
Automatic Monitoring of Control-flow Through Inheritance
Hierarchies

Benjamin Tyler
Computer Science & Eng.

Ohio State University
Columbus, OH 43210, USA

tyler@cse.ohio-state.edu

Neelam Soundarajan
Computer Science & Eng.

Ohio State University
Columbus, OH 43210, USA

neelam@cse.ohio-state.edu

ABSTRACT
Polymorphism, based on inheritance and dynamic binding in stan-
dard object-oriented languages, is one of the most powerful mech-
anisms available to the OO designer. It allows the system de-
signer to customize the behavior of functions defined in particular
base classes by suitably redefining, in derived classes, other func-
tions that they invoke. At the same time, polymorphism, especially
when used in conjunction with thesuper mechanism that most OO
languages provide, can result in extremely complex control-flow
among the various methods defined in the various classes. In this
paper, we develop an approach that can be used by the designer to
automatically trace this control-flow. We also present results from
a prototype implementation based on our approach.

1. INTRODUCTION
A key aspect of the the Object Oriented (OO) approach ispoly-

morphism1. Polymorphism enables a derived class designer, as-
suming that the base class has been suitably designed, to construct
interesting and varied derived classes by just redefining an appro-
priate set of functions of the base class. Given such redefinitions,
not only will the redefined functions exhibit new behavior, but since
polymorphism ensures that calls in other functions of the base classes
to these functions are dispatched to their redefined versions (assum-
ing that the objects in question are instances of the derived classes),
these other functions will also exhibit suitably enriched behavior.
But polymorphism also poses some serious difficulties for the sys-
tem designer. A fundamental problem [17, 2] has to do with the
way that control flows between methods defined in different classes
of an OO program. Our goal in this paper is to present an approach
that exploits polymorphism in helping analyze this control flow.

There are two distinct aspects that contribute to the complexity
of control-flow among the methods defined in different classes of
a program. The first involves the related mechanisms of inheri-
tance and dynamic binding. Thus in the example presented in [2],
a fleshed-out version of which we will use as a small case-study in
this paper, the problem shows up as follows: There are five classes,
C1 throughC5, with C5 being a derived class ofC4, which is a
derived class ofC3, which in turn is a derived class ofC2, etc. A
methodc() is defined in the classC2, inherited byC3, and rede-
fined inC4, and inherited byC5. Another methoda(), defined in
C1 contains, in its body, a call toc(). When thisa() is applied

1Throughout, by ‘polymorphism’ we meaninclusion or subtype
polymorphism [3] achieved in standard OO languages such asJava
via inheritanceanddynamic binding.

Submitted to SEKE 2006.

to an object that is an instance ofC5, dynamic binding will ensure
that the call toc() that is made from within the body ofa() will be
dispatched to thec() defined inC4. On the other hand, if thisa()

were to be applied to an object that is an instance ofC3, the same
call will go to thec() defined inC2. This makes it rather difficult
to follow the control-flow that results from applying a method such
as a(); although that method is inherited by the various derived
classes2, what it actually does, in particular which method bodies it
invokes as it executes, depends critically on the particular class of
which the object in question is an instance.

The second aspect that contributes to the complexity of control-
flow is, somewhat paradoxically, one designed to avoid the dy-
namic binding. Thus one of the methods, say,c() that is redefined
in a derived class such asC4 may contain, in the body of that re-
definition, a call such assuper.c(). The reason that standard OO
languages provide the “super” mechanism is that often the redefi-
nition of a method such asc() in a derived class has to perform all
of the tasks carried out by the base class definition of the method,
plus some additional activities typically related to the additional
state (in the form of new member variables) of the derived class.
While the former task could be achieved by duplicating the code of
c()’s definition from the base class, the callsuper.c() serves the
same purpose by invoking the base classc(). But this means that
control transfers to the base class definition of the method –which
was supposedly superseded by the derived class definition– which
might invoke other methods that will be dynamically dispatched,
unless those invocations also use thesuper mechanism, etc.

In our discussion, we will use the termup-call to refer to calls
using thesuper mechanism since such a call will result in control
going from the current method to a method defined in an ancestor
class. Similarly, we will use the termdown-call to refer to calls
that are dispatched based on the class that the object on which the
method is applied is an instance of. We should note that “down-
call” is not always an accurate description; thus if a methodm()

defined inC4 and not redefined inC5 invokesn() in its body and
n() is defined inC3 and not redefined inC4 or C5, andm() is
applied to an instance ofC5, then the call thatm() makes ton()

will be handled byC3.n(); thus control flows fromC4.m() up to
C3.n() since it is that definition ofn() that applies to objects that
are instances ofC5. By contrast, the callsuper.n() necessarily
results in control flowing up.

Taenzer, Ganti, and Podar [17] coined the term “yo-yo problem”
to convey the effect of dynamically dispatched calls that typically
transfer control to methods defined in derived classes, alternating
with calls using thesuper mechanism that transfer control to meth-
ods in ancestor classes. To quote, “[t]he combination of polymor-

2The actual details of the example are slightly different, as we will
see later in the paper.

1



phism and method refinement [i.e., methods that use inherited be-
havior by invoking the method defined in the parent class using
thesuper mechanism] make it very difficult to understand the be-
havior of the lower level classes and how they work” [17]. Binder
[2] argues that the “[l]oss of intellectual control that results from
spaghetti polymorphism (the yo-yo problem) . . . ” is one of the
unique bug hazards of the OO approach.

Given this complexity, a graphical representation –which we call
a yo-yo graph– of control flow through the inheritance hierachy
would clearly be useful. Even more important is that the control
flow in a system be monitored automatically by a suitable tool as
the system executes; the information collected by the tool can then
be used to generate the yo-yo graph. Similar graphs, generated by
hand have been used by various authors. Given the complexity of
the control flow and the resulting potential for mistakes in generat-
ing the graph by hand, the advantages of such a tool are clear.

In this paper, we present an approach to runtime monitoring of
OO systems that allows us to automatically track the control flow
through inheritance hierarchies. Interestingly, and this is a testa-
ment to the power of polymorphism, our approach, as we will see,
exploits polymorphism for this purpose. Indeed, polymorphism
allows us to capture the needed information without makingany
changes to the classes whose methods are to be monitored as far
as trackingdown-calls are concerned, and making only minimal
changes for the purpose of trackingup-calls. We have implemented
our monitoring approach in a prototype tool which, given a system
and the list of names of the classes and methods to be tracked, au-
tomatically makes the needed changes to the system, and monitors
the system at runtime, logging information about the control flow.
Once the execution of the system completes, the tool generates the
system’s yo-yo graph based on the logged information.

The rest of the paper is organized as follows. In Section 2, we we
present a fleshed-out version of an example from [17, 2] which we
will use as our case-study. In Section 3, we develop our approach
to tracing both down-calls and up-calls; provide some details of
our prototype implementation based on our approach; and present
results of using it on the case-study. In Section 4, we discuss re-
lated work. In Section 5, we summarize our approach and consider
directions for future work.

2. CONTROL FLOW
Consider the program3 shown in Fig. 1 consisting of classesC1

throughC5, with each class (exceptC1) being a derived class of
the one immediately above it. This program is based on the one in
[2]; the only changes we have made are to flesh out the individual
method bodies to perform specific actions. But these actions are
not really intended to be particularly interesting; our focus rather is
on how control flows among the various methods as a result of the
use of polymorphism and calls tosuper methods.

The main() function defined inC5 creates an instance ofC5

and invokesa() on it. Since the closest ancestor ofC5 that has a
definition ofa() is C4, it is that definition that will be invoked. That
method invokessuper.a() which callsC3.a(), which in turn also
invokessuper.a() which callsC1.a(). That method invokesb()

and thenc() and these calls will be dispatched to their respective
definitions applicable to instances ofC5, i.e., C3.b() andC4.c()

respectively, etc.
Fig. 2, based on the one in [2], represents the static inheritance

structure of our program as well as the control flow. The left side

3For concreteness, we useJavain our discussions; but the approach
does not depend on any unique facilities ofJavasuch asreflection,
and is usable for other common OO languages.

abstract class C1 {
protected int x = 0;
public void a() { x++; x = b(); c(x-1); }
abstract public int b();
abstract public void c(int k); }

class C2 extends C1 {
protected int y = 0;
public int b() { y = 2*x; int j = d(y); return y+j; }
public void c(int k) { x = x - k; }
public int d(int k) { c(k+1); return x; } }

class C3 extends C2 {
protected boolean p;
public void a() { p = !p; super.a(); }
public int b() { return super.b(); } }
public void c(int k) { x = x + k; }
public int d(int k) { return x - 1; } }

class C4 extends C3 {
protected int z;
public void a() { super.a(); z++; }
public void c(int k) { super.c(k); z=z+x; }

class C5 extends C4 {
protected boolean q = true;
public int d(int k) { q = !q; return super.d(k); }
public static void main(String[] args)

{ C5 c5 = new C5(); c5.a(); } }

Figure 1: Program to be traced (original source code)

of the figure depicts, for each class, the methods inherited from the
parent class (these methods are labeledinh), defined or redefined
in the class (these methods have no label next to their names), or
as being redefined but the redefinition including asuper call (la-
beledref for “refinement”). The main part of the figure is yo-yo
graph representing the control flow when the callc5.a() is exe-
cuted. This graph seems to contain some errors. First, the method

C2

a (inh)
b
c
d

C1

a 

C3

a (ref )
b (ref )
c
d

C4

a (ref )
b (inh)
c (ref )
d (inh)

C5

a (inh)
b (inh)
c (inh)
d (ref )

C5.a

C4.a

C3.a

C1.a

C5.b

C3.b

C2.b

C5.d

C2.d

C4.c

C5.c

C2.c

Figure 2: Yo-yo graph (generated by hand)

d() is redefined inC3, not inherited by it. Therefore the arrow go-
ing fromC5.d to C2.d representing thesuper.d() call in the body
of C5.d() should instead go toC3.d. To further add to the con-
fusion, the discussion in [2] states thatC5.d() invokessuper.a().
If that were the case, the arrow fromC5.d should go toC3.a, not
C2.d. Similar problems can be seen with the methodc(). c() is
redefined inC3, not inherited. Therefore, thesuper.c() call in C4

2



should go toC3.c, not C2.c; and, as in the case ofC5.d(), an
accompanying table states thatC4.c() invokessuper.a() (which
would again be inconsistent with the arrow fromC4.c to C2.c). It
is possible that the problem lies with the left side of Fig. 2, i.e., the
inheritance diagram rather than in the yo-yo graph. Thus accord-
ing to the table accompanying the figure, methodsc() andd() are
inheritedby C3, not redefined in this class. In that case, the arrow
from C5.d to C2.d would indeed be correct as would the one from
C4.c to C2.c. But the confusion regarding calls tosuper.a() that,
according to the table, appear inC5.d() andC4.c() still remains.

In any case, what the example demonstrates is that even in rel-
atively simple systems, with just a handful of base and derived
classes, with methods redefined or refined in the derived classes,
can lead to complex control flow. Therefore we need ways to au-
tomatically track the flow at runtime and tools that can produce
suitable yo-yo graphs based on the information collected.

3. AUTOMATIC MONITORING
Given a system such as the one in Fig. 1, how can we automati-

cally monitor the system to obtain information about how the con-
trol flows? In our approach, corresponding to each classCi in the
OO program whose control-flow we are interested in tracking, we
will introduce a derived classTCi and define certain methods in
TCi. If we are interested in seeing what control-flow would result
when a methodm() is applied to an object that is an instance of,
say,C4, we create an object of typeTC4 and applym() to it. As
we will see below, theTCi classes will be defined in such a way
that the resulting control-flow will be essentially the same as if we
had appliedm() to an instance ofC4; the only difference is that
the “down” calls will, because of polymorphism, be “intercepted”
by the methods we define inTC4 which will record suitable infor-
mation about the call and then forward the call to the actual method
that would have received the call if the object had been an instance
of C4.

The up-calls present a more difficult challenge. The problem is
that when a call such assuper.n() is made from within the body
of, say,C4.m(), control flows up to then() defined in the closest
ancestor ofC4, independent of the class that the current object is
an instance of. Therefore, there is no way to use polymorphism
to intercept such a call. Given this, we will use a slightly more
involved approach to handle these calls: In effect, in addition to
certain methods that we will define in theTCi classes, we will also
have to make certain minor modifications in the classesCi. With
this, we will be able to record the needed information about both
the down-calls and the up-calls.

3.1 Tracking Down-calls
Consider a call such asm() that appears in the body of some

methodn() in some classCj. Suppose thethis object on which
m() is being invoked is an instance ofCi. When this call is exe-
cuted, it will be dispatched to the definition ofm() that is inCi or,
if m() is not (re-)defined inCi, the one in the closest ancestor ofCi

that has such a definition.
In order to intercept such calls, inTCi, we will redefine every

method4 that is applicable to objects of typeCi. Consider, for ex-
ample, the classTC4 corresponding to the classC4 that appears in
Fig. 3. The methods applicable toC4 objects area(), b(), c(), and
d(). We have redefined each of these inTC4. All that the redefi-
nitions do is to save information about the method call, invoke the
method defined in the parent class (C4), and when that call returns,

4More precisely, we should say everynon-final method will be
overridden since final methods cannot, of course, be overridden.

class TC4 extends C4 {
public void a() {

//. . . save information about this call . . .
super.a();
//. . . save information about return from call . . . }

public int b() {
//. . . save information about this call . . .
int x = super.b();
//. . . save information about return from call . . .
return x; }

public void c(int k) {. . . similar to a(); super.c(k);. . . }
public int d(int k) { . . . similar to b() . . . }

Figure 3: TC4 class (first version)

save information about the results, etc., and then return to the caller.
Suppose now we have a variablexx (elsewhere in a portion of the

program not shown in Fig.1) declared of typeC2 that at run-time
contained a reference to an objecto1 that is an instance ofC4; con-
sider the callxx.b(); this call will be dispatched toC3.b() since
that is the definition that applies to instances ofC4. Thus this call
will execute normally without being affected byTC4. Now sup-
posexx contained a reference to an instance ofTC4 instead. In this
case, the callxx.b() will be dispatched toTC4.b(). That method
will save information about this call and then invokesuper.b();
that invocation will then be forwarded toC3.b() sinceC4 is the
base class ofTC4 but C4 does not overrideb() but instead inher-
its it from its base classC3. Thus the method that is called at this
point is the same as the one that was called whenxx contained a
reference to theC4 object. This method executes, and control then
returns toTC4.b(). That method records information about the
fact of the return, and finally returns the result returned by the call
to super.b(). Thus the original call,xx.b() will receive the same
value as it did when we were dealing with the original object of
typeC4 but now information about the call to and the return from
b() has been saved.

We have not indicated how the information about the calls and
the returns is saved, but those are primarily matters of detail that we
will briefly address in Section 3.3. Let us now turn to the up-calls.

3.2 Tracking Up-calls
Consider the callsuper.a() that appears in the definition ofC3.a().

When this call is executed, control will immediately transfer to
C1.a() (sinceC2 does not redefinea()), independent of the run-
time type of the object at hand. Thus, no matter what we do in the
derived classes ofC3, C4, etc., we cannot intercept this call. What
we need to do instead is to rewrite these calls in such a manner that
they can be intercepted.

class C4 extends C3 {
public int z;
public void a() { C4 super a(); z++; }
public void c(int k) { C4 super c(k); z=z+x; }
public void C4 super a() { super.a(); }
public void C4 super c(int k) { super.c(k); }

Figure 4: Modified class C4

Consider the modified classC4 in Fig.4. This class differs from
the originalC4 in Fig.1 in two respects. First, we have introduced
two new methods,C4 super a() andC4 super c() each of which
simply calls the correspondingsuper method. Second, thesuper

calls that appeared in the methods of the originalC4 have been

3



replaced by calls to the corresponding new methods we have in-
troduced; thus, the callsuper.a() in the originalC4.a() has been
replaced by a call toC4 super a(), and similarly for the call to
super.c() that appears in the originalC4.c(). Note that we have
not introduced methodsC4 super b() or C4 super d() but that
is because there are no calls of the formsuper.b() or super.d() in
any of the methods of the originalC4. If such calls had existed, we
would have defined these methods. Alternately, we could introduce
all such methods independent of whether the correspondingsuper

calls exist since in those cases where such calls do not exist, these
new methods will not be invoked.

With these changes, the modifiedC4 will still behave in exactly
the same way as the originalC4 as far as instances ofC4 are con-
cerned. To track the up-calls, we need to modify ourTC4. In the

class TC4 extends C4 {
// a(), b(), c(), d() as in Fig. 3
public void C4 super a() {

//. . . save info about this *super* call . . .
super.C4 super a();
//. . . save info about return from call . . . }

public void C4 super c(int k) { . . . similar . . . }

Figure 5: TC4 class (second version)

TC4 defined in Fig. 5, we have redefined the methodsC4 super a()

and C4 super c() in exactly the same way as we redefined the
original methodsa(), b(), etc., in Fig. 3. Therefore, if we use an
object that is an instance ofTC4, rather than an instance ofC4,
and apply the methoda() to it, the call toC4 super a() in the
modified C4 –which has replaced the call tosuper.a() that ap-
peared in the originalC4– will be dispatched to the redefinition of
C4 super a() in TC4. This method, as usual, saves information
about this call, then forwards the call toC4.C4 super a(), which
in turn forwards the call to thea() defined inC3, which was the
method we called from the originalC4.a().

This seems to work but there is a subtle problem. Consider what
happens when that method,C3.a(), executes. We would, of course,
have modifiedC3 in the same manner as we have modifiedC4. So
the super.a() call that appears in the originalC3.a() would now
be the callC3 super a(). This method would be defined, analo-
gously toC4 super a(), to simply consist of a call tosuper.a().
Moreover,C3 super a() is not redefined inTC4; it will be rede-
fined inTC3 (in the same manner asC4 super a() in TC4) but
that definition does not apply here since the object at hand is of
type TC4, not TC3, and there is no inheritance relation between
these two classes. So the call toC3 super a() will be handled by
C3.C3 super a() which will simply call super.a(). And that call
will go to the a() defined inC1. That is what we want since that
is the effect of the call in the originalC3.a() but wedid not inter-
ceptthis super call, so no information about it has been recorded.
Hence a yo-yo graph constructed from the information saved by
classes such as theTC4 in Fig. 5 will miss some of the up-calls.

The solution is to redefine, inTC4, not just the methodsa(),
b(), etc., and the methodsC4 super a() C4 super c() etc., but
also methods such asC3 super a(), and by extension,C2 super a(),
etc. TheTC4 defined in Fig. 6 does that. With this addition to
TC4, if the methoda() is applied to an instance ofTC4, not
only is the call toC4 super a() intercepted, but also the call to
C3 super a(). Therefore, this final version ofTC4 will allow
us to intercept all down-calls and up-calls invoked upon objects of
typeTC4 and save the necessary information about these calls.

class TC4 extends C4 {
// a(), b(), c(), d() as in Fig. 3

public void C4 super a() {// as in Fig. 5 }
public void C4 super c(k) { . . . similar . . . }
public void C3 super a() {

//. . . save info about *this* super call (to C2.a()) and
// the current state of object. . .
super.C3 super a();
//. . . save info about return from call and
// current state of object, results . . . }

public void C3 super b(k) { . . . similar . . . }
public void C3 super c(k) { . . . similar . . . }
public void C2 super c(k) {

// this one is not needed since there are no super.c()
// calls in the methods of C2, but it would be more
// uniform to have all of these . . . }

// redefinitions of other super methods }

Figure 6: TC4 class (final version)

3.3 Implementation Details and Results
We have implemented our approach to automatically tracking

control flow in a prototype tool,PolyTracker5. The tool operates
in two phases. The first phase takes as input, the original program,
consisting of all the original classes, which we have referred to as
C1, C2 etc., in our discussion. It modifies all of these classes,
replacing thesuper calls that appear in any of the methods in any
of the classes, by the call to the correspondingCi super call. It
also introduces the trivial definitions for theCi super methods in
these classes, similar to the ones in Fig. 4. Next it produces the
tracing classes, the ones we have referred to asTC1, TC2, etc. As
we saw, these classes do not in any way depend upon the details
of the methods defined in the original classes. All that is needed
to define the tracing classes are the names and the parameter and
result-type information about the various methods defined in the
original classes. Thus the tracing classes are produced easily. For
simplicity, we define all possible methods of the kindCi super in
the modifiedCi classes, and the corresponding redefinitions in the
TCi classes, even if there are no calls to the correspondingsuper

methods.
Themain() method that appeared in one of the original classes

would typically create an instance of one of theCi classes, and then
invoke some methodm() to it. In an actual program, there may, of
course, be additional methods invoked upon this object. Indeed,
instances of many of theCi classes may be constructed and vari-
ous methods applied to them in various orders. Our approach can
handle such situations and we will briefly consider this in the final
section. Here we assume that only one instance of one of theCi

classes is constructed and only one method is invoked on it by the
main() method of the program. In the modified program,Poly-
Trackerreplaces this instance by an instance of the corresponding
trace classTCi. To log the information about the various calls and
returns that are intercepted, all of theTCi classes use an instance
of Tracker, a singletonclass thatPolyTrackeruses for this pur-
pose. ATracker object is essentially asequenceof elements, each
of which contains information about a single call or a return. We
will not go into further details about the structure of theTracker

object, referring the interested reader to the documentation at the
PolyTrackersite.

Once the modifiedCi, including the modifiedmain() method,

5PolyTracker, its documentation, and examples are available at:
www.cse.ohio-state.edu/∼tyler/pTracker/index.html

4



Figure 7: Yo-yo graph (generated byPolyTracker)

and the tracing classes have been produced, the resulting set of
classes (as well asTracker and related classes) are compiled using
the standardJavacompiler. The program is then executed. Dur-
ing execution, the variousTCi classes collect and save information
about the control flow in theTracker object.

When the execution completes, we are ready to enter phase two,
and render the yo-yo graph. Again we will omit the details of this
rendering which are available at thePolyTrakcersite. Fig. 7 shows
the graph generated byPolyTrackerfor our simple case-study in-
Fig. 1. As in the case of the hand-generated graph in Fig. 2, on the
left side of the figure, we have the classes along with the inheritance
relations among them. Inherited methods are labeledinh. Methods
that are redefined and, in their redefinition, include asuper-call are
labeledrdf/ref. Methods that are redefined but do not include such
a call are labeledrdf. Methods that are defined for the first time do
not have any label. We should also note that we use the labelref

only in those cases where the redefinition of a method in the de-
rived class invokes thesuper-version of thesamemethod. If the
method invokes thesuper-version of a different method, that is la-
beledsup (but there are no examples of this in Fig. 7). This seems
appropriate since this is not arefinementin any real sense.

Some other points worth noting. First, when generating the yo-
yo graph,PolyTrackeruses different styles of arrows (short ver-
sus long dashes) to distinguish between up-calls and down-calls.
Second, nocall nodes–the small boxes representing the method
definition executed for each invocation– are created for those class
methods that are inherited. The rationale for this is that if a class
Cj inherits a methodm(), then there is no code form() in Cj to be
executed; such invocations “pass through” the classCj to its first
ancestor class that does implementm(). Some authors do use such
call nodes for inherited methods in the bottom-most class in the hi-
erarchy but more recent literature, such as [12], do not use them
and we have adopted the same approach.

A more important point is that in addition to the flow of control at
the time of the call, the yo-yo graph produced byPolyTrackeralso
depicts the flow of controlas it returnsto the calling method. Con-

trol returning to a calling method is illustrated by thegrey nodes
and arrows in our graph, as against the white nodes outlined that
represent control resulting from the initial method invocation. In-
cluding thereturn nodesresults in a more informative graph since it
shows the control-flow through the complete execution of a method
that makesmultiplecalls, and accurately depicts the dependencies
between the calling and the called methods.

This can be seen when we look closer at the traditional yo-yo
graph in Fig. 2, alongside the associated program code in Fig. 1. In
the code, we see thatC1.a() makes two calls: one tob(), and one
to c(). The first call is shown in the graph by the arrow starting
from the nodeC1.a, found at the top of the diagram, and going
down to the nodeC5.b. The second call, however, and the subse-
quent calls resulting from it arenot shown. The call toc() that is
shown is the one initiated fromC2.d, notC1.a; this call was made
as a consequence ofC1.a()’s first call tob(), and is not related to
the second call that it should make. The graph does not depict what
happens afterC1.a()’s first call to b() ends, and so does not go
through what happens when it invokesc(). If we were to represent
this call toc() by C1.a by simply linking the last call node visited
(in this case,C2.c) to the node representing this call, it may appear
that C2.c() is itself making a call toc(), which it is not. Chain-
ing the call nodes together by chronology in this way is of limited
use from the standpoint of program understanding and, especially,
debugging since the notion of dependencies among method bodies
would be lost. By contrast, our yo-yo graphs explicitly show how
control returns toC1.a() from its call tob(), and then show what
happens when it invokesc().

Before concluding, we note that the problems we noted earlier
in the graph in Fig. 2 do not appear in this graph. As we noted
earlier, theTracker object collects much more information about
the individual calls and returns. The tool provides suitable facilities
to enable a user to extract this information, and this can be valuable
when debugging or tracing through complex systems. These details
are available at thePolyTrackersite.

5



4. RELATED WORK
The complexity of control-flow among methods defined in vari-

ous classes in standard OO programs has been discussed by a num-
ber of authors. We have already mentioned the work of Taenzer
et al. [17] and Binder [2]. Lange and Nakamura [7, 8] present a
technique for tracing the execution of an OO program. Their tech-
nique is based on accessing, at the machine level, specific informa-
tion contained in the run-time structures as the program executes.
Hence this is specific to not just the language but also the partic-
ular implementation; on the plus side, they can extract consider-
ably more information about the program’s execution. They also
discuss various graphical ways to display the information, such as
interaction charts that indicate, on each object’s lifeline, the invo-
cations the particular object makes. De Pauwet al. [13] present an
approach to visualizing the execution of OO programs, including
object construction, destruction, method calls, etc. Their technique
requires insertion of substantial amounts of code in the individual
classes (which will then have to be removed once we are satisfied
with the system), and depends on theRTTI mechanism ofC++
to access, at run-time, information about the actual types of given
objects. Jerding [6] discusses ways in which the execution of OO
programs can be visualized and displayed graphically. His main
concern is to filter and extract the most relevant pieces from the
large amount of information that may be obtained about the pro-
gram’s execution so that what is displayed is easy to comprehend
and at the same time useful. He does not discuss the question of
how to obtain information which is the main focus of our work.

Several authors have addressed problems related to testing of
polymorphic interactions [9, 1, 14] in OO systems and related ques-
tions concerning coverage. The approach usually is, given the en-
tire system, test the behavior of each polymorphic methodt() by
considering various possible bindings, i.e. by using instances of
each of the derived classes, and check whether the resulting (func-
tional) behavior oft() is appropriate in each case. The appropriate-
ness of the behavior is determined on the basis of the output results
produced byt() when it finishes. The question of automatically
tracing the flow of control among the various methods which is the
focus of our work, does not seem to have been addressed.

Some authors [11, 15, 16] have argued that given the complexity
that results from their use, inheritance and polymorphism based
on dynamic binding should be avoided or minimized as much as
possible. On the other hand, several authors, for example [10, 4, 5],
provide convincing arguments for, and compelling examples that
demonstrate the power of, these mechanisms in building complex
systems. In any case, given the many systems that do exploit these
mechanisms, techniques and tools such asPolyTrackercan be of
great value in understanding and building these systems.

5. DISCUSSION
The use of polymorphism/dynamic binding and thesuper mech-

anism can lead to relatively complex control flow in OO systems.
Representing this graphically in the form of yo-yo graphs can be
of considerable help to designers and implementers but the very
complexity of the flow means that generating the graphs by hand
can result in subtle mistakes in the graphs. Our work shows how
the power of these same mechanisms can be exploited to build a
tool that can track the control flow automatically and use the data
collected during the monitoring to generate the yo-yo graphs.

We conclude with some pointers to future work. So far in our
work, we have only dealt with a single object and the control-flow
that results from applying a particular method on it. In practical
systems we will have to deal with multiple objects. Our approach

should be directly applicable to such situations. Indeed, we canse-
lectively trace methods invoked onsomeobjects and ignore those
invoked on others. To do this, we simply have to ensure that the ob-
jects for which calls should be traced, should be of the appropriate
TC type, while the others should be of their originalC type.

A more complex issue has to do with the fact that the program
under study may have a classC1 that has a member variablex of
type, say,C2 rather than the simple types such asints. Suppose
the program has an objecto1 of type C1. What if we wish to
trace not just method invocations ono1 but those invoked ono1.x?
That is an object of typeC2 and normally we would simply create
and use an instance of typeTC2 for this purpose. But that will
not work since this is a part of theo1 object, rather than being an
independent object. We could create ano1 object that is of type
TC1 but thex component of this object will still be of typeC2

rather thanTC2. Finding a suitable solution to this problem is
important since practical systems are likely to have such objects
that have other objects as components and designers and analysts
are likely to be interested in the behaviors of those components.
Less challenging but still of practical importance is the question of
finding suitable ways to display information about the control-flow
when the system has several objects that we are interested in; here,
we should be able to build on previous work in visualization [6, 8].

6. REFERENCES
[1] R. Alexander and J. Offutt. Criteria for testing polymorphic

relationships. InInt. Symp. on Softw. Reliability Eng., pages
15–23, 2000.

[2] R. Binder.Testing OO systems. Addison-Wesley, 1999.
[3] L. Cardelli and P. Wegner. On understanding types, data

abstraction, and polymorphism.ACM Comp. Surveys, 1985.
[4] M. Fayad, D. Schmidt, and R. Johnson.Building Application

Frameworks. Wiley, 1999.
[5] M.E. Fayad and D.C. Schmidt. Sp. issue on OO application

frameworks.CACM, 40, 1997.
[6] D. Jerding. Visualizing patterns in the execution of OO

programs. InProceedings of CHI ’96. ACM, 1996.
[7] D. Lange and Y. Nakamura. Interactive visualization of

patterns. InProc. OOPSLA, pages 342–357. ACM, 1995.
[8] D. Lange and Y. Nakamura. Object-oriented program tracing

and visualization.Computer, pages 63–70, Oct. 1997.
[9] T. McCabe, L. Dreyer, A. Dunn, and A. Watson. Testing an

object-oriented application.J. of the Quality Assurance
Institute, 8(4):21–27, 1994.

[10] B. Meyer.OO Software Construction. Pren. Hall, 1997.
[11] S. Muralidharan and B. Weide. Should data abstraction be

violated to enhance software reuse? InProc. 8th Ann. Natl.
Conf. on Ada Tech., pages 515–524. ANCOST, 1990.

[12] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson.
A fault model for subtype inheritance and polymorphism. In
Int. Symp. on Softw. Reliability Eng., pages 84–95, 2001.

[13] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides.
Visualizing the behavior of object-oriented systems. InProc.
of OOPSLA ’93, pages 326–337. ACM, 1993.

[14] A. Rountev, A. Milanova, and B. Ryder. Fragment class
analysis for testing of polymorphism in java software. In
Int. Conf. on Softw. Eng., pages 210–220, 2003.

[15] A. Snyder. Inheritance and development of softw.
components. InRes. Dir. in OO Prog.MITP, 1987.

[16] C. Szyperski.Comp. softw.:Beyond OOP. Addison, 1998.
[17] D. Taenzer, M. Ganti, and S. Podar. Problems in OO

software reuse. InProc. of ECOOP, pages 25–38, 1989.

6


