: Performance

VSCSE-Day2 41

0

5

10

15

20

25

30

fadd finc add inc cswap swap

Ti
m

e
(u

s)

UH-SHMEM MV2X-SHMEM Scalable-SHMEM OMPI-SHMEM

• OSU OpenSHMEM micro-benchmarks
• MV2-X SHMEM performs up to 40% better compared to UH-SHMEM

Collective Communication: Performance

VSCSE-Day2 42

Reduce (1,024 processes) Broadcast (1,024 processes)

Collect (1,024 processes) Barrier

0

100

200

300

400

128 256 512 1024 2048

Ti
m

e
(u

s)

No. of Processes

1
10

100
1000

10000
100000

1000000
10000000

Ti
m

e
(u

s)

Message Size

180X

1

10

100

1000

10000

4 16 64 256 1K 4K 16K 64K 256K

Ti
m

e
(u

s)

Message Size

18X

1

10

100

1000

10000

100000

1 4 16 64 256 1K 4K 16K 64K

Ti
m

e
(u

s)

Message Size

MV2X-SHMEM
Scalable-SHMEM
OMPI-SHMEM

12X

3X

J. Jose, K. Kandalla, S. Potluri, J. Zhang, and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, PGAS’13.

• PGAS Programming Models and Runtimes

– PGAS Languages: Unified Parallel C (UPC)

– PGAS Libraries: OpenSHMEM

• Hybrid MPI+PGAS Programming Models and Benefits

• High-Performance Runtime for Hybrid MPI+PGAS Models

• Application-level Case Studies and Evaluation

VSCSE-Day2

Presentation Overview

43

VSCSE-Day2 44

Architectures for Exascale Systems

• Modern architectures have increasing number of cores per
node, but have limited memory per core

– Memory bandwidth per core decreases
– Network bandwidth per core decreases
– Deeper memory hierarchy
– More parallelism within the node

Coherence Domain

Coherence Domain

Node

Coherence Domain

Coherence Domain

Node

Hypothetical Future Architecture*

*Marc Snir, Keynote Talk – Programming Models for High Performance Computing, Cluster, Cloud and Grid
Computing (CCGrid 2013)

45

Maturity of Runtimes and Application Requirements

VSCSE-Day2

• MPI has been the most popular model for a long time
- Available on every major machine

- Portability, performance and scaling

- Most parallel HPC code is designed using MPI

- Simplicity - structured and iterative communication patterns

• PGAS Models
- Increasing interest in community

- Simple shared memory abstractions and one-sided communication

- Easier to express irregular communication

• Need for hybrid MPI + PGAS
- Application can have kernels with different communication characteristics

- Porting only part of the applications to reduce programming effort

Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based
on communication characteristics

• Benefits:
– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

• Exascale Roadmap*:
– “Hybrid Programming is a practical way to

 program exascale systems”

* The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011,
International Journal of High Performance Computer Applications, ISSN 1094-3420

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS

VSCSE-Day2 46

• Many possible ways to combine MPI

• Focus on:
– Flat: One global address space

– Nested-multiple: Multiple global address spaces (UPC groups)

Hybrid MPI+PGAS Programming Model: Alternatives

Hybrid MPI+PGAS (OpenSHMEM/UPC) Process

PGAS (OpenSHMEM/UPC) Process

Flat Nested-Funneled Nested-Multiple

VSCSE-Day2 47

J. Dinan, P. Balaji, E. Lusk, P. Sadayappan and R. Thakur, Hybrid Parallel Programming with MPI and Unified
Parallel C, ACM Computing Frontiers, 2010

int main(int c, char *argv[])
{
 int rank, size;

 /* SHMEM init */
 start_pes(0);

 /* fetch-and-add at root */
 shmem_int_fadd(&sum, rank, 0);

 /* MPI barrier */
 MPI_Barrier(MPI_COMM_WORLD);

 /* root broadcasts sum */
 MPI_Bcast(&sum, 1, MPI_INT, 0, MPI_COMM_WORLD);

 fprintf(stderr, "(%d): Sum: %d\n", rank, sum);

 shmem_barrier_all();
 return 0;
}

VSCSE-Day2 48

Simple MPI + OpenSHMEM Hybrid Example

• OpenSHMEM atomic fetch-add

• MPI_Bcast for broadcasting result

• Threads access random elements of distributed shared array

• UPC Only: One copy distribute across all procs. Lesser local accesses

• Hybrid: Array is replicated on every group. All accesses are local

• Global co-ordination using MPI

Random Access Benchmark

0 1 2 3 0 1 2 3

shared double data[8]:

P0 P1 P2 P3

Affinity

shared double data[8]: shared double data[8]:

0 1 0 1 1 1

P0 P1 P2 P3

0 0 2 3 2 3 3 3 2 2

VSCSE-Day2 49

J. Dinan, P. Balaji, E. Lusk, P. Sadayappan and R. Thakur, Hybrid Parallel Programming with MPI and Unified
Parallel C, ACM Computing Frontiers, 2010

Pure OpenSHMEM version
while(true){

 <Gauss-Seidel Kernel>

 compute convergence locally

 sum_all =

 sumshmem_float_sum_to_all()
 Compute std. deviation

 shmem_broadcast(method to use)

}

VSCSE-Day2 50

Hybrid 2D Heat benchmark

Hybrid MPI+OpenSHMEM
version
while(true){
 <Gauss-Seidel Kernel>
 compute convergence locally
 sum_all =
 MPI_Reduce()
 Compute std. deviation
 MPI_Bcast(method to use)
}

• MPI Collectives have been optimized significantly
– Performs better than OpenSHMEM collectives

• Improves performance of benchmark significantly

• PGAS Programming Models and Runtimes

– PGAS Languages: Unified Parallel C (UPC)

– PGAS Libraries: OpenSHMEM

• Hybrid MPI+PGAS Programming Models and Benefits

• High-Performance Runtime for Hybrid MPI+PGAS Models

• Application-level Case Studies and Evaluation

VSCSE-Day2

Presentation Overview

51

Current approaches for Hybrid Programming

• Need more network and
memory resources

• Might lead to deadlock!

• Layering one programming model over another
– Poor performance due to semantics mismatch

– MPI-3 RMA tries to address

• Separate runtime for each programming model

Hybrid (OpenSHMEM + MPI) Applications

OpenSHMEM
Runtime

MPI Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Class

VSCSE-Day2 52

The Need for a Unified Runtime

• Deadlock when a message is sitting in one runtime, but application calls the
other runtime

• Prescription to avoid this is to barrier in one mode (either OpenSHMEM or
MPI) before entering the other

• Or runtimes require progress threads
• Bad performance!!
• Similar issues for MPI + UPC applications over individual runtimes

shmem_int_fadd (data at p1);

/* operate on data */

MPI_Barrier(comm);

/*
 local
 computation
 */
MPI_Barrier(comm);

P0 P1

OpenSHMEM
Runtime

MPI Runtime OpenSHMEM
Runtime

MPI Runtime

get request

PPoPP 2014
53

Goals of a Unified Runtime

• Provide high performance
and scalability for
– MPI Applications

– UPC Applications

– OpenSHMEM Applications

– Hybrid Applications

VSCSE-Day2 54

Unified Runtime for Hybrid MPI + OpenSHMEM Applications

VSCSE-Day2 55

MPI Applications, OpenSHMEM Applications,
Hybrid (MPI + OpenSHMEM) Applications

MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls

Hybrid (OpenSHMEM + MPI) Applications

OpenSHMEM
Runtime

MPI Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls

• Optimal network resource usage
• No deadlock because of single runtime
• Better performance

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance
Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012.

Unified Runtime for Hybrid MPI + UPC Applications

Our
Design

J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, PGAS 2010

PPoPP 2014 56

MVAPICH2-X for Hybrid MPI + PGAS Applications

VSCSE-Day2 57

MPI Applications, OpenSHMEM Applications, UPC
Applications, Hybrid (MPI + PGAS) Applications

Unified MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls UPC Calls

• Unified communication runtime for MPI, UPC, OpenSHMEM available with
MVAPICH2-X 1.9 onwards!
– http://mvapich.cse.ohio-state.edu

• Feature Highlights
– Supports MPI(+OpenMP), OpenSHMEM, UPC, MPI(+OpenMP) + OpenSHMEM,

MPI(+OpenMP) + UPC
– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard

compliant with initial support for UPC v1.3
– Scalable Inter-node and intra-node communication – point-to-point and collectives

http://mvapich.cse.ohio-state.edu/overview/mvapich2x

58

Unified Runtime Implementation

MPI Message UPC Message

HCA HCA MPI Library (Sender) MPI Library (Receiver)

connection connection

MPI Message Queue

ActiveMsg
Handler

AM
Table

• All resources are shared between MPI and UPC
– Connections, buffers, memory registrations

– Schemes for establishing connections (fixed, on-demand)

– RDMA for large AMs and for PUT, GET

PPoPP 2014

• PGAS Programming Models and Runtimes

– PGAS Languages: Unified Parallel C (UPC)

– PGAS Libraries: OpenSHMEM

• Hybrid MPI+PGAS Programming Models and Benefits

• High-Performance Runtime for Hybrid MPI+PGAS Models

• Application-level Case Studies and Evaluation

VSCSE-Day2

Presentation Overview

59

• Identify the communication critical section

• Allocate memory in shared address space

• Convert MPI Send/Recvs to assignment operations or one-
sided operations
– Non-blocking operations can be utilized

– Coalescing for reducing the network operations

• Introduce synchronization operations for data consistency
– After Put operations or before get operations

• Load balance through global view of data

VSCSE-Day2 60

Incremental Approach to exploit one-sided operations

• Graph500 Benchmark

– Represents data intensive and irregular applications that use graph
algorithm-based processing methods

– Bioinformatics and life sciences, social networking, data mining,
and security/intelligence rely on graph algorithmic methods

– Exhibits highly irregular and dynamic communication pattern

– Earlier research have indicated scalability limitations of the MPI-
based Graph500 implementations

VSCSE-Day2 61

Introduction to Graph500

• Breadth First Search (BFS) Traversal

• Uses ‘Level Synchronized BFS Traversal Algorithm
– Each process maintains – ‘CurrQueue’ and ‘NewQueue’

– Vertices in CurrQueue are traversed and newly discovered vertices
are sent to their owner processes

– Owner process receives edge information
• If not visited; updates parent information and adds to NewQueue

– Queues are swapped at end of each level

– Initially the ‘root’ vertex is added to currQueue

– Terminates when queues are empty

VSCSE-Day2 62

Graph500 Benchmark – The Algorithm

• MPI_Isend/MPI_Test-MPI_Irecv for transferring vertices

• Implicit barrier using zero length message

• MPI_Allreduce to count number of newqueue elements

• Major Bottlenecks:
– Overhead in send-recv communication model

• More CPU cycles consumed, despite using
non-blocking operations

• Most of the time spent in MPI_Test

– Implicit Linear Barrier
• Linear barrier causes significant overheads

VSCSE-Day2 63

MPI-based Graph500 Benchmark

• Communication and co-ordination using one-sided routines
and fetch-add atomic operations
– Every process keeps receive buffer

– Synchronization using atomic fetch-add routines

• Level synchronization using non-blocking barrier
– Enables more computation/communication overlap

• Load Balancing utilizing OpenSHMEM shmem_ptr
– Adjacent processes can share work by reading shared memory

VSCSE-Day2 64

Hybrid Graph500 Design

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid
MPI+OpenSHMEM Programming Models, International Supercomputing Conference (ISC '13), June 2013

VSCSE-Day2 65

Graph500 - BFS Traversal Time

• Hybrid design performs better than MPI implementations
• 16,384 processes

- 1.5X improvement over MPI-CSR
- 13X improvement over MPI-Simple (Same communication characteristics)

• Strong Scaling
Graph500 Problem Scale = 29

0

5

10

15

20

25

30

35

4K 8K 16K

Ti
m

e
(s

)

No. of Processes

13X

7.6X
0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

1024 2048 4096 8192

Tr
av

er
se

d
Ed

ge
s P

er
 S

ec
on

d

of Processes

MPI-Simple
MPI-CSC
MPI-CSR
Hybrid

Performance Strong Scaling

Out-of-Core Sorting

• Sorting: One of the most common algorithms in data
analytics

• Sort Benchmark (sortbenchmark.org) ranks various
frameworks available for large scale data analytics

• Read data from a global filesystem, sort it and write back
to global filesystem

VSCSE-Day2 66

Overview of Existing Design

• Processes grouped into read and
sort groups

• Read group processes read data
and sends to sort group processes
in a ‘streaming’ manner

• Sort processes sample initial data
and determines the split

• Input data is sorted and bucketed
based on the split

• Merge sort on each split, and final
write back to global filesystem

VSCSE-Day2 67

Overheads in Existing Design

• Poor resource utilization and overlap

– Dedicated Receiver Task limits the compute resources
available for sorting

– Multiple BIN_COMMs expected to provide high overlap

– Profiling Data using HPC-Toolkit
indicates nearly 30% time spent
in waiting for input data

• Book-keeping and Synchronization overheads
– Reader tasks continuously participate in

MPI_Gather/MPI_Scatter destination assignment

VSCSE-Day2 68

Hybrid MPI+OpenSHMEM Out-of-Core Design

• Data Transfer using OpenSHMEM one-sided communication

• Atomic Counter based destination selection

• Remote buffer co-ordination using compare-swap

• Non-blocking put+notify for data delivery and
synchronization

• Buffer structure for efficient synchronization

• Custom memory allocator using OpenSHMEM shared heap

VSCSE-Day2 69

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

512-1TB 1024-2TB 2048-4TB 4096-8TB

So
rt

 R
at

e
(T

B/
m

in
)

No. of Processes - Input Data

MPI
Hybrid-SR
Hybrid-ER

Hybrid MPI+OpenSHMEM Sort Application
Execution Time

Weak Scalability

• Performance of Hybrid (MPI+OpenSHMEM) Sort Application
• Execution Time
 - 1TB Input size at 8,192 cores: MPI – 164 seconds, Hybrid-SR (Simple Read) –
 92.5 seconds, Hybrid-ER (Eager Read) - 90.36 seconds
 - 45% improvement over MPI-based design
• Weak Scalability (configuration: input size of 1TB per 512 cores)
 - At 4,096 cores: MPI – 0.25 TB/min, Hybrid-SR – 0.34 TB/min, Hybrid-SR –0.38 TB/min
 - 38% improvement over MPI based design

38%

0

100

200

300

400

500

600

700

1024-1TB 2048-1TB 4096-1TB 8192-1TB

Ti
m

e
(s

ec
)

No. of Processes - Input Data

MPI

Hybrid-SR

Hybrid-ER

45%

70 VSCSE-Day2

• N-body cosmological simulation algorithm

• Simulate motion of n bodies over T time steps

• At each step, calculate the gravitational interaction of each
body with all others to find the net force

• Approximate the interaction between distant bodies as an
interaction with the center of mass of whole region

• Represents sparse volume of 3-dimensional space using a
large shared oct-tree (each node is split in half along each
dimension, resulting 8 children)

VSCSE-Day2 71

Barnes Hut

VSCSE-Day2 72

Barnes Hut – using hybrid MPI+UPC

• Nested-Funneled: One MPI rank per group, UPC threads for communicating
within the group, and MPI for communicating across groups

• Nested-funneled model
– Tree is replicated across UPC groups

• 51 new lines of code (2% increase)
– Distribute work and collect results

• 55X speedup at 256 processes

Hybrid MPI+UPC Barnes-Hut

J. Dinan, P. Balaji, E. Lusk, P. Sadayappan and R. Thakur, Hybrid Parallel Programming with MPI and Unified
Parallel C, ACM Computing Frontiers, 2010

VSCSE-Day2 73

Hybrid-4

VSCSE-Day2 74

Hands-on Exercises

PDF version of slides available from
http://www.cse.ohio-state.edu/~panda/vssce14/dk_karen_day2_exercises.pdf

• Compile MPI programs using mpicc
– $ mpicc -o helloworld_mpi helloworld_mpi.c

• Compile UPC programs using upcc
– $ upcc -o helloworld_upc helloworld_upc.c

• Compile OpenSHMEM programs using oshcc
– $ oshcc -o helloworld_oshm helloworld_oshm.c

• Compile Hybrid MPI+UPC programs using upcc
– $ upcc -o hybrid_mpi_upc hybrid_mpi_upc.c

• Compile Hybrid MPI+OpenSHMEM programs using oshcc
– $ oshcc -o hybrid_mpi_oshm hybrid_mpi_oshm.c

VSCSE-Day2 75

Compiling Programs with MVAPICH2-X

• MVAPICH2-X programs can be run using
– mpirun_rsh and mpiexec.hydra (MPI, UPC, OpenSHMEM and hybrid)
– upcrun (UPC)
– oshrun (OpenSHMEM)

• Running using mpirun_rsh/mpiexec.hydra
– $ mpirun rsh -np 4 -hostfile hosts ./test
– $ mpiexec -f hosts -n 2 ./test

• Running using upcrun
– $ export MPIRUN CMD=“<path-to-MVAPICH2-X-install>/bin/mpirun

rsh -np %N -hostfile hosts %P %A”
– $ upcrun -n 2 ./test

• Running using oshrun
– $ oshrun -f hosts -np 2 ./test

VSCSE-Day2 76

Running Programs with MVAPICH2-X

OpenSHMEM

1. Circular Shift - OpenSHMEM: Write a simple program using
OpenSHMEM, with eight processes. Every process shall have two ints
(a1, a2). Do a circular left-shift on a1’s globally to get the output on
a2. An example for circular shift implemented using static int is given
in /nfs/02/w557091/mpi-pgas-exercises/openshmem/excercise1-
ref.c. Re-write this code to use dynamic memory allocation

2. PI Calculation: Write a program with multiple processes for
calculating PI. Process0 shall read the number of iterations from
stdin, and broadcast to all processes. The PI calculation work is
shared among all the PEs, where each PE calculates locally, and then
summed up to generate the global solution (Reference MPI code:
http://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples
/simplempi/cpi_c.htm)

VSCSE-Day2 77

http://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples/simplempi/cpi_c.htm
http://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples/simplempi/cpi_c.htm

VSCSE-Day2 78

UPC

• Circular Shift - UPC: Write the circular-shift program
described in previous slide using UPC. Here, the arrays
shall be declared as UPC shared array, and the set
operations shall be done using assignment operations

• Work Sharing: Write the PI calculation code explained
in previous slide in UPC, by utilizing the ‘upc_forall’
work-sharing construct

VSCSE-Day2 79

Hybrid MPI+PGAS

• Simple Hybrid MPI+OpenSHMEM Code: Write a hybrid
MPI+OpenSHMEM code, in which every process does an
OpenSHMEM fetch-and-add of the rank to a variable (sum) at
process 0. Following the fetch-and-add, every process shall do a
barrier using MPI_Barrier, and then Process0 broadcasts sum to
all processes using MPI_Bcast. Finally, all processes print the
variable sum

• Simple Hybrid MPI+UPC Code: Write the similar code using
hybrid MPI+UPC. Here, every UPC thread set its rank to one
element of a global shared memory array (A) such that
A[MYTHREAD] has affinity with the UPC thread who set the
value of it. Then an MPI Allreduce operation is made to sum-up
the ranks, and then every UPC thread does an MPI barrier, and
all processes print the sum

VSCSE-Day2 80

Solutions and Guidelines

• Solutions for these exercises available at:
 /nfs/02/w557091/mpi-pgas-exercises/

• See README file inside the above folder for Build and

Run instructions

• Tuesday, May 6 – MPI-3 Additions to the MPI Spec
– Updates to the MPI One-Sided Communication Model (RMA)

– Non-Blocking Collectives

– MPI Tools Interface

• Wednesday, May 7 – MPI/PGAS Hybrid Programming
– MVAPICH2-X: Unified runtime for MPI+PGAS

– MPI+OpenSHMEM

– MPI+UPC

• Thursday, May 8 – MPI for many-core processor
– MVAPICH2-GPU: CUDA-aware MPI for NVidia GPU

– MVAPICH2-MIC Design for Clusters with InfiniBand and Intel Xeon
Phi

81

Plans for Thursday

VSCSE-Day2

	Advanced MPI Capabilities
	Plans for Wednesday and Thursday
	Parallel Programming Models Overview
	Partitioned Global Address Space (PGAS) Models
	MPI+PGAS for Exascale Architectures and Applications
	Can High-Performance Interconnects, Protocols and Accelerators Benefit from PGAS and Hybrid MPI+PGAS Models?
	Presentation Overview
	Compiler-based: Unified Parallel C
	UPC: Execution Model
	UPC: Memory Model
	UPC: Memory Model
	UPC: Pointers
	UPC: Dynamic Memory Management
	UPC: Consistency Model
	UPC: Barriers and Locks
	UPC Data Movement and Work Sharing
	Berkeley UPC Runtime Overview
	MVAPICH2-X Conduit Support to GASNet
	Support for UPC Operations in OSU Micro-Benchmarks (OMB)
	UPC Micro-benchmark Performance
	UPC Collective Performance
	Presentation Overview
	SHMEM
	OpenSHMEM
	OpenSHMEM Hello World
	The OpenSHMEM Memory Model
	Data Movement: Basic
	Data Movement: Contiguous
	Data Movement: Non-contiguous
	Data Movement: Non-contiguous
	Data Movement - Completion
	Collective Synchronization
	One-sided Synchronization
	Collective Operations and Atomics
	Remote Pointer Operations
	OpenSHMEM Reference Implementation Framework
	OpenSHMEM Design in MVAPICH2-X
	Implementations for InfiniBand Clusters
	Support for OpenSHMEM Operations in OSU Micro-Benchmarks (OMB)
	OpenSHMEM Data Movement: Performance
	OpenSHMEM Atomic Operations: Performance
	Collective Communication: Performance
	Presentation Overview
	Architectures for Exascale Systems
	Maturity of Runtimes and Application Requirements
	Hybrid (MPI+PGAS) Programming
	Hybrid MPI+PGAS Programming Model: Alternatives
	Simple MPI + OpenSHMEM Hybrid Example
	Random Access Benchmark
	Hybrid 2D Heat benchmark
	Presentation Overview
	Current approaches for Hybrid Programming
	The Need for a Unified Runtime
	Goals of a Unified Runtime
	Unified Runtime for Hybrid MPI + OpenSHMEM Applications
	Unified Runtime for Hybrid MPI + UPC Applications
	MVAPICH2-X for Hybrid MPI + PGAS Applications
	Unified Runtime Implementation
	Presentation Overview
	Incremental Approach to exploit one-sided operations
	Introduction to Graph500
	Graph500 Benchmark – The Algorithm
	MPI-based Graph500 Benchmark
	Hybrid Graph500 Design
	Graph500 - BFS Traversal Time
	Out-of-Core Sorting
	Overview of Existing Design
	Overheads in Existing Design
	Hybrid MPI+OpenSHMEM Out-of-Core Design
	Hybrid MPI+OpenSHMEM Sort Application
	Barnes Hut
	Barnes Hut – using hybrid MPI+UPC
	Hybrid MPI+UPC Barnes-Hut
	Hands-on Exercises��PDF version of slides available from �http://www.cse.ohio-state.edu/~panda/vssce14/dk_karen_day2_exercises.pdf
	Compiling Programs with MVAPICH2-X
	Running Programs with MVAPICH2-X
	OpenSHMEM
	UPC
	Hybrid MPI+PGAS
	Solutions and Guidelines
	Plans for Thursday

