
Reasoning about the Behavior of Aspect-Oriented Programs

Neelam Soundarajan1, Raffi Khatchadourian1, Johan Dovland2

1 Computer Sc. & Engineering
Ohio State University
Columbus, OH 43210
{neelam, khatchad}@cse.ohio-state.edu

2 Dept. of Informatics
University of Oslo
PO Box 1080 Blindern
N-0316 Oslo, Norway
johand@ifi.uio.no

Abstract

Aspect-oriented programming (AOP) has become in-
creasingly popular over the last few years. At the same
time, a number of authors have raised serious ques-
tions about the problems involved in reasoning about
the behavior of aspect-oriented programs. In this pa-
per, we present a rely-guarantee-approach to such rea-
soning. The rely-guarantee approach has proven useful
in reasoning about concurrent and distributed programs.
We show that some of the key problems encountered in
reasoning about aspect-oriented programs are similar to
those encountered in reasoning about concurrent pro-
grams; and that the rely-guarantee approach, appropri-
ately modified, helps address these problems. We illus-
trate our approach with a simple example.

1 Introduction

Kiczales et al. proposed aspect-oriented program-
ming (AOP) [10] as an approach to enable modular
implementation of crosscutting concerns. Various au-
thors [4, 13, 14] have shown how AOP may be used to
write code for such crosscutting concerns as synchro-
nization, logging, etc. At the same time, several authors
[1, 2, 11, 12] have noted that reasoning about aspect-
oriented programs presents some key challenges. In-
deed, the ability of an aspect to change the behavior of
the “base-code” that it advises, which is the very rea-
son for much of the power of AOP, is also what causes
difficulties for reasoning about the behavior of AO pro-
grams. The problem is that, since the addition of the
aspect changes the behavior of the base-code, whatever
reasoning we may have done about the base-code may no
longer be valid; and we may be forced to reason about the
entire system, accounting for the interleaved execution of
various pieces of advice with the base-code.

The problem of reasoning about AO programs has
some resemblance to reasoning about concurrent pro-

grams. Consider a concurrent program with two parallel
processes that share some variables that either of them
may read or write. Standard modular reasoning would
require us to reason about each process independently of
the other and then combine the results of the two reason-
ing tasks in an appropriate manner to arrive at the behav-
ior of the whole program. But since the two processes
will be interleaved during execution, whatever conclu-
sions we may have drawn about each of them when rea-
soning about them independently may not, in fact, be
valid. In effect, the actions of each process may inter-
fere with the other process thereby invalidating whatever
results we may have established by reasoning about that
other process. This is rather similar to the situation in
AOP. Suppose, for example, that the base-code contains
an assignment statement, assigning a specific value vv to
a particular instance variable xx. When reasoning about
this base-code, we might have established an assertion
following the assignment, that states that the value of xx
would, in fact, be equal to vv. Suppose now we add an
aspect that includes a piece of after-advice that applies at
a set joinpoint of the base-code and that the variable xx
is one of the affected variables. Now, immediately fol-
lowing the execution of the assignment of vv to xx, the
after-advice would execute and, possibly, assign a new
value to xx before returning control to the base-code. At
this point, the assertion we previously established in the
base-code is no longer satisfied. In other words, the as-
pect has interfered with the base-code.

The rely-guarantee approach [7, 15] addresses the in-
terference problem in parallel programs as follows. Let
σ be the state, i.e., the set of all program variables of
the program consisting of two processes P1 and P2 run-
ning in parallel. When reasoning about P1, we recognize
that the actions of P2 may modify the state. Hence, we
need to write our assertions in the proof outline of P1 in
such a manner that they continue to be satisfied even in
the presence of such actions. To enable this, we identify
a relation rely1() that is a predicate over two states, σa

and σb. This relation means the following: suppose at
some point in the execution of P1 the current state is σa

and that some part of P2 is now interleaved in the exe-
cution; suppose that the state when P1 gets control back
is σb; then rely1(σa, σb) must be satisfied. When reason-
ing about the behavior of P1, we assume that any inter-
leaved action that P2 (or any other process in the case of
programs with more than two processes) may change the
state but only within the constraints specified by rely1().
If this is satisfied, the correctness of the proof outline of
P1 will not be affected by the actions of P2. Conversely,
when reasoning about P2, we introduce a relation rely2()
that imposes constraints on the changes in the state that
may be caused by P1’s actions.

Next we need to check that P2 and P1 meet the re-
quirements contained respectively in rely1() and rely2().
To make this possible, when reasoning about each pro-
cess, we establish a guarantee clause. This clause, de-
noted guar1() in the case of P1, is again a relation over
two states; it is a guarantee provided by P1 that any
change it makes in the state when executing any instruc-
tion in it, will obey the constraints specified in guar1().
The parallel composition rule requires us to check, using
guar1() and guar2(), that the rely clauses are satisfied.

The key observation underlying our proposed ap-
proach to reasoning about AO programs is as follows.
Suppose m() is a method of a class C in the base-code.
When reasoning about m(), we recognize that its behav-
ior may be modified as a result of aspect(s) being ap-
plied to it. More precisely, as m() executes, if control
were to reach a joinpoint that matches a pointcut at which
a particular advice specified in the aspect is applicable,
the statement at that point will execute, then control will
transfer to the advice, the advice will execute, possibly
changing the values of some of the instance variables of
C, and then control will return to m() which will then
continue execution1. To handle this, we will introduce a
rely() condition that will specify constraints on the state
changes that the advice may perform.

While this is analogous to the situation in the case of
the two parallel processes, there is one key difference.
While in the case of parallel programs, the two processes
are typically designed hand-in-hand, in an AO program,
the base-code is often written without any particular as-
pect in mind. By adapting the rely-guarantee approach,
we make it possible for the base-code provider to reason
about the base-code independent of particular aspects.

1This description assumes the advice in question is a after-advice.
In the interest of keeping the presentation simple, for much of this pa-
per, we will only consider after-advice. Before-advice can be treated
in a completely analogous manner as after-advice. But around-advice
poses some difficulties. We will return to this later in the paper.

The base-code provider specifies suitable rely conditions
that must be respected by various possible aspects that
may be introduced to ensure that the base-code reason-
ing remains valid even after the addition of the aspects.

In other words, when reasoning about m(), we rec-
ognize that advice contained in some aspect may apply
to m() at particular points during its execution. If this
advice were to make arbitrary changes in the relevant
state, i.e., the instance variables of C that m() deals with,
clearly the behavior of m() will be affected. To prevent
this, the designer of m() considers what kinds of changes
might be acceptable to m() and what kinds of changes
will not be acceptable. When reasoning about m(), we
formalize this in its rely() clause. Essentially, rely() is
a set of conditions that is being imposed on any aspect
that may be developed to apply to m(). If a developer
were to introduce an aspect that contains advice appli-
cable at some joinpoint in m() and the changes that this
advice makes (to the instance variables of C) do not sat-
isfy the conditions specified in the rely() clause of m(),
then the specification of m() is no longer applicable. To
put it differently, if the advice does satisfy the conditions
specified in the rely() clause, and if the pre-condition in
the specification of m() is satisfied when m() is invoked,
we can still be sure that the post-condition listed in the
specification will be satisfied when m() finishes execu-
tion despite the addition of this advice.

One extreme possibility would be, when reasoning
about m(), to define rely() as:

rely(σ, σ′) ≡ (σ = σ′)

where σ is the state when the aspect gets control and σ′

the state when control returns from the aspect. This es-
sentially forbids any applicable advice from making any
changes in the state! While this may seem drastic, the no-
tion of harmless advice proposed by Dantas and Walker
[3] is essentially of this form. Of course, we do not have
to use such a restrictive form of rely(); and indeed, if
we want be able to exploit the full power of aspects, we
should make the rely() clause as liberal as possible rather
than imposing such a tight constraint.

In addition to the rely() clause we will also have a
guar() clause. This clause will be of a different kind
from that used in concurrent programs. The reason is
that while there is a clear symmetry between two pro-
cesses of a concurrent program, such a symmetry does
not exist between the base-code and a piece of advice
in an AO program. More precisely, while the base-code
is “intercepted” when control in the base-code reaches
particular joinpoints and the corresponding advice is ex-
ecuted and then the base-code resumes execution, the ad-
vice does not get intercepted in a similar manner by the

2

base-code2. Hence, in our approach, a guar() clause is
an assertion over a single state that must be satisfied by
the state when control transfers to any advice that may be
applicable at particular joinpoints.

There is another difference between our situation and
that in concurrent programs. In the case of concurrent
programs, the rely-guarantee approach is used to ensure
that the actions of an individual process do not invali-
date the reasoning about another process. In our case,
we not only have to ensure that the advice does not in-
validate the reasoning that has been done about the base-
code, we also have to arrive at the overall behavior that
the combined system consisting of the aspect(s) and the
class(es) together exhibit. In Section 2 we will see how
our approach allows this. A preliminary version of our
approach was presented in [8].

The rest of the paper is organized as follows. In the
next section, we consider the details of our approach to
specifying and verifying AO programs. The focus is on
specification rather than verification. Hence we do not
define formal proof rules but consider what would be re-
quired in order to verify our specifications. In Section 3,
we apply our approach to a simple example. In Section 4
we briefly describe some items of related work. In Sec-
tion 5, we summarize our approach and consider possible
directions for future work.

2 Specifying and Verifying AO Programs

For concreteness, we will use the syntax and terminol-
ogy of AspectJ [9] in our discussion although the main
ideas underlying our approach do not depend on the de-
tails of AspectJ. The three key features of an AOP lan-
guage (in addition, of course, to the features of the under-
lying base language) are joinpoints, pointcuts and advice.
Joinpoints are the specific points in the execution of base-
code where advice may be applied. In order to allow
flexibility, AspectJ defines a number of different kinds of
joinpoints. A set-joinpoint corresponds to a point where
a particular variable of a class is set, i.e., assigned a value;
a get-joinpoint corresponds to a point where a particular
variable of a class is read. A method-call-joinpoint cor-
responds to a point where a particular method is called;

2Many AOP languages enable the definition of advice A2 that is
applicable to another advice A1. In other words when control reaches
certain joinpoints in A1, it is intercepted and A2 will execute; and once
A2 finishes, control will (typically) return to A1. If we wanted to deal
with such situations, we would of course need to define suitable rely()
clauses for A1; but in this paper we will not consider such possibilities
in any detail. Nor will we consider the possibility of multiple advices
being applicable, in some appropriate order determined by their “prece-
dence”, at the same joinpoint of a method m().

a method-execution-joinpoint corresponds not to the call
but rather to the actual body of the method; etc.

Our approach is applicable to all types of joinpoints
in fairly similar ways. From the point of view of an As-
pectJ programmer, perhaps the most important kinds of
joinpoints, and the ones most widely used, are method-
call and execution. However, our approach is most con-
veniently presented as it applies to set-joinpoints, hence
we mainly use these in our discussion. The example in
the next section is also written in terms of set-joinpoints
but it can be easily rewritten in terms of call-joinpoints.

Pointcuts allow us to specify groups of joinpoints.
The simplest kind exhaustively lists all the joinpoints in
the group. Most AOP languages provide more conve-
nient ways to specify the group, including the use of var-
ious wildcard-constructs. Once a pointcut has been de-
fined, we can define a piece of advice to apply to the
pointcut; i.e., this advice will apply to each of the join-
points in the particular pointcut3. From a programming
point of view, the ability to define pointcuts in this man-
ner and to associate advice with the pointcut rather than
with the individual joinpoints is extremely valuable. In-
deed, this ability, usually referred to as quantification, is
considered one of the key features of AOP [5].

When reasoning about a method m() of a class C,
a single rely() clause may not be appropriate since the
correct functioning of m() may depending on having the
advices that may apply at different points in the body of
m() satisfying different constraints. If we had to have a
single rely() clause for m(), we would be forced to com-
bine, i.e., conjunct together, all of these constraints into
that clause and it would be unnecessarily restrictive. The
situation with the guar() clause, which is the condition
that the base-code ensures will be satisfied when control
reaches the advice, is similar. If we were forced to asso-
ciate a single guar() clause with m(), we would have to
define this clause to be the disjunction of the assertions
that will hold at the various joinpoints in m(); and this
may not provide sufficient information to the different
advices that may apply at these different joinpoints.

One possible solution to this would be to specify a
separate rely() and guar() clause corresponding to each
joinpoint in m(). But this may result in a lot of dupli-
cation if many of these joinpoints are equivalent from
the point of view of m() and the conditions that it ex-

3AspectJ allows the programmer to define a pointcut in such a way
that particular joinpoint will be included only if the control-flow that
brought control to that joinpoint satisfies certain specified conditions,
for example, that this control-flow is not part of a given method’s in-
vocation. We will not consider such constructs in the paper. AspectJ
gurus will probably notice that we take some minor liberties with the
syntax of the language.

3

pects will hold at these points. The notion of a specifi-
cation pointcut provides a suitable solution. A specifi-
cation pointcut (s-pointcut), like a normal pointcut, de-
fines a group of joinpoints. But, unlike a normal point-
cut, the group of joinpoints in a given s-pointcut must
all be from a particular method of a given class. Since
we reason about one method at a time, there is noth-
ing to be gained by defining s-pointcuts that would in-
clude joinpoints from different methods of the class (or,
worse, multiple methods from multiple classes). The pre-
cise syntax for defining s-pointcuts is for future work;
in this paper, we assume that s-pointcuts will be defined
by explicitly listing all of the joinpoints in the particular
group. In order to permit such listing, we also assume
that, as part of the reasoning annotation of the method
m(), unique labels are associated with each pointcut.

Thus the specification of a method m() of a class C
would consist of a pre-condition pre(), a post-condition
post(), a number of s-pointcuts and, for each s-pointcut,
a rely() clause and a guar() clause. The meaning of this
specification is that if pre() is satisfied when m() is in-
voked and each advice that is defined in any aspect and
is applicable to any joinpoint in m() satisfies the require-
ments specified in the rely() clause associated with the s-
pointcut that includes that joinpoint, then, when m() fin-
ishes, post() will be satisfied; and when control reaches
any advice applicable to any joinpoint in m(), the val-
ues of the instance variables of C will be such that the
guar() clause associated with the s-pointcut that includes
that joinpoint will be satisfied.

What if a particular joinpoint in m() is not included
in any of the s-pointcuts defined in the specification of
m()? One possible answer would be that default the
rely() clause for such a joinpoint should be the highly
restrictive one we considered in Section 1:

rely(σ, σ′) ≡ (σ = σ′) (1)

where σ is the state of C, i.e., the set of values of all the
member variables of C. This, as we noted earlier, for-
bids the advice from making any changes to the values of
these variables. But note that if the aspect that the advice
is a part of uses the introduction mechanism to introduce
new variables into C, then the advice will be able to ma-
nipulate those variables in appropriate ways and thereby
enrich m()’s behavior. That is, the rely() clause, whether
explictly specified or the default one, imposes conditions
only on the variables defined directly in the class in the
base-code; it does not impose any conditions on any vari-
ables that the aspect may introduce into the class. This is
natural because the functioning of m() cannot depend on
or be affected in any way by the values of any of these in-
troduced variables. The default guar() clause could sim-

ply be true since, in this situation, we cannot guarantee
anything about the values of these variables when control
reaches the advice applicable at this joinpoint.

Let us turn to the task of establishing the richer behav-
ior that the advices are intended to produce. In order to
do this, the assertions in m() including, in particular, the
post-condition, need to provide a more detailed charac-
terization of the behavior of m(). In effect, the standard
post-condition of m() essentially tells us the conditions
that will be satisfied by the state when m() finishes. What
we need in order to reason about the enriched behavior
resulting from the action of the aspects is a way to spec-
ify precisely how the behavior of m() would be enriched
as a result of the actions of the various advices that may
be applied at various joinpoints in the body of m().

Since there are any number of different advices that
the aspect designer might develop, we cannot, of course,
try to consider each one of them separately and specify
how it would enrich m()’s behavior. Rather, we need
an approach using traces that record information about
the joinpoints that are reached during the execution of
m(), the conditions satisfied by the state when control
in m() reached those points and, how the further behav-
ior of m() depends on the changes any advices acting at
any of these joinpoints may make. These changes will,
of course, be required to satisfy the requirements of the
appropriate rely() clause but the point is that the use of
the traces will enable us, in a sense, to factor into the
behavior of m() the changes that the advice may pro-
duce. This will be achieved in the following manner.
Each trace element will represent the effect of a single
joinpoint. Consider the trace element corresponding to
the joinpoint labeled L. This element will be of the form
(σ, σ′), these being the states just prior to control trans-
fering to the advice acting at this point and immediately
after control returns from the advice. Thus these states
will (be required to) satisfy the appropriate rely clause.
Further, the assertions beyond that point in m() will be
in terms of the state σ′ rather than in terms of σ. This
will allow us to suitably combine the effect of the advice
with the behavior provided by the base-code to arrive at
the enriched behavior of m(). And in those cases where
no advice is applied at this joinpoint, this process will
simply result in σ being taken to be equal to σ′. As men-
tioned earlier, the formal proof rules that correspond to
these reasoning tasks is part of our planned future work.

3 Case Study

Fig. 1 depicts the base-code of our simple example,
consisting of a single class, Point, instances of which
represent points in an xy-plane. The constructor initial-

4

1 class Point {
2 int x, y;
3

4 public Point(int xi, int yi)
5 { L1: x=xi; L2: y=yi; }
6 public int getX() { return (x); }
7 public int getY() { return (y); }
8

9 public void move(int nx, int ny)
10 { L1: x=nx; L2: y=ny; }
11 }

Fig. 1. Point Class and Aspect

izes the point variables. move() changes the coordi-
nates to the specified values. getX() and getY() re-
turn the current coordinate values. We have also labeled
the various set joinpoints for use in the reasoning activity.

Suppose this class is now used as part of a graphics
system that includes a number of other components in-
cluding a display. The graphics designers may decide
after considering various parts of their system that when
any of the graphics items moves outside the bounds of
the display monitor, they will use a wrap-around tech-
nique to bring it within bounds. This can be achieved by
defining the aspect shown in Fig. 2. The pointcut corre-
1 aspect WrapAround {
2 pointcut m(Point p):
3 (set(int Point.x) && target(p)
4 || set(int Point.y) && target(p))
5 && !within(WrapAround);
6

7 after(Point p) : m(p) {
8 Point b = Display.getNECorner();
9 p.x %= b.x; p.y %= b.y; }

10 }
11 }

Fig. 2. Point Class and Aspect

sponds to all the joinpoints where a new value may be
assigned to either x or y. The after-advice then adjusts
the coordinates –if they are out of bounds– to be within
the required bounds by acquiring the coordinates of the
“north east” point of the display and setting the coordi-
nates of the point p appropriately4.

Let us now consider the specification of the base-code,
in particular of the move() method that appears in (2).
The “∗” notation in the rely/guar clauses means that these
clauses apply to all the labeled points in the method.

rely.L∗ ≡ true (2)
guar.L∗ ≡ true
post ≡[(L1.x==nx) ∧ (L2.x==L1.x’)
∧(x==L2.x’)∧(L2.y==ny)∧(y==L2.y’)]

4Line (7) had to be included in order to ensure that the advice, given
that it contains assignments to p.x and p.y and these match the join-
points defined by the pointcut (lines 3 and 4), does not advice itself!

The post-condition states the following: The value of x
when control reaches L15 is the same as the value of
the input argument nx; that the value of x when con-
trol reaches the L2 joinpoint is the same as the value it
had at the end of the L1 joinpoint, i.e., when control re-
turned from the advice (if any) that was applied at that
joinpoint; that the final value of x when move() fin-
ishes is the same as the value it had at the end of the L2
joinpoint. The last two clauses similarly specify y.

The information in (2) can now be combined with the
behavior of the advice in Fig. 2 to arrive at the behav-
ior of the overall system. First, we must reason about
the advice, using the information in the guar clauses and
check that the rely() clause requirements are met. This
is straightforward for this case. Next we combine the
behavior of the advice code with the information in the
post-condition of move() to arrive at the following net
behavior of this method:
post≡[(x==(nx%d.x))∧(y==(nx%d.y))]
where we have used d.x and d.y to denote the coordi-
nates of the northeast corner of the display.

To summarize, when reasoning about a base-code
method, we decide on appropriate rely() clauses for the
various joinpoints in the method. Then we arrive at the
post-condition of the method; and, in this process, we al-
low for the fact that the state might change, as a result of
advice being applied at any of the joinpoints. This speci-
fication can then be combined with information about the
behavior of any advice that may be developed –provided
the rely() clause requirements are met– to arrive at the net
resulting behavior of the method. In future work, we will
explore ways to simplify the base-code specifications as
well as the work involved in combining those specifica-
tions with the advice specifications.

4 Related Work
Kiczales and Mezini [11] argue that, in the presence

of aspects, we cannot expect to work with the standard
interfaces provided by a class’s methods and their behav-
iors. Instead, we must define a more detailed interface for
the class in such a way that the interface includes also the
various joinpoints at which various advices defined in the
aspects are applicable. We can then consider the prop-
erties associated with the various items in this extended
interface. Aldrich [1] introduces the notion of open mod-
ules. The idea is that the base-code designer should ex-
plicitly identify a specific set of points in the base-code
at which advices will be allowed to apply; these are the

5Recall that we only consider after-advice; as a result the joinpoint
is actually immediately after the assignment x=nx is performed.

5

points at which the base-code is open to accepting ad-
vice. Any attempt to define an aspect that contains an
advice applicable at a point that is not included in this
set will result in a (compile time) error. Aldrich defines a
language around this concept and defines its operational
semantics. Neither of these papers considers techniques
for behavioral specifications of the classes nor how the
enriched behavior of the classes resulting from the appli-
cation of the aspects may be arrived at.

Clifton and Leavens [2] introduce the notion of ob-
servers and assistants as two kinds of after-advice based
on their effect. An observer only “observes” and does
not make changes that might violate any assertions in
the base-code. An assistant may make arbitrary changes.
Clifton and Leavens consider how the effect of multi-
ple pieces of assistant-advice applied when a base-code
method completes execution may be combined with the
post-condition of the method to arrive at the net behavior.

Traces have been widely used in reasoning about dis-
tributed systems such as CSP [6]. There, traces are used
to record information about the communications between
the processes of the system. Our traces to record infor-
mation about the situations that exist at various joinpoints
in m() since these are the points where advices might in-
tercept the base-code and provide for enriched behavior.

5 Discussion

In this paper, we have proposed a rely-guarantee-
based technique for reasoning about AOP programs in
modular fashion. We demonstrated the technique on a
simple example. Although in our presentation we fo-
cused on field-access joinpoints, the approach applies to
other kinds of joinpoints. On the other hand, extending
the approach to after advice will pose some serious chal-
lenges. The main problem is that the after advice may
not contain a proceed call or may contain multiple such
calls. In both cases, the behavior of the combined sys-
tem will be substantially different from that of the base-
code. Apart from dealing with after-advice, we intend to
develop, in our future work, ways to deal with multiple
advices that may apply at a single joinpoint as well as
advice that may advise other advice. Another important
task for future work is the development of formal proof
rules for establishing the behavior of AOP programs.

Acknowledgments
Many thanks to Gary Leavens of Iowa State University
for valuable discussions.

References

[1] J Aldrich. Open modules. In Proc. of ECOOP,
pages 144–168. Springer, 2005.

[2] C. Clifton and G. Leavens. Observers and assis-
tants: A proposal for modular aspect-oriented rea-
soning, 2002.

[3] D Dantas and D Walker. Harmless advice. In POPL
’06, pages 383–396. ACM, 2006.

[4] X Deng, M Dwyer, J Hatcliff, and M Mizuno.
Syncgen: An aop framework for synchronization.
In Int. Conf. on Tools and Alg. for Construction and
Analysis of Sys., pages 158–162. Springer, 2004.

[5] T. Elrad, R. Filman, and A. Bader, editors. CACM
Special Issue on Aspect Oriented Programming.
ACM, Oct. 2001.

[6] C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, 1985.

[7] C B Jones. Tentative steps toward a development
method for interfering programs. ACM Trans. Prog.
Lang. Sys., 5:596–619, 1983.

[8] R Khatchadourian and N Soundarajan. Rely-
guarantee approach to reasoning about aop pro-
grams. In SPLAT Workshop at AOSD, 2007.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. Overview of aspectj.
In Proc. 15th ECOOP, pages 327–353. Springer-
Verlag, 2001.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect oriented
programming. In Proc. of ECOOP’97. Springer.

[11] G Kiczales and M Mezini. Aspect-oriented pro-
gramming and modular reasoning. In Proc. of ICSE
’05, pages 49–58. ACM, 2005.

[12] S Krishnamurthi, K Fisler, and M Greenberg. Veri-
fying aspect advice modularly. In Proc. of the 12th
FSE, pages 137–146. ACM, 2004.

[13] R Laddad. AspectJ in action. Manning, 2003.

[14] M Lippert and C Lopes. A study on exception de-
tection and handling using aop. In ICSE, pages
418–427. ACM, 2002.

[15] Q Xu, W de Roever, and J He. Rely-guarantee
method for verifying concurrent programs. Formal
Aspects of Computing, 9(2):149–174, 1997.

6

