
Formalizing Reusable Aspect-Oriented Concurrency Control

Neelam Soundarajan, Derek Bronish, Raffi Khatchadourian
Computer Science and Engineering

Ohio State University
{neelam,bronish,khatchad}@cse.ohio-state.edu

Abstract

Java and its library provide powerful concurrency
control mechanisms. However, their use can lead to sim-
ilar synchronization code being scattered across multi-
ple classes, synchronization and functional code being
tangled together, and similar code being duplicated in
many applications. Aspect-oriented (AO) programming
makes it possible to address these problems. The pre-
cise behavior of systems built using AO techniques can,
however, be difficult to understand. We propose a spec-
ification approach to precisely express key concurrency
and synchronization properties of such systems. We il-
lustrate the approach with a simple example.

1 Introduction
Java provides a number of concurrency control

mechanisms that allow a designer to specify that partic-
ular methods of a class are synchronized. When a thread
invokes such a method on an object, it is suspended un-
til it acquires the lock associated with the object, then
proceeds to execute the method, releasing the lock when
the method finishes. A finer-grained version allows an
individual statement (or block) of a method to synchro-
nize on the this object or, possibly, a different object.
However, use of these mechanisms can reduce the de-
gree of concurrency considerably. To alleviate this, the
Java library provides the Lock interface implemented
by classes such as ReentrantLock. By using lock
objects appropriately, one can regain concurrency. But,
at the same time, their use introduces some problems.
First, if concurrency was not foreseen or its degree not
anticipated when a class was designed, the approach re-
quires invasive changes to the class. Second, synchro-
nization and functional code of a class are often tangled
together. Third, similar synchronization code may be
scattered across multiple classes since similar synchro-
nization concerns may arise in each one.

Aspect-oriented (AO) techniques help address such
problems. The synchronization code can be contained in
an aspect, separating it from the functional code. More-
over, by defining the pointcuts in the aspect suitably, the

aspect’s advice can apply to methods of multiple classes,
thereby meeting the synchronization needs of each class.
Synchronization code that is common to different ap-
plications can be defined in abstract aspects with sub-
aspects for each application specializing it for that ap-
plication, thereby eliminating code duplication.

The precise behavior of systems built in this man-
ner can, however, be difficult to understand and formal
specifications can help. We develop an approach that
allows us specify, in the form of contracts, important
behaviors, especially concurrency behaviors, of abstract
aspects; and, in the form of subcontracts, specify how
subaspects specialize the contracts to achieve behavior
specific to the given system. We illustrate the approach
by applying it to a simple example based on one in [7].

In Section 2, we consider related work. In Section 3,
we sketch the model underlying our specifications. In
Section 4, we present our specification approach via a
simple case-study. Section 5 concludes the paper.

2 Background
Several approaches have been developed for reason-

ing about sequential AO systems. Dantas and Walker
[3] consider harmless advice that does not modify the
behavior of base-code, i.e., the underlying program. In
[6], we consider how to provide information to arrive
at the “richer” behavior caused by the advice without
reanalyzing base-code. Katz and Katz [5] consider sim-
ilar rely-guarantee specs. Aldrich [1], and Griswold et
al. [4] propose ways to minimize the effects of aspects
on base-code. Zhao and Rinard [12] consider abstract
aspects but the the types of abstractness they allow are
limited. Xu et al. [10] review approaches to reasoning
about concurrency. Long & Long [8] present a formal
specification of Java concurrency. Yang & Poppleton
[11] present a model checker for concurrent Java.

3 Model Of Multi-threaded Computation
Fig. 1 outlines, in RESOLVE [9] style, the main com-

ponents of a model of multi-threaded computation in a
language with reference semantics as in Java. A shared
heap state, lines 1–3, represents the objects in the sys-

tem. A thread, lines 7–8, consists of its id, a boolean
indicating if it is active, and its control-flow-state which,
lines 4–6, represents the sequence of method calls made
in the thread that have not yet completed. A synchro-
nized lock, lines 9–11, consists of the id of the associated
object, whether it is currenly locked and, if so, the id of
the holding object, and two sets of threads waiting to
execute, respectively, synchronized and unsynchronized
methods on the object. The other type of lock (not for
a specific object), lines 12–13, consists of a boolean in-
dicating whether it is locked, if so the id of the object
holding it, and the set of ids of the objects waiting for
it. A lock, lines 14–15, is one of these two types; note
that this model is inadequate for dealing with read-write
locks which we do not consider. A system, lines 16–17,
consists of a heap, its current threads, and its locks.

1 math type Heap_State is
2 partial function from ObjectId
3 to ObjectValue
4 math type Control_Flow_State is
5 sequence of tuple of
6 (m: method sig, obj: ObjectId)
7 math type Thread is tuple of
8 (id, active, cfs)
9 math type Synch_Lock is tuple of

10 (object, locked, holder,
11 waitersForSynch, waitersForUnsynch)
12 math type Other_Lock is tuple of
13 (locked, holder, waiters)
14 math type Lock is
15 Synch_Lock or Other_Lock
16 math type Threaded_System is tuple of
17 (heap, threads, locks)
18 constraint: l: Synch_Lock
19 l.locked ⇒ [l.holder.active
20 ∧ head(l.holder.cfs).obj=lId
21 ∧ head(l.holder.cfs).m is synchronized
22 ∧ ∀ t ∈ waitersForSynch:
23 not t.active ∧ head(t.cfs).obj=lId
24 ∧ head(t.cfs).m is synchronized]

Figure 1. Model of threaded system
The model must satisfy certain constraints, one of

which, lines 18–27, is that if a synch Lock is locked,
the thread holding it must be active, must, as indi-
cated by its cfs, be currently executing a synchronized
method on the corresponding object, and threads whose
id’s are in waitersForSynch must be inactive and
waiting to execute a method on the object.

4 Case Study
Due to lack of space, we present our specification

approach via a simple case-study, in Fig. 2, based on
the Shape example of [7]. Instances of the class rep-

resent shapes with x-, y-coordinates, and height
and width which may be accessed using get meth-
ods; move methods allow us to move the shape;
magnify() and shrink() to expand and contract it.

1 class Shape
2 {protected int x = 0, y = 0,
3 height = 5, width = 10;
4 public int getX() { return x; }
5 //getY(), getHeight() etc. similar
6 public void moveNorth() { y++; }
7 //moveSouth(), moveEast(), etc. similar
8 public void magnify() {
9 height=height+5; width=width+10;}

10 public void shrink() {
11 height=height-5; if(height<=0)height=5;
12 width=width-10;if(width<=0)width=10;}}
13

14 protected final Lock locLock =
15 new ReentrantLock();// lock for location
16 protected final Lock dimLock =
17 new ReentrantLock();// and dimension
18 public int getX() { int tx;
19 locLock.lock(); tx = x;
20 locLock.unlock(); return tx; }
21 //getY() similar; getHeight(),getWidth()
22 // similar but using dimLock
23 public void magnify() {
24 dimLock.lock();...;dimLock.unlock();}
25 //move methods similar but using locLock

Figure 2. Shape class and Split locks

Suppose the application has many threads accessing a
shape. Making each method synchronized would pre-
vent interference between the threads but minimize con-
currency. Instead, we use two locks, lines 14–17, one for
location, the other for dimension. The methods, lines
18–25, which access/modify the location, respectively
dimension, acquire the former, respectively the latter,
perform their work, and release the lock.

4.1 Split Lock Aspect
In the AO approach in Fig. 3, lock1, lock2

serve the same purpose as locLock, dimLock;
fstSetOps()/secondSetOps() pointcuts corre-
spond to calls that should use lock1/ lock2. The ad-
vice, lines 7-10, is the synchronization code. Fig. 4 de-
fines the subaspect for Shape, achieving the same level
of concurrency as before but without scattering/tangling.

Suppose now shrink() was changed as follows: if
the object was shrunk below a certain size, move it to
a more visible place by changing x and y; and suppose
we left the subaspect as in Fig. 4. This system may be-
have acceptably in all test cases. Indeed, the only time it

1 public abstract aspect SplitLockAspect
2 perthis(fstSetOps() || scndSetOps()){
3 protected abstract pointcut fstSetOps();
4 protected abstract pointcut scndSetOps();
5 private Lock _lock1 = new ReentractLock();
6 private Lock _lock2 = new ReentractLock();
7 before():fstSetOps(){ _lock1.lock();}
8 after() :fstSetOps(){ _lock1.unlock();}
9 before():scndSetOps(){ _lock2.lock();}

10 after() :scndSetOps(){ _lock2.unlock();}

Figure 3. SplitLock Aspect

;
would misbehave is if one thread invoked, say, getX()
on a shape at the same time another was executing
shrink() on it, and the size of the shape was be-
low our minimum, and the timing of the two executions
resulted in a strange value being returned for x.
1 aspect ShapeSplitLockAspect
2 extends SplitLockAspect {
3 pointcut fstSetOps() :
4 execution(Shape.getX())
5 ||execution(Shape.getY())
6 ||execution(Shape.moveNorth())||...
7 protected pointcut scndSetOps() :
8 execution(Shape.getHeight())||...
9 ||execution(Shape.shrink())||...

Figure 4. Subaspect for Shape System

4.2 Contracts and Subcontracts
Consider an abstract aspect AB. We specify AB in an

aspect contract. For abstract portions of AB, we will use
abstraction concepts in the contract. These will not be
defined in the contract but will be used in it. The con-
tract will also impose certain constraints that definitions,
provided in subaspects, for the concepts must satisfy.

Part of the SplitLockAspect contract appears in
Fig. 5. Line 5 requires that the definition, in a subaspect,
of firstSetOps() must be such that all methods
whose execution join points match it must be from a sin-
gle class. This represents that the lock is not intended to
prevent simultaneous execution of methods from differ-
ent classes. The next clause, for scndSetOps(), is
similar. The next clause, line 6, requires that these two
classes be the same. The next clause requires a given
method to be mapped to (at most) one of these point-
cuts. The subaspect in Fig. 4 can be easily seen to meet
these requirements.

The constraint in lines 10–11 requires that the (union
of the) set of objects accessed by the methods mapped
to firstSetOps be disjoint from the set accessed
by methods mapped to secondSetOps. But the in-
formation needed to check this constraint is not part
of the subaspect in Fig. 4. The abstraction concept,

1 abstraction concepts:
2 set AccessedObjects(set mthds)
3 //objects accessed by methods in mthds
4 constraints:
5 [(|fstSetOps.Class|=|scndSetOps.Class|=1)
6 ∧(fstSetOps.Class=scndSetOps.Class)
7 ∧(firstSetOps.Mthds∩scndSetOps.Mthds=∅)]
8 AccessedObjects(S1 ∪ S2) =
9 AccessedObjects(S1)∪AccessedObjects(S2)

10 [(AccessedObjects(fstSetOps.Mthds)∩
11 AccessedObjects(scndSetOps.Mthds) = ∅)]
12 results:
13 [(m1∈fstSetOps.Mthds)∧(m2∈scndSetOps.Mthds)]
14 ⇒ [nosuspension(m1,m2)
15 ∧ nosuspension(m2,m1)]
16 [(m1∈fstSetOps.Mthds)∧(m4∈ fstSetOps.Mthds)]
17 ⇒ noconcurrency(m1,m4)
18 [(m3∈scndSetOps.Mthds)∧(m2∈scndSetOps.Mthds)]
19 ⇒ noconcurrency(m3,m2)

Figure 5. Contract for SplitLock Aspect

AccessedObjects (line 2) (and its definition in the
subcontract), help address this. The contract does not
define it but the name (and associated comment) is sug-
gestive: the set of objects accessed by the methods in
mthds. The constraint in lines 10–11 uses it to cap-
ture the key requirement that the intersection between
the sets of objects accessed respectively by the meth-
ods mapped to the two pointcuts be empty. Lines 8–9
impose a simple constraint on the definition, in the sub-
contract, of AccessedObjects: that it be distributive.

Lines (11-16) specify the results of using the aspect:
if two methods are mapped to the two pointcuts, their
respective executions will not suspend each other; but if
they are mapped to the same pointcut, there will be no
concurrency between their executions.

The subcontract ShapeSplitLockAspect needs to
only define AccessedObjects. Since it is required, by
the aspect contract, to be distributive, we can define it by
specifying its value for each method mapped to the two
pointcuts. This is easily done for our example; thus, for
getX(), the value will be the set {x}; for magnify(),
it will be {width, height}; etc.

Next we have to check that the contract’s constraints
are satisfied. It is at this point that we can locate the
bug considered earlier where shrink() may modify x
and y. Given this code, AccessedObjects(shrink)
should be {x, y, height, width}; hence, the con-
straint in lines (8-9) is violated; thus, for exam-
ple, x is in both AccessedObjects(shrink) and
AccessedObjects(getX) and these two methods are
mapped to the two pointcuts and the contract is violated.

Next, the definitions in the subaspect and subcon-

tract can be plugged into the aspect contract, in par-
ticular, into the results clauses of the contract to arrive
at the specialized versions of these clauses that apply
to this particular system. In the current case this will
allow us to conclude, for example, from lines (15–16)
of the contract, that if a thread was currently executing
getHeight() on a shape object and another invoked
magnify() on the same object, the latter would be sus-
pended until the former finishes. To build another appli-
cation in which SplitLockAspect could be used, we
would only have to define the corresponding subaspect
and subcontract, defining respectively the pointcuts and
AccessedObjects; next, verify that, with these defini-
tions, the constraints in Fig. 5 are satisfied; and, finally,
arrive at the behavior of the application by plugging in
the definitions into the results in Fig. 5.

How do we define nosuspension() and noconcur-
rency()? These are primitives provided by the formal-
ism and are defined in terms of the model of Section 3.
Thus noconcurrency(M), where M is a set of methods,
means if t1 and t2 are two threads in the threads
component of a system and m1, m2 are elements of
M, m1 is in cfs, the control-flow-state of t1, m2 is
in cfs of t2, and the corresponding obj components
are equal to each other, then the active component
of t2 must be false if that of t1 is true. The precise
set of primitives and their definitions is part of our cur-
rent work. One other point is worth noting. Standard
approaches to formalizing aspects typically make use of
pre- and post-conditions. Why doesn’t our contract for
SplitLockAspect involve these? The answer is that
our focus is on concurrency issues. Thus, for example,
the constraint expressed in lines (8–9) of Fig. 5 can be
compared with the notion of interference freedom [10].
Our clause, by requiring that the intersection of the sets
of objects accessed by the two groups of methods to be
empty, ensures that no method in the first group will in-
terfere with any method in the second group.

5 Discussion

Our goal was to show how common synchronization
patterns may be implemented using abstract aspects that
are then specialized, using subaspects, for individual
systems; and develop an approach to specify essential
properties of the aspects and subaspects. Although the
question of and reasoning about AO programs has re-
ceived much attention, the problem of abstract aspects,
especially for concurrency behaviors, and their special-
izations has not, to our knowledge, been addressed.

Our contracts and subcontracts had to refer to more
than just the class variables. Hence we defined a model

that provided a view of the threads that exist at runtime.
And in our specs, we referred to components of this
model, allowing us to specify the concurrency behaviors
of interest. Importantly, the use of abstraction concepts,
in conjunction with the constraints imposed on them, al-
lowed us to represent the intent of the abstract aspect.

In Section 4, we relied on intuitive reasoning to show
that the subaspect and its subcontract satisfy the aspect
contract’s requirements. For more complex systems,
tool support would be needed. Bodden and Havelund
[2] describe an AO algorithm, Racer, that uses new
concurrency-related pointcuts that may be used to iden-
tify concurrency bugs. It should be possible to use a
Racer-like approach to build a tool that will spot vi-
olations of our contracts/subcontracts and we plan to
pursue this in future work. Along a different line, our
model may help identify additional AO primitives that
will be of use in writing concurrent programs; for exam-
ple, primitives that allow the programmer access to in-
formation about the threads in the system may be useful.
These would be analogous to such primitives as cflow
but tuned to the needs of concurrency behaviors.

References

[1] J. Aldrich. Open modules: Modular reasoning about ad-
vice. In Proc. of ECOOP, pages 144–168. Springer, 2005.

[2] E. Bodden and K. Havelund. Racer: Race detection using
”AspectJ”. In ISSTA, pages 155–166. ACM, 2008.

[3] D. Dantas and D. Walker. Harmless advice. In POPL ’06,
pages 383–396. ACM, 2006.

[4] W. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari,
Y. Cai, and H. Rajan. Mod. softw. des. with crosscutting
interfaces. IEEE Softw., 23(1):51–60, 2006.

[5] E. Katz and S. Katz. Incremental analysis of interference
among aspects. In Wkshp. on fnds. of AO langs., 2008.

[6] R. Khatchadourian, J. Dovland, and N. Soundarajan. En-
forcing behavioral constraints in evolving AO programs.
In Wkshp. on fnds. of AO langs., 2008.

[7] D. Lea. Concurrent Programming in Java, Second Edi-
tion. Addison-Wesley, 2000.

[8] B. Long and B. Long. Formal specification of java con-
currency to assist software verification. In Int. Symp. on
Par. and Dist. Processing. IEEE-CS, 2003.

[9] M. Sitaraman and B. Weide. Component-based software
using ”RESOLVE”. Software Eng. Notes, 19(4):21–63,
1994.

[10] Q. Xu, W. de Roever, and J. He. Rely-guarantee method
for verifying shared variable concurrent programs. For-
mal Aspects of Computing, 9(2):149–174, 1997.

[11] L. Yang and M. Poppleton. Jcsprob: Implementing inte-
grated formal specifications in concurrent java. In CPA,
pages 67–88, 2007.

[12] J. Zhao and M. Rinard. Pipa: Behavioral interface for
”AspectJ”. In FASE, pages 150–165. Springer, 2003.

