Testing Patterns

Neelam Soundarajanl, Jason O. Hallstrom2, Adem Delibasl, Guogiang Shu1

1 Computer Sc. & Engineering
Ohio State University
Columbus, OH 43210

{neelam, delibas, shug} @cse.ohio-state.edu

Abstract: After over a decade of use, design patterns
continue to find new areas of application. In previous
work, we presented a contract formalism for specifying
patterns precisely, and showed how the use of the for-
malism can amplify the benefits of patterns. In this pa-
per, our goal is to enable practitioners to test whether
their systems, as implemented, meet the requirements, as
specified in the pattern contracts, corresponding to the
correct usage of the patterns underlying the systems’ de-
signs. In our testing approach, corresponding to each de-
sign pattern, there is a set of what we call pattern test case
templates (PTCTs). A PTCT codifies a reusable test case
structure designed to identify defects associated with ap-
plications of the particular pattern. The test assertions
in the PTCT are based on the requirements specified in
the appropriate pattern contract. Next we present a pro-
cess using which, given any system designed using the
pattern, the system tester can generate a test suite from
the PTCTs for that pattern that can be used to test the
system for bugs in the implementation of the particular
pattern. The process allows the system tester to tailor the
test suite the needs of the individual system by specifying
a set of specialization rules that are designed to reflect
the structure and the scenarios in which the defects codi-
fied in the PTCTs are likely to manifest themselves in the
particular system.

1 Introduction

Design patterns [6, 3, 18] have had a profound im-
pact on how software systems are built. This is not sur-
prising since patterns capture the distilled wisdom of the
software community, and provide proven solutions to re-
curring problems, solutions that can be tailored to the
needs of individual systems. In previous work [20, 7, 21],
we argued that in order to maximize the benefits of pat-
terns, we must have precise specifications of patterns and
how they are specialized in individual systems, and pre-
sented an approach to providing such specifications in
the form of pattern contracts and subcontracts. A pat-
tern contract captures the requirements and behavioral

2 Computer Science Dept.
Clemson University
Clemson, SC 29634

jasonoh@cs.clemson.edu

guarantees that apply to all uses of the particular pat-
tern, while a subcontract characterizes how the pattern
is specialized in a particular application. In this paper,
we develop an approach to pattern-centric testing that de-
signers, implementers, and testers of a given system can
use to fest their system against the contracts correspond-
ing to the patterns used in the system’s design, as spe-
cialized in the system subcontracts. Although some ap-
proaches to formalizing design patterns have been pro-
posed [12, 5, 17, 4] (in addition to our own approach
cited above), relatively little work seems to have focused
on the question of festing a system to check whether it
correctly implements the patterns underlying its design.
We will discuss the few relevant elements of related work
later in the paper. Since design-related bugs may not
manifest themselves behaviorally until late in the devel-
opment lifecycle, they tend to be among the most insid-
ious and difficult to localize. The testing techniques and
supporting software tools discussed in this paper will be
of great value in reducing the likelihood of such bugs go-
ing undetected, and will aid in their localization.

Before considering some of the issues involved in
pattern-centric testing, and our approach to addressing
them, it may be useful to summarize our approach to for-
malizing patterns. Consider a pattern P. The contract
for P consists of a set of role-contracts, one correspond-
ing to each role of P, and a portion that corresponds to
the pattern as a whole. The role-contract for a role R lists
the state components of R, and specifies, in standard pre-
/post-condition format, requirements that must be satis-
fied by the various methods of R. In a system designed
using P, a class C playing the role R will typically pro-
vide other methods in addition to those “named” in R.
If these “other” methods were to behave arbitrarily, then
the intent of the pattern would be violated even if the
methods corresponding to the named methods behaved
according to their specifications in the role-contract. In
order to eliminate this possibility, R’s role-contract will
also include an others specification that must be satis-
fied by all methods of C, except those corresponding to
the ones named in the role-contract.

The portion of the pattern contract that corresponds to
the pattern as a whole consists of an invariant over the
(role) states of the various objects enrolled, at runtime,
in an instance of the pattern. The invariant will be sat-
isfied whenever control is not inside any of the methods
of any of the participating objects. One important feature
of the formalism is the notion of an auxiliary concept.
An auxiliary concept is a relation over one or more states
of one or more objects interacting with each other ac-
cording to the pattern. Auxiliary concepts are used in the
role-contracts and the pattern invariant, but their defini-
tion are not part of the pattern contract. Instead, defini-
tions tailored to particular systems, are provided in the
subcontracts corresponding to systems. The subcontract
for a particular system also includes a set of role-maps,
one corresponding to each class C' playing a role R in
the pattern, as applied in this system. The C- R-role-map
specifies how the state, i.e., variables, of C' map to the
state of R (listed in its role-contract), which methods of
C correspond to each of the named methods of R, etc.
In effect, the role-map specifies how instances of C' can
be thought of as R-objects.

Consider the classic Observer pattern with its two
roles, Subject and Observer. The complete contract
for this pattern is presented elsewhere [7, 21]; here we
consider some highlights. The intent of this pattern is
to ensure that when the state of the subject! is modi-
fied, the observers “attached” to the subject are appro-
priately updated so that their states become consistent
with the current state of the subject. But “modified”
does not necessarily mean a change in any arbitrary bit
or byte of the subject state; which modifications are im-
portant enough to require updates varies from system to
system. Hence, we use an auxiliary concept, Modified(),
a relation over two states of the subject, to distinguish
“important” changes in the subject state from ‘“unim-
portant” ones. Similarly, what it means for an observer
state to be “consistent’” with the subject state varies from
system to system. Hence we use a second auxiliary con-
cept, Consistent(), a relation over an observer state and
a subject state, to represent this notion.

These two concepts allow us to precisely specify the
various role methods of Subject and Observer, as well
as the pattern invariant. For example, the specification of
Observer.Update() has, as part of its post-condition,
a clause that requires the state of the observer to be
Consistent() with the current state of the subject it is ob-
serving. The other-method specification of this role is

I'We use names starting with uppercase letters, such as Subject, for
roles. We use corresponding lowercase names, such as subject, to refer
to the objects that play these roles.

more interesting. The standard informal descriptions of
the pattern suggest that unnamed methods not make any
changes in the state of the observer. The post-condition,
however, requires only that the state of the observer re-
main Consistent() with that of the subject.

As another example, the post-condition of Sub-
ject.Attach(), which is invoked to attach an object as
a new observer, requires that a reference to the attach-
ing observer be added to Subject._observers, which
contains references to the subject’s attached observers.
It further requires that Attach() invoke Update() on
the attaching observer to ensure that its state becomes
Consistent() with the current state of the subject? . The
post-condition of Attach() also includes a clause that
requires the pre- and post-conditional states of the sub-
ject to satisfy the relation ~Modified(). This clause en-
sures that the attached observers do not become incon-
sistent with the state of the subject, assuming they were
Consistent() before the call to Attach(). Indeed, the
invariant for the pattern simply states that the states of
all the observers currently observing the subject are
Consistent() with the subject state.

The contract for a pattern also specifies how a new
instance of the pattern is created at runtime, and how ob-
jects may enroll in an existing instance to play a particu-
lar role. We refer the reader to [20, 7, 21] for full details.
The key point to note for the purposes of this paper is that
a pattern contract formalizes properties common across
all applications of a given pattern; subcontracts capture
the specializations appropriate to particular systems.

In this paper, we consider the following question:
Given a contract for a pattern P, a system .S designed
using P, and the S-P-subcontract, how do we test the
implementation of S to make sure that it meets all the
requirements specified in P’s contract, as specialized in
the subcontract? Since the requirements specified in the
pattern contract apply to all systems designed using the
pattern, we adopt the following approach. We define a
set of pattern test case templates (PTCTs) corresponding
to each pattern P. Each PTCT defines an execution sce-
nario involving one or more objects enrolled in various
roles of P, a sequence of invocations on the role meth-
ods of these objects, and at key points, assertion state-
ments derived from P’s contract. The PTCT helps to test
a system designed using P to see if the system meets the
requirements specified in P’s contract.

When designing the PTCTs corresponding to a partic-
ular pattern, we do not arrive mechanically at the results.

2As we will see later, clauses of this kind are specified using the
trace T, a ghost variable [9] provided by the formalism that records the
calls made during the execution of the method being specified.

Instead, we use our, and more importantly, the commu-
nity’s experience implementing P to identify commonly
encountered errors. Consider again the Observer pattern.
As we noted above, one of the requirements of the Sub-
ject.Attach() method is that the method invoke Up-
date() on the attaching observer; otherwise, the state
of the observer may not be consistent with the sub-
ject state and the pattern’s intent could be violated. It
seems that a common mistake in implementing the Ob-
server pattern is to neglect to do this perhaps because it
is not explicitly mentioned in the standard informal de-
scriptions. The implementation of the pattern presented
in [8], for example, does not contain such a call. Hence, it
is important to design our PTCTs to check for this error
in a variety of situations, with varying numbers of ob-
servers, with varying numbers of pattern instances, etc.
Later in the paper we will consider another common er-
ror, again in the implementation of the Observer pattern,
that may creep into systems, especially as they evolve
over time. The PTCT we will construct will enable such
faults to be detected and localized at an early stage.

Thus the essential idea behind our work is to enable
testing of systems to identify mistakes in the implemen-
tation of the design underlying the system. And in per-
forming such testing, our approach allows practitioners
to take advantage of the experience and wisdom of the
community as represented in the PTCTs. Thus the title
of the paper may be interpreted in two different ways. On
the one hand, the work is about testing systems against
the contracts for the patterns underlying the systems’ de-
signs. On the other hand, the set of PTCTs for a given
design pattern P can itself be considered as providing a
test pattern for testing any system designed using P.

We should also note that the specific PTCTs that we
present as examples are not cast in stone. Indeed, we
expect that with additional information concerning com-
mon mistakes in implementing the associated patterns,
these PTCTs will be refined and that additional PTCTs
will be introduced. The main contribution of this paper,
then, is the approach presented for testing systems to en-
sure the correct implementation of their underlying pat-
terns — not the particular PTCTs presented as examples.

But a PTCT, by itself, is not an executable test case.
It is a generative template that must be specialized to
create test suites appropriate to particular systems. We
consider various approaches to how this specialization
might be achieved later in the paper. One approach that
we will consider focuses on automated test case genera-
tion. In this approach, a test case generation tool accepts
the contract for a pattern P as input, a PTCT for P, and
a subcontract for a system constructed using P. Using

the mappings specified in the subcontract, the tool gen-
erates a collection of test cases by replacing role method
calls with calls to corresponding class methods, auxil-
iary concept relations (used in assertion statements) with
appropriate definitions, etc. The advantage of such an
approach is that it doesn’t require any input from the sys-
tem tester’. The disadvantage, however, is that such a
tool makes it possible to overlook scenarios that might
require especially thorough testing — to, for instance, ac-
count for the peculiarities of a particular system imple-
mentation. The only way to cater to such situations is
to enable the system tester, based on his or her knowl-
edge of the system internals, to decide the particular test
cases to generate from the PTCT. To allow for this, we
introduce the notion of a test case specializer (TCS). A
system tester uses a TCS to specify how individual test
cases should be generated from a given PTCT. In design-
ing the TCSs for a given system, the tester will use his or
her knowledge of the system, as well as considerations
such as which parts of the system deserve more thorough
testing. In a sense, the PTCTs corresponding to a pattern
P can be thought of as the festing contracts that apply to
all systems designed using P. The TCSs can be thought
of as the testing subcontracts for a given system since
they specify how the PTCTs should be specialized to ob-
tain the actual test cases corresponding to that system.

An important question to consider in any testing work
is the question of how to achieve suitable coverage, and
how to measure coverage using suitable metrics. In stan-
dard software testing, metrics such as code coverage,
path coverage, etc., are commonly used, and these have
been refined in various ways for use in OO systems;
see, for example, the detailed discussion in [2]. One ap-
proach that is of particular interest to us is partition test-
ing [16, 23, 13]. As we will see, there is a natural cor-
respondence between partition testing and our approach
using PTCTs and TCSs. This correspondence suggests
a notion of coverage for the type of testing we propose.
Whether this is the most appropriate possible notion as
well as possible alternative notions of coverage are points
that we hope the discussion at the SEW will help clarify,
assuming that the paper is accepted for the workshop.

A key consideration underlying our work is that it
should be conveniently adoptable by software practition-
ers. To help with this, the notation we use is such that
the PTCTs look similar to tests developed using standard
unit testing packages such as JUnit [1]. The key distinc-
tion is that while these packages focus on units of code

3 As we will see, this is not quite accurate; there are situations where
some input may be required from the tester to help the tool generate the
required objects, argument values etc. These points aside, however, the
bulk of the work will be performed by the tool.

(such as a class method or an entire class), a set of PTCTs
enables us to test a unit of design.

Paper Organization. Section 2 develops the essential
notion of PTCT using examples based on the Observer
pattern. Section 3 discusses how test cases may be gener-
ated from the PTCTs. Section 4 briefly discusses issues
of coverage (and the associated metrics) in the context
of pattern-centric testing. Section 5 briefly surveys ele-
ments of related work. Section 6 concludes with a sum-
mary of the approach, and pointers to future work.

2 Pattern Test Case Templates (PTCTs)

Many patterns are concerned with the sequences of in-
teractions between various objects at appropriate points.
PTCTs must be designed to test whether the actual inter-
actions that occur match those dictated by the appropri-
ate pattern contracts. Before we look at the construction
of such PTCTs, we will consider elements of the Ob-
server contract, including portions that specify such re-
quirements. These requirements will be expressed using
the trace T, a ghost variable [9] provided by the formal-
ism. In effect, when a method m/() starts execution, a
corresponding trace 7, initialized to the empty sequence,
is automatically created. Each call that m() makes to a
named method during its execution is recorded as an el-
ement of the sequence, and includes information about
the object on which the method was was invoked, the
name of the method, and information about the associ-
ated arguments and return values. A number of mathe-
matical functions, some of which we will introduce later,
simplify trace manipulation, access to individual trace el-
ements, etc. Contract requirements concerning object in-
teractions will be expressed in the form of appropriate
conditions on the trace variables.

A portion of the Observer pattern contract appears in
Fig. 1. Lines (3—4) list the auxiliary concepts used in
the contract. In specifying the pattern invariant, we of-
ten need to refer to the objects enrolled in a given pat-
tern instance. The contract formalism provides a special
variable, players for this purpose. This variable main-
tains references to each of the enrolled “player” objects;
they are stored in the order in which the objects enrolled.
Thus, players[0] is the first object enrolled. In the case
of instances of the Observer pattern, this object will be
the subject; all other objects referenced by players cor-
respond to the attached observers. Hence, the pattern
invariant (lines 6-7) specifies that the state of the sub-
ject is always Consistent() with that of each observer.

Part of the Subject role contract appears next. The
role state is specified (line 10) as consisting of the vari-

1 pattern contract Observer
2 concepts:

3 Consistent (Subject, Observer)
4 Modified (Subject, Subject)

5 invariant:

6 Vobeplayers[1:]::

7 Consistent (players[0], ob)

9 role contract Subject

10 Set<Observer> obs;

1 void Attach (Observer ob) :

1 pre: ob ¢ obs

13 post: (obs=(#obsU{ob}))

14 AN —Modified (#this, this)

15 AN (ITl=1) AN (|T.0b.Update|=1)
16 others:

17 post: (obs=#obs) A

18 ((—wModified (#this,this) A (|71=0))
19 V ((IT]=1) A (|lT.this.Notify|=1)))

Fig. 1. Observer Pattern Contract (partial)

able obs, used to store references to the observers cur-
rently attached to the subject. Next we have the spec-
ification of Attach (), one of the named methods of
this role. The post-condition of Attach() imposes three
requirements. First, (line 12) that the attaching ob-
server not already be attached. Second, (line 13) that
the method to add the attaching observer to obs where
the “#” notation refers to the pre-conditional value of
the variable, i.e., the value when the method started ex-
ecution [22]. Finally, (line 14) that the method to not
modify, in the sense of the concept Modify(), the state of
the subject in question; and (line 14) that the method
must have made one call* to a named method, this be-
ing to the Update () method on the attaching observer.
The others specification (lines 16—-19) requires that the
other methods of this role not change the value of obs.
It further requires that one of two conditions be satis-
fied. These methods must not Modify() the subject state,
and not invoke any named methods; failing this, the No-
tify() method must be invoked. According to the spec-
ification of Notify() (omitted), this method will invoke
Update() on each attached observer. Update() will,
in turn, bring each observer into a state Consistent() with
the new state of the subject. (Again, the specification is
omitted.)

4|7| denotes the length of T, defined as the number of method calls
made by this method during its execution. We often need the subse-
quence of 7 consisting of elements corresponding to method calls on
a particular object, say, o1; this is denoted 7.01. Similarly, 7.m1 de-
notes the subsequence consisting of those elements of 7 that correspond
to calls to the method m1. Combining these, 7.01.m1 denotes the sub-
sequence of calls to m1 on the object o1.

Given the requirements captured in the pattern con-
tract, we must now develop appropriate PTCTs that can
be used to test whether systems implemented using the
Observer pattern satisfy these requirements. Or, more
precisely, we must develop PTCTs that can be used to
generate, using one of the approaches presented in the
next section, specialized test cases that can be used for
this purpose.

1 Subject s = new Subject();

2 Observer o = new Observer();
3 Set pre_obs = s.get_obs();

4 pre_obs.add (o) ;

s Subject pre_s =
6 tau.clear (
7 s.Attach (o) ;

s Trace tl = taul0,t];

9 assert((s.get_obs().equals (pre_obs)
10 && !'Modified(pre_s, s)

n && tl.length() ==

12 && tl[0].m() == Update

13 && tl[0].ob() ==))

s.clone();

’

Fig. 2. PTCT (for Subject.Attach())

The main portion of a PTCT intended to test the be-
havior of Attach () appears in Fig. 2. We begin by
creating a subject s (line 1), and an observer o (line 2).
Next, we use a “getter” method provided by our test-
ing framework, JDUni?, to retrieve the pre-conditional
value of s.obs before the call to Attach() (line 7), and
to store this value in pre_obs. (JDUnit provides appro-
priate getter methods for each role field, including pri-
vate fields.) Next, we add the attaching observer to
pre_obs (line 4) to simplify the expression of the as-
sertion check corresponding to the post-condition of At-
tach() (lines 9-10). We additionally store the current
state of s (line 5), since this is required to check that
Attach() not modify s (according to an appropriate def-
inition of Modified()°.

5The name of the framework, currently under construction, is in-
tended to draw a parallel to JUnit, the popular unit testing framework
for Java; the additional D emphasizes that the framework is used to test
units of design.

A couple of points should be noted here. The getter methods are
more involved than simply returning the current value of the field in
question. In an actual system designed using the pattern, the class C
playing a particular role R may provide a different set of fields from
those specified in R’s role contract. The subcontract for the system
will specify the mapping from C’s fields to those of R. The getter
methods provided by JDUnit will make use of this mapping to trans-
late the values of C’s fields to the corresponding values of R’s fields.
Similarly, the clone () operation applied to s (line 5) will create an
object of whatever class plays the Subject role in the particular appli-
cation. Finally, JDUnit will use the concept definitions provided in the
subcontract to evaluate assertions involving concept references, such

Contract requirements involving traces require spe-
cial treatment. As noted earlier, the contract formalism
associates a trace variable 7, initialized to the empty se-
quence, with each method m(). Information about calls
made by m() to named methods are recorded in T;
m()’s post-condition may impose suitable conditions on
this variable. In those cases where a PTCT includes calls
to methods with trace requirements, the PTCT will in-
clude assert statements that check relevant conditions on
the associated trace variables. Indeed, a PTCT may in-
clude assert statements that require particular relations
to hold across multiple trace variables, each associated
with methods preceding the assertion check. The ap-
proach we use in JDUnit to handle such conditions is
as follows. When the instantiated PTCT begins execu-
tion, the testing framework creates a trace object tau,
initialized to the empty sequence. Each named method
invoked during the execution of the PTCT is recorded as
an element of tau, and includes information about the
target object, the identity of the method invoked, etc. In
addition, and this is the key difference from the use of
7 in the formalism, each entry of tau itself includes the
trace of methods executed during the associated call’s ex-
ecution. Hence, while there is only a single tau object,
it maintains a branching structure corresponding to the
computation tree rooted at the PTCT. Similar to the for-
malism, JDUnit provides simple functions for accessing
and manipulating tau and its elements.

Immediately prior to the call to Attach(), we clear
tau (line 6). This removes the trace entries associ-
ated with the preceding constructor calls (lines 1-2), as
well as any calls to named methods introduced during
the specialization process. (We will see an example of
this type of specialization in the next section.) Hence,
when control returns to the PTCT following the call to
Attach (), tau contains a single entry, corresponding
to this call. We store the trace in t1 (line 8); tau[0,t] de-
notes the trace (t) associated with the zeroth element of
tau. The assert that follows imposes appropriate con-
ditions on this trace, based on the requirements speci-
fied in the pattern contract. The first two clauses require
that s._obs be appropriately updated (line 9), and that s
not be Modified() (line 10). The last three clauses ad-
dress trace conditions imposed on Attach() (lines 11—
13). Together, these clauses require that Attach() in-
voke exactly one named method, and that this call be to
the Update() method of the attaching observer.

The assert statement is derived directly from the
specification of Attach() included in the Subject role

as the assertion involving Modified() (line 9). We will return to these
points in the next section.

contract shown in Fig. 1. The only additional derivation
effort was the introduction of appropriate temporary ob-
jects to capture pre-conditional values referenced in the
post-condition. The pattern invariant (lines 67, Fig. 1)
could also have been checked as part of the assert state-
ment. This would amount to checking that Attach() not
only invokes Update() on the attaching observer, but
also that the latter method appropriately updates the ob-
server’s state to be Consistent() with the subject. While
the structure of the PTCT is dictated by relevant portions
of the pattern contract, the test cases appropriate to a
given system depend on the system’s implementation de-
tails. Thus, the generated test cases will account for the
specification and implementation details of the pattern.
We will return to this point later in the paper. We should
also note that when adding the invariant to the assert, we
will have to replace references to elements of the play-
ers array by appropriate other variables. Thus players[0]
will be replaced by the subject in question, etc.

Subject s = new Subiject();

Observer ol = new Observer();

Observer 02 = new Observer();
s.Attach(ol); s.Attach(o2);

Set pre_obs = s.get_obs();

Subject pre_s s.clone () ;

tau.clear(); s.other();

Trace tl1 = taul0,t];

9 assert (s.get_obs () .equals (pre_obs) &&

10 Consistent (s,o0l) && Consistent (s,02));

Fig. 3. PTCT (for Subject.other())

Next consider the PTCT shown in Fig. 3, intended to
test the behavior of Subject’s other methods. We be-
gin by creating a subject (s) and two observers (01,
02) (lines 1-3), and attach both observers to the sub-
ject (line 4). We then save the pre-conditional value of
s.obs (line 5) and the value of s as a whole (line 6). tau
is then cleared, and some other method is invoked on
s (line 7). Finally, the trace associated with the other
call is saved (line 8), and the behavior of the method
is checked against the requirements specified in the pat-
tern contract (lines 9-10). The assert statement requires
that s.obs be unchanged, and that both o1 and 02 be
Consistent() with s.

In generating test cases for a particular system from
this PTCT, the s.other() call will be replaced by calls
to appropriate methods of the class playing the Subject
role. Some of these methods may require arguments. As
we will see in the next section, suitable values will be
provided in such cases. At this point, however, the more
important issue is the mismatch between the assert state-
ment and the requirements specified in the Observer con-

® 9 e A W ow =
I

tract. According to the contract (Fig. 1), when s.other()
terminates, either the state of s must not be Modified(),
or the Notify() method must have been invoked. As we
have already seen, this method will in turn invoke Up-
date() on each attached observer, bringing the objects
into states consistent with the new state of the subject.
Hence, the assert included in the PTCT is a test of the
expected net behavior of the participating objects. The
advantage is that we are not using the trace when we
do this; and if we adopt a similar approach uniformly
in all our PTCTs (so, for example, we would have to
rewrite the PTCT in Fig. 2 similarly), the implementation
of JDUnit would be simplified since it would not have to
create or, more importanly, update the trace. There is,
however, a risk in adopting such an approach. If, for in-
stance, an other method were to modify the state of the
subject, neglect a call to Notify(), but by chance leave
s in a state Consistent() with the states of o1 and 02, the
design defect would go undetected.

In [19], we present a scenario in which this problem
manifests itself during system evolution; we summarize
the example here. A class S1 plays the Subject role, and
provides two fields, f1 and 2. A change in either field is
considered to be a modification of the subject according
to the definition of Modified() supplied in the system’s
subcontract. A class O1 plays the Observer role. In an
initial version of the system, O1 is interested only in the
value of f1; changes in f2 are ignored. The Update()
method of O1 uses an appropriate getter method to re-
trieve the value of f1, and then updates the observer’s
state to become Consistent() with the state of the sub-
ject. The Consistent() concept is defined suitably in the
subcontract. The S1 class includes a bug that omits a call
to Notify() when a change in f2 occurs. A PTCT similar
to the one above will not detect this defect since each ob-
server will remain Consistent() with the subject when
the other method terminates — even if 2 has changed
without a corresponding call to Notify().

During system evolution, O1 is modified so that the
value of f2 becomes significant. Instances of O1 record
the current value of f2 associated with their correspond-
ing subject. Hence, the definition of Consistent() is suit-
ably modified, as is the implementation of O1’s Up-
date() method. The new implementation retrieves the
values of both f1 and f2, and updates the state of the ob-
server appropriately. When the test case derived from
the PTCT shown in Fig. 3 is executed, the assert state-
ment will generate an error; the clause involving the
Consistent() concept will be violated. The natural as-
sumption is that the fault lies in an area affected by sys-
tem evolution. In fact the defect lies in the original S1

class — in particular, the failure of its other() method to
invoke Notify() when the value of f2 changes.

The solution is to revise the PTCT to fully test the
interaction requirements specified in the pattern contract,
rather than testing for net effects. More precisely, the last
two clauses of the assert statement in Fig. 3 (line 10)
should be replaced with the following conditions:

s assert (... clauses from Fig. 3 ...
9 && (!Modified(pre_s,s) ||
10 ((tl.length()==1)&&(tl.m()==notify))))

3 Generating Test Cases

Given PTCTs such as those in Fig. 2 and 3, how do
we generate actual test cases corresponding to a given
system built using the Observer pattern? Consider, for
example, line 7 of Fig. 2. The method Attach ()
that is being invoked in this line may have an entirely
different name in S. Indeed, even the classes play-
ing the Subject and Observer roles are likely to have
their own names appropriate for the application. In the
Hospital simulation system presented in [21], for exam-
ple, the Patient class plays the Subject role and the
Nurse class plays the Observer role. The method that
plays the Attach () roleis Patient .addNurse ();
the nurse being “attached” being passed as an argu-
ment to the method. As detailed in [21], all of this
information is specified in the corresponding subcon-
tract, in particular in the role-map that specifies how
the Patient class plays the Subject role and how the
Nurse class plays the Observer role. Thus it is straight-
forward for the JDUnit tool, given the PTCT and the
subcontract, to construct a test case for the Hospital sys-
tem by replacing the constructor calls in lines 1 and 2
by calls to constructors of the Patient and Nurse
classes, the Attach () method call in line 7 by a call
toPatient .addNurse () etc.

There are, however, some important questions in go-
ing from the PTCTs to the test cases. Again considering
the Hospital system, not only does the Nurse class play
the Observer role, so does the Doctor class. In other
words, both nurse objects and doctor objects may
be “attached” to a patient object. So in the PTCT
in Fig. 2, should JDUnit replace the constructor call in
line 2 by a call to the constructor of Nurse or Doctor?
One possible solution, the one adopted in JDUnit, is to
generate two test cases, one corresponding to each. For
the PTCT in Fig. 3 which involves two observers, this
would mean generating four different test cases corre-
sponding to all possible combinations of o1 and 02 be-
ing doctor and nurse objects. But, in the Hospi-

tal system described in [21], one is not allowed to at-
tach two doctor objects at the same time to a given
patient object! In other words, an attempt to call
addDoctor () on a patient object that already has
a doctor will violate the pre-condition of this method
and hence the method may behave in whatever way it
chooses and this is not a bug in the system, despite the
fact that, because of such behavior, the assert in the
test case may fail. In order to address this type of prob-
lem, JDUnit inserts additional asserts in the test cases
it generates immediately prior to calls to any methods.
Each of these asserts checks that the pre-condition
of the method being called is satisfied. If, when a test
case is executed, such an assertion is not satisfied, that is
recorded in the log maintained by the system; but the as-
sertion failure does not indicate a failure of the test case’.

Yet another question that we need to address in gen-
erating test cases from the PTCT concerns the call to the
other () method that appears in the PTCT in Fig. 3
(line 7). In general, the class playing the Subject role
may have several such methods. In that case, which of
these methods do we call? One answer would, of course,
be to generate multiple test cases, one corresponding to
each of these methods. But what if some of these meth-
ods expect additional arguments? How do we gener-
ate suitable values for these additional arguments? Note
that we cannot assign arbitrary values to these arguments
since, as in the case considered in the last paragraph, the
pre-condition of the method in question may expect these
arguments to satisfy specific conditions. If the values we
generate do not satisfy them, any assertion violation may
not actually indicate a bug in the system at all. Hence, as
in the earlier case, prior to such a call, JDUnit inserts the
necessary check.

There is another important related issue. If the
other () method in question does expect additional ar-
guments, it would clearly be inadequate in general to
generate only a handful of values for these arguments.
For one thing, as we just noted, the generated values may
not satisfy the method’s pre-condition. Even if some of
the values do satisfy the pre-condition, ensuring appro-
priate coverage of the range of possible behaviors that
the method may exhibit will correspondingly require us
to generate a sufficiently wide range of values —that sat-
isfy the method’s pre-condition— for these arguments. We
will consider coverage questions in the next section.

Consider again the PTCT in Fig. 2. This, as we saw, is
intended to test the behavior of the Attach () method.

"This is a distinction from the JUnit framework where every as-
sertion violation is reported as a failure. In order to allow a different
treatment for pre-condition violations, we use an additional method,
preAssert, to specify such assertions.

In this PTCT, the method is invoked on a freshly created
subject, passing a freshly created observer as argu-
ment. Suppose the tester of a given system such as the
Hospital system suspects, based on his or her knowledge
of the system internals, that this method (or rather the
one(s) playing its role, as specified in the subcontract)
functions correctly when the objects in question are in
their newly instantiated states but may not be so well be-
haved if, before the call to Attach (), the objects had
gone through certain state changes via certain calls to cer-
tain methods of their respective classes. In this case, the
tester would clearly like to be able to generate one or
more test cases that confirm or refute this suspicion. In
order to enable this, we need to allow the tester to in-
sert additional calls to various methods of the involved
classes at various points in going from the PTCT to the
test cases. If, however, the tester were to introduce ar-
bitrary calls of this kind at inappropriate points, one or
more of the asserts in the resulting test case might fail
even though there is no bug in the system under test. For
example, suppose the tester were to introduce a call to
Detach () —or rather the method that plays this role—
immediately following the call to Attach () in line 7
of this PTCT, passing the just attached observer as ar-
gument to this call to Detach (). Clearly the clause
that appears in line 9 of the PTCT would be violated
since s.obs will no longer contain a reference to the
observer in question. To prevent such anomalies, we
should only allow calls to other () methods to be in-
troduced in this manner. These methods —assuming they
satisfy the requirements in the others specification of
the corresponding role— will not make such changes and
hence the asserts in the test case must indeed be satis-
fied if the system correctly implements the pattern.

There are, however, situations where it is indeed nec-
essary for the system tester to be able to insert, into the
test case, calls to named methods beyond those that
appear in the PTCT. For example, it may be that the
tester, again because of knowledge of systems internals,
feels that the Attach () method generally functions
correctly. However, if before the call to Attach (),
there are 10, or 20, or 30, ... observers already attached,
then, perhaps because of the particular style of memory
management used in the class, the method may fail to
work correctly. Clearly in order to test such a case, the
tester needs to be able to create a situation where, say, 10
observers are already attached, and then go through the
code and the assertion checks as in the PTCT in Fig. 2.

In order to allow for all these considerations, we have
currently adopted the following approach. A PTCT, in
general, consists of an initialization segment followed by

a body segment. For the PTCT in Fig. 2, the initializa-
tion segment consists of the first two lines, the rest being
the body. The initialization segment will be followed by
an assert. To simplify the presentation, we omitted
this clause in the PTCTs in Figs. 2 and 3. For the first
PTCT, the assert would require the observer o not be
a member of s.get _obs (). For the second PTCT, the
initialization segment consists of lines 1 through 4. The
assert clause would require that o1 and o2 both be
members of s.get_obs ().

When generating test cases for a given system S,
the system tester has the option of simply allowing the
JDUnit tool to generate them from the PTCT using the
information in the pattern contract, the subcontract for
S, and the specifications of the methods of S. The tool
will generate a relatively small number of test cases, re-
placing instances of various role objects with instances
of the corresponding classes as specified in the subcon-
tract, replacing calls to named methods with calls to the
methods mapped, again as specified in the subcontract,
to the named methods, replacing other () calls by
calls to each of the other methods of the corresponding
classes, etc.; and inserting the checks for pre-condition
violations.

Alternately, and more commonly, the system tester
will define a test case specializer (TCS). The TCS will
first specify a (possibly empty) segment of code consist-
ing of calls to named as well as other methods that the
tester wants to have inserted into the test case following
the initialization segment given in the PTCT. Thus, in the
case of the PTCT in Fig. 2, the tester may, specify this
part of the TCS to consist of a series of ten observer
objects followed by calls to the Attach () method to
attach each of these objects to the subject. The TCS no-
tation (whose details we omit since they are still evolv-
ing) also allows the tester to specify, using a regular-
expression notation, a number of alternative segments of
code. In that case, the tool will generate a number of
different test cases, one corresponding to each specified
alternative. In each case, the JDUnit tool will insert the
assert specified in the PTCT following the initializa-
tion segment. This will ensure that while the tester has
the ability to initialize the test case in ways most suited
for testing a given system, the basic intent of the PTCT
is not violated.

The body of the PTCT has the structure we have dis-
cussed, but, may additionally define a number of points
each of which is either an any extension point or an other
extension point. The former has the syntax, L.: ANY;
where L is a unique label followed by an assert clause;
the latter has the syntax L: OTHER;, L again being a

unique label and again followed by an assert. The in-
tent is that, in the TCS, the tester may specify, for each
such labeled point, a corresponding segment of code with
the restrictiion that in the case of the other extension
points, the code contain only calls to other () meth-
ods. The tool will insert this code in the generated test
case (or test cases if more than such segment is speci-
fied), followed by the assert specified in the PTCT.
In effect, these mechanism provides the tester with suf-
ficient flexibility to generate, from the PTCT, the most
suitable test cases for the particular system.

4 Coverage

Various metrics for measuring test coverage have been
considered in the testing literature [2]. For approaches
based on formal specifications, a metric based on par-
titions [16, 23, 13] is perhaps most suitable. The idea
is as follows. Suppose the unit under test is just a sim-
ple function f() that receives some arguments of simple
types and returns a value of a simple type. The post-
condition of f() will typically be written as a number,
say, n of disjunctive clauses, each corresponding to a par-
ticular set of possible values for the input arguments and
specifying the condition that the output of f() must sat-
isfy for that case. These n sets of possible values of the
input arguments give us the specification partition of the
input domain. For convenience, we will name these sets
S1, 89, ...,Sy,. The implementation of f(), i.e., the code
structure of f() will provide us the implementation parti-
tion Iy, ..., I, of the input domain. In effect, each set in
this partition corresponds to one path through the body
of f(). Let us Sj; to denote the intersection of S; and
I}.. The key observation behind the approach [16] is that
if there is a bug in the code, it must be along some par-
ticular path in the implementation of f() and this should
affect all the points in (at least) one of the S;,. Thus if
we ensure that our test cases include at least one point in
each S, we achieve complete coverage.

For our work, the pattern contract provides the specifi-
cation partition. Thus, for example, the others specifica-
tion in Fig. 1 contains two disjunctions corresponding to
the two sets in its partition. The implementation partition
would, of course, depend on the details of the system im-
plementation. We are currently working on ways that a
system tester can provide a specification of this partition.
Given that, we can then check the test cases generated by
JDUnit to determine how much coverage is achieved; and
flag those S, sets that are not covered. The tester will
then be able to revise the TCS to include the necessary
additional test cases.

5 Related Work

Several authors [12, 5, 17, 4] have proposed ap-
proaches to formalizing patterns. None of these authors
consider the issue of testing systems against specifica-
tions of patterns or their application in the system. Mc-
Gregor et al. [10, 11] introduce the notion of a test pat-
tern. This is somewhat similar to our PTCT in that it
specifies a particular scenario of application objects in-
teracting in some specific ways. However, there is no
underlying specification of the pattern against which the
behavior of the system is compared. Nor is there any no-
tion of generating test cases for different systems from
such a test pattern.

Reimer et al.’s [15] SABER system is designed to stat-
ically detect errors in large Java applications that use par-
ticular standard frameworks. Correct use of these frame-
works require that certain methods be invoked in cer-
tain orders, that certain other methods not be at certain
points, etc. Their system looks for violations of such
requirements. One aspect of this work is that require-
ments involving, for example, a particular long sequence
of method calls, are described in the form of rules in an
XML database. Such an approach might also be applica-
ble to the static portions of our PTCTs. Apart from these,
there seems to be little work dealing with pattern-centric
testing of systems.

6 Discussion

@ paten (3) Patem
Contract Design Test Case
based V| Pattern |} based Template
on on
% J
(@) Test
J| System |
et ?| Design | ¢
on

Case
Dased Specializer
on
Specialized Contract j ——— | Specialized Pattem | 4——— |
S —— ./ specifies” ™. L \

Fig. 4. Generating Test Cases

g o ‘

Specialized PTCT

One of key guideline for using the JUnit framework is
that the tests should be designed to test behavior rather
than the methods of the class under test [14]. This also
applies to our approach except that the behaviors in ques-
tion are those corresponding to the use of a particular
pattern in the system and hence, typically, involve mul-
tiple classes of the system, rather than the behaviors that

a single class is responsible for as is the case with stan-
dard unit testing. Fig. 4 pictorially depicts the relations
between the different components of our approach.

Several issues remain to be addressed as we have seen
in the previous sections. Perhaps the most important are
those having to do with having a sufficiently flexible no-
tation for expressing PTCTs as well as TCSs. We hope
that the discussion at the workshop will also to address
these issues satisfactorily.

References

[1] K. Beck, E. Gamma. Test infected: Programmers
love writing tests. Java Report, 3(7):37-50, 1998.

[2] R. Binder. Testing object-oriented systems.
Addison-Wesley, 1999.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, and M. Stal. Pattern-oriented software archi-
tecture: A system of patterns. Wiley, 1996.

[4] J. Dong, P. Alencar, and D. Cowan. A behavioral
analysis approach to pattern-based composition. In
Proc. of the 7" Int. Conf. on Object-Oriented In-

formation Systems, pp. 540-549. Springer, 2001.

[5] A.H. Eden. LePUS: a visual formalism for object-
oriented architectures. In Proc. of the 6! World
Conference on Integrated Design and Process Tech-

nology, pp. 149-159. Computer Society, 2002.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable OO Soft-

ware. Addison-Wesley, 1995.

[7] J.O. Hallstrom, N. Soundarajan, and B. Tyler.
Amplifying the benefits of design patterns. In
J. Aagedal and L. Baresi, editors, The 9t Int. Conf.
on Fundamental Approaches to Softw. Eng. (FASE),

pp- 214-229. Springer, 2006.
(8]

J. Hannemann and G. Kiczales. Design pattern im-
plementation in Java and Aspect]. In Proc. of OOP-

SLA, pp. 161-173. ACM, 2002.
(9]

C. Jones. Systematic Software Development Using
VDM. Prentice-Hall, 1990.

[10] J McGregor. Testpatterns: Please stand by. Journal

of Object-Oriented Programming, 12:14—19, 1999.

[11] J McGregor, D Sykes. A Practical Guide to Testing
Object-Oriented Software. Addison Wesley, 2001.

10

[12] T. Mikkonen. Formalizing design patterns. In Pro-
ceedings of 20th ICSE, pp. 115-124. IEEE Com-
puter Society Press, 1998.

[13] S Ntafos. Comparisons of random, partition, and
proportional partition testing. [EEE Trans. on
Softw. Eng., 27(10):949-960, 2001.

[14] J Rainsberger. JUnit Recipes. Manning, 2005.

[15] D. Reimer, E. Schonberg, K. Srinivas, H. Srini-
vasan, B. Alpern, R. Johnson, A. Kershenbaum, and
L. Koved. "SABER”: smart analysis based error
reduction. In Proc. of "ISSTA '04”, pp. 243-251.
ACM Press, 2004.

[16] D Richardson L Clarke. Partition analysis. IEEE

Trans. on Softw. Eng., 11(12):1477-1490, 1985.

[17] D. Riehle. Composite design patterns. In Proc. of

OOPSLA, pp. 218-228. ACM, 1997.

[18] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann.
Pattern-oriented software architecture: Patterns for

concurrent and networked objects. Wiley, 1996.

[19] N. Soundarajan and J. Hallstrom. Pattern-based
system evolution: A case-study. In K. Zhang,
G. Spanoudakis, and G. Visaggio, editors, /8th Int.
Conf. on Softw. Eng. and Knowledge Eng. (SEKE),

pp- 321-326. Knowledge Systems Institute, 2006.

[20] N. Soundarajan, J.O. Hallstrom. Responsibili-
ties and rewards: Specifying design patterns. In
A. Finkelstein, J. Estublier, D. Rosenblum, edi-
tors, Proc. of 26th Int. Conf. on Softw. Engineering

(ICSE), pp. 666-675. Computer Society, 2004.

[21] B Tyler, J Hallstrom, and N Soundarajan. A
comparative study of monitoring tools for pattern-
centric behavior. In M Hinchey, editor, Proc. of
30th IEEE/NASA Sofware Engineering Workshop

(SEW-30). IEEE-Computer Society, 2006.

[22] J. Warmer and A. Kleppe. The Object Constraint

Langauge. Addison-Wesley, 1999.

[23] E Weyuker and B Jeng. Analysing partition testing
strategies. IEEE Trans. on Softw. Eng., 17(7):703—
711, 1991.

