
Reasoning About Design Patterns: A Case Study

Jason O. Hallstrom and Neelam Soundarajan
Computer Science and Engineering

Ohio State University, Columbus, OH 43210
e-mail:{hallstro, neelam}@cis.ohio-state.edu

Abstract

Design patterns are valuable both for designing and for
documenting software systems. Patterns are usually de-
scribed informally. While informal descriptions are very
useful, in order to be sure that designers have a precise un-
derstanding of the requirements that must be met when ap-
plying a given pattern, and to be able to reliably predict the
behaviors that systems built using specific patterns will ex-
hibit, we also need precise specifications of the patterns.

In this paper, we apply an approach to formally specify-
ing patterns [14] to theMemento pattern as a case study.
One important aspect of patterns is their flexibility. Our case
study shows that this flexibility is not compromised by our
formalization.

Keywords: Software design, Design patterns, Software re-
quirements, Formal methods.

1 Introduction

Design patterns[1, 2, 8, 9, 13] have, over the last decade,
fundamentally changed the way we think about the design
of large software systems. As Buschmannet al. [2] put it,
“patterns support the construction of software with defined
properties”. But to fully realize these benefits, we must have
precise ways toreasonabout these design patterns that we
can use to ensure that the patterns are being applied in the
ways they are intended to be. Our goal in this paper is to
apply an approach to reasoning about patterns that we have
developed, a preliminary version of which was presented in
[14], to theMemento pattern as a practical case-study.

When reasoning about a pattern, we have to address two
distinct aspects. The first, which we call theresponsibilities
component of the specification of a pattern, will consist of
the conditions that a designer adopting the pattern must en-
sure are satisfied with regard to the structure of the classes,
the behaviors of particular methods of the classes, and the
interactions between various classes of the system. The sec-
ond, which we call therewardscomponent, will specify the
particular behaviors that the resulting system is guaranteed
to exhibit, the ‘defined properties’ of [2]; but this guarantee
applies only if all the requirements contained in the respon-
sibilities component are satisfied.

Consider theMemento pattern [8] which will serve as

our case-study. The purpose of this pattern is to allow an
object (the ‘Caretaker’) to take asnapshotof the state of
another object (the ‘Originator’) without breaking the en-
capsulation of theOriginator, so that at a later point the
Caretaker can, if necessary, restore the state of theOrigi-

nator; the snapshot is the ‘Memento’. This is represented
in the standard UML representation of the pattern in Fig. 1.

CaretakerMementoOriginator

return new Memento(state)

CreateMemento()

SetMemento(Memento m)

state = m.GetState()

state

SetState()
GetState()

state

Figure 1. Memento Pattern
For example, a particular objecto1 might at some point
want to save the state of another objecto2, and hence take a
snapshot ofo2’s current state; at this point,o1 is theCare-

taker, ando2 theOriginator. At a later point in the execu-
tion, a third objecto3 might want to save the state ofo1, and
hence takeo1’s snapshot; at this point,o1 is theOriginator

ando3 theCaretaker. Thus the same objecto1 is playing
the roles ofCaretaker andOriginator at different times.
Hence a pattern is made up ofroles; there are three roles in
this pattern:Originator, Caretaker, andMemento. Indi-
vidual objects will, at runtime, enroll in particular roles.

Fig. 1 suggests, given the body ofOrigina-

tor.CreateMemento(), that the Memento is (or
contains) a copy of theentirestate of theOriginator; and,
given the body ofSetMemento(), that when we restore
the state, we restore the entireOriginator state back from
the Memento. While this is one way to implement the
pattern, it is often not the best approach since, depending
on the size of theOriginator state, and the number of
Mementos created, it may be expensive or inappropriate.
The commentary associated with the pattern in [8] notes
that theMemento may store as little of theOriginator

state ‘as necessary at theOriginator’s discretion’; but how
does a designer determine exactly what is necessary? The

description goes on to say that the information saved must
be sufficient to ‘restore the internal state of theOrigina-

tor’, but again, what precisely does that mean? That every
byte of that state be restored bySetMemento()? It is such
questions that our formal specifications will help answer.

It has occasionally been suggested that the real key to
reuse isdesign reuse, as embodied in patterns; an approach
such as ours should also allow us to reuse the reasoning
needed to understand systems built using particular pat-
terns. But there is an inherent risk in formalizing patterns in
thatflexibility, a key aspect of many patterns, may be lost.
Thus in the case ofMemento, if we adopt one definition for
what it means for theOriginator to be reset to an ‘appro-
priate state’, the pattern may not be usable when we have
a different notion of this concept. Avoiding this risk was
one of our goals; our approach allows us to characterize a
pattern precisely while also retaining its flexibility.

The rest of the paper is organized as follows: In Sec-
tion 2, we develop the basic ideas of our approach. In Sec-
tion 3, we apply our approach to theMemento pattern. In
Section 4 we consider related work. In the final section, we
summarize our approach to formalizing patterns, and con-
sider pointers for future work.

2 Roles, Auxiliary Concepts, and Constraints

Consider again theMemento pattern. At a particular
point in the execution of our system, we may have a group
of objects interacting according to theMemento pattern.
That is, one object is playing theOriginator role, another
the Caretaker role, a third object (or possibly more than
one if thecaretaker object1 has taken multiple snapshots
of the originator object) theMemento role. At thesame
time, another group of objects may also be interacting ac-
cording to theMemento pattern; indeed, as in the case of
object o1 in the scenario in Sec. 1, one or more objects
might belong to both groups. To allow for this, we will say
that there may be zero or moreinstancesof a given pattern
at any time during the execution of the system. Individual
objects will enroll in a particular instance of a pattern to
play a particular role; the same object may be enrolled si-
multaneously to play roles in different instances of the same
or different patterns; but itcannotsimultaneously play mul-
tiple roles in a given pattern instance.

How do we specify a pattern? Since we are dealing
with roles not classes, there are no specific data members
in terms of whose values we can express therequiresand
ensuresclauses of the individual methods. Hence we intro-
duce, in our pattern specifications, the needed data members
as part of the individual roles of the pattern, and use these

1Names of roles will start with uppercase letters; the corresponding
names starting with lowercase letters will refer to the object(s) playing the
particular role(s).

to specify these clauses. At the point where an object en-
rolls to play this particular role, the designer will have to
specify a suitable mapping between the members of the ob-
ject’s class lcC and the methods and data members (that we
introduced) of the role, and show that under this mapping
the requiresandensuresclauses of the role’s methods are
satisfied. As we will see, we may also need to refer to the
other data members ofC, for which we will use the notation
αs (to denote “application-level state”).

In addition to data members, we often also need to in-
troduce specificrelationsinvolving two or more states of a
role or between the states of different roles of the pattern.
For example, consider again the question of what happens
when the state of theoriginator is ‘restored’. The question
was whether this means that every bit and byte of the object
has to be restored. While that may be appropriate in some
applications, theMemento pattern does not demand it. For
example, suppose we are dealing with graphics objects and
use snapshots (thememento objects) that are lossyjpeg
compressions of the graphics objects. When restored from
such amemento, the restoration cannot have 100% fidelity.
To allow for such cases, we will introduce a relation,Re-

stored(s1, s2) of two statess1 ands2 of the graphics en-
tity, this relation being satisfied ifs2 is ‘sufficiently similar’
to s1, given the lossy nature of the jpeg memento involved.
As we will see, the auxiliary concepts are the key to speci-
fying the pattern precisely while at the same time retaining,
indeed evenadding to, its flexibility.

3 Specifying the Memento Pattern

For convenience, we split the specification of theMe-

mento pattern into three pieces. The first, Fig. 2, is con-
cerned with the pattern-level portion of the specification;
Figs. 3 and 4 specify the individual roles. But this split
is only for purposes of presentation; logically, it is inappro-
priate to split the specification in this manner since the main
point of the pattern is to focus on how the roles interact with
each other, so it does not make much sense to consider them
separately from each other.

One interesting question that does not seem to have been
addressed elsewhere came up as we built our specification.
Suppose at timet2, we restore the state of an originatoro

using a mementom created at an earlier timet1. What
should we do with the mementos (for the same originator)
created betweent1 andt2? Should we consider themde-
funct sinceo has been restored to an earlier point than the
one at which these other mementos were created? In the
specification below, in order to keep the presentation sim-
ple, we have ignored this issue. Near the end of the section,
we consider how to modify the specification to disallow the
use of defunct mementos.

2

pattern Memento {
roles: Originator, Memento*, Caretaker*;

//see note 1 below

state: // note 2

Originator: null;

Memento: OrigState orS;

Caretaker: null;

auxiliaryConcepts: // note 3

relation: MemCopy(Orig.αs, Mem.αs);

relation: SameMem(Mem.αs1, Mem.αs2):

reflexive, transitive;
relation: StateInfo(orSI, Mem.αs);

relation: Reset(Orig.αs1, Mem.αs, Orig.αs2);

relation: Restored(Orig.αs1, Orig.αs2):

reflexive; // note 4

constraints: // note 5

[MemCopy(os1,ms1) ∧ SameMem(ms1,ms2)]

⇒ MemCopy(os1,ms2)

[MemCopy(os1,ms1) ∧ Reset(os2,ms1,os3)]

⇒ Restored(os1,os3)

reward: invariant: // note 6

[(∀m ∈ Memento.players):

MemCopy(m.orS, m.αs)]

pattern instantiation: // note 7

〈Originator:player; Restored, MemCopy,

SameMem, StateInfo, Reset〉
enrolling as Originator: 〈false〉
enrolling as Memento:

〈self = result((Originator.player).CreateMemento());

self.orS = (Originator.player).αs〉
enrolling as Caretaker: 〈true〉 }

Figure 2. Memento Specification (part 1)
Notes:

1. There are three roles:Originator, Memento, andCare-

taker. The ‘*’ at the end ofMemento says that any num-
ber of objects may play this role in a given instance of this
pattern;Caretaker is similar; by contrast, only one object
plays theOriginator role.

2. In general, the state consists of components correspond-
ing to each role. Here, only theMemento role has state,
consisting of the variableorS of type OrigState, which
represents the abstract type of theoriginator state. orS

will, as specified below in the condition for enrolling as a
memento, contain the state of theoriginator at the time
this memento was created; and, as will be ensured by the
specification in Fig. 4 ofMemento’s methods, will main-
tain that value2. Eachmemento object will have its own
orS; this is needed since multiple objects may enroll in this
role, each being a snapshot of theoriginator at a different

2orS will typically be an auxiliary variable [11] that does not appear
explicitly in the actual state of thememento object(s).

time. orS is used in thereward clause below to state that
eachmemento remains faithful, so to speak, to the state the
originator was in at the time of thememento’s creation.

3. We use a number of auxiliary concepts. The first,Mem-

Copy(os, ms), says thatms is a ‘memento version of’,
or is ‘faithful to’, the originator stateos. One possibility,
the one implied by Fig. 1, is to requirems to be identical
to os. But MemCopy() allows less faithful copies such as
jpegrepresentations. In any case though,MemCopy() will
be a relation involving the complete states of the objects
playing these roles; we use toαs notation to refer to these
“application-level” states.

Next considerSameMem(). The standard description
suggests that once amemento is created, no changes in
its state may be made until it is used to restore theorig-

inator (or is discarded). But there is no need for such a
rigid restriction. Changes in thememento state are fine so
long as thememento retains ‘essential’ information about
the originator. What ‘essential’ means will be specific
to the pattern instance and is captured bySameMem().
SameMem() is required to be reflexive and transitive. Re-
flexivity, because if no changes are made, thememento

continues to contain the needed information. Transitivity
allows for multiple changes if each preserves the informa-
tion needed. Note that no conditions are imposed onMem-

Copy(). TheStateInfo() relation captures the relation be-
tween thememento state and the result returned by the
GetState() operation ofMemento; this relation will be
used in reasoning about theSetMemento() operation of
Originator, that being the only method that will invoke
Memento.GetState().

Next, suppose at some point theoriginator state isos1,
the memento state isms, we restore theoriginator, and
the resulting state isos2. Reset(os1, ms, os2) is the re-
lation that must hold betweenos1, ms, andos2. The UML
diagram suggests thatms and os2 are identical andos1

plays no role in this. But in general, part of the information
may come frommemento and part from the currentorigi-

nator state.Reset() allows such possibilities.

4. Next, supposeos1 is theoriginator state when ame-

mento is created, thememento is later used to restore the
originator, and the resulting state isos2. Restored(os1,

os2) is the relation that must be satisfied by these two states.
Again the simple case would be to requireos1 andos2 to
be identical;Restored() allows more general cases.

5. While these concepts will be specific to the pattern in-
stance, they must satisfy two constraints. The first ensures,
given the transitivity ofSameMem() and the specification
of theMemento role (Fig. 4), that amemento will remain
in the MemCopy() relation with the state theoriginator

was in at the time of thememento’s creation. The second
constraint captures the essence of the pattern: It states that

3

if a memento was created when theoriginator state was
os1, theoriginator evolves to the stateos2, we reset it us-
ing thememento, and the resultingoriginator state isos3,
thenthe statesos1 andos3 must satisfy theRestored() re-
lation. In other words, theoriginator will indeed have been
‘restored’ in a sense that is appropriate for this pattern in-
stance (as specified by theRestored() relation).

6. Next we have thereward for using this pattern.Me-

mento.players is the set of all objects enrolled in theMe-

mento role. The reward is the invariant that the state (i.e.,
m.αs) of eachmemento will be a ‘MemCopy’ of the
originator state at the time thememento was created.

7. Next we have the conditions that must be satisfied when
an instance of the pattern is created and when objects enroll
in various roles. At pattern instantiation, we are required to
specify the object that will play theOriginator role, and
provide definitions for each auxiliary concept. This means
different mementos for this instance of the pattern will
all have to use thesameauxiliary concepts; an alternative
would be to require some concepts to be defined only when
an object enrolls as amemento; in that case, we could have
memento-specific definitions for some of the concepts.

Next is the condition that must be satisfied for another ob-
ject to enroll in the role ofOriginator; the false condition
ensures that another object cannot so enroll. The condi-
tion for an object to enroll as amemento is that the object
must be the one returned by invokingCreateMemento()

on theoriginator, and theorS component of the newme-

mento must be set equal to the current state of theorigi-

nator. The final clause states that there are no conditions
on an object enrolling as acaretaker. It might seem that
we could require this object to be the one that invoked the
CreateMemento() operation. But that object could then
pass (a reference to) thememento just created to another
object which could then pass it to yet another object, etc.,
and each of them could act as acaretaker; thus, in effect,
and as specified, any object can play this role.

Next we turn to the theOriginator role in Fig. 3.

8. The initial condition when an object enrolls in this role
and the invariant for the role are justtrue. When we con-
sider rewriting the specification to disallow defunctme-

mentos, we will see a more interestinginitCondition.

9. Next we have specifications for the individual methods.
CreateMemento() is used to create amemento. The
preserves clause asserts that it does not change the state
of the originator. Theensures clause asserts that there-

sult returned is a new object; that theorS component of this
new object is equal to the state of theoriginator; and that
the originator state and the state of the new object satisfy
theMemCopy() relation.

10. The specification ofSetMemento() asserts that it does
not change thememento involved, and that it resets the

roleSpec Originator { // note 8

initCondition: true;

invariant: true;

methods:

Memento CreateMemento(): //note 9

requires: true;

preserves: αs;
ensures:

[(new result) ∧ (result.orS = self.αs)
∧ MemCopy(self.αs, result.αs)]

void SetMemento(Memento m): //note 10

requires: [m ∈ Memento.players];

preserves: m.αs;
ensures: [Reset(αs@pre, m.αs, αs)]

others: //note 11

requires: true

ensures: true }

Figure 3. Memento Specification (part 2)

originator state so that theoriginator state at the start of
the operation, the state of thememento, and the final state
of theoriginator satisfy theReset() relation3.

11. The class of the object playing this role may have ad-
ditional methods. In general, we need to ensure that these
other methods behave in ways that do not violate the intent
of the pattern. For this role, as specified by the “others”
part of the specification, there are no non-trivial conditions;
but, as we will see, for theMemento role, we have an in-
teresting requirement.

Next consider theMemento andCaretaker roles, Fig. 4.

12. TheinitCondition andinvariant for this role are, as in
the case of theOriginator role, justtrue.

13. GetState() may be used only by theoriginator, as
specified by therequires clause. This method returns ap-
propriate information needed to restore theoriginator state;
what ‘appropriate information’ means is defined byState-

Info(), and theensures clause requires that theresult

returned by this method and thememento state satisfy
this relation. This will be used in reasoning aboutSet-

Memento() of the object enrolling as theoriginator, to
ensure that it does meet the specification in Fig. 3.

The ensures clause ofother methods, as well as that
of GetState(), require that the state when they finish and
the state at the start satisfy theSameMem() relation; this,
in conjunction with the first constraint specified in Fig. 2,
ensures that the role’s invariant, hence thereward clause of
Fig. 2, will be satisfied.

The standard UML diagram of the pattern also includes
a methodSetState() for this role. This is intended to be
used byCreateMemento() of Originator when

3“@pre” is the OCL [17] notation for referring in the post-condition,
to the values of variables at the start of the method execution.

4

roleSpec Memento {
initCondition: true; // note 12

invariant: MemCopy(orS, αs);

methods:

GetState(): //note 13

requires: (caller = Originator.player);

preserves: orS;

ensures: StateInfo(result, αs)
∧ SameMem(αs@pre, αs);

others:

requires: true

preserves: orS;

ensures: SameMem(αs@pre, αs); }
roleSpec Caretaker { } // note 14

Figure 4. Memento Specification (part 3)

creating thememento. But as long asCreateMemento()

works as specified in Fig. 3, there is no reason (from the
point of view of the pattern) to impose conditions onhow
it works. Hence we assume theSetState() method is not
part of this role (and the corresponding class).

14. The specification ofCaretaker is empty since the
pattern does not require any particular methods of this role,
nor are there any conditions on its “other” methods.

Next we briefly consider how to account fordefunct
mementos. Introduce a variable,liveMem, in the state of
theOriginator (currentlynull, Fig. 2) to keep track of the
mementos that are still live:

Originator: Seq[Memento] liveMem;

The initCondition of Originator will become (liveMem

= 〈〉), since nomementos have yet been created. Next,
we add to theensures of CreateMemento() (Fig. 3), the
following clause:

(liveMem = liveMem@pre . result)

This ensures that when amemento is created, it is
appended (“.” denotes append) to the end ofliveMem.
Next, therequires of SetMemento() will be changed to
(m ∈ liveMem), to check that thememento being used
to restore theoriginator is live. Finally, theensures of the
same operation will have the following clause added:

(liveMem = Prefix(liveMem@pre, m))

Prefix() takes a sequence and an element of the sequence
as its arguments, and returns a sequence consisting of the
elements that precede the given element. This ensures
that thememento being used to perform the restoration,
as well as allmementos that follow it in liveMem, are
removed fromliveMem since they are now defunct.

4 Related Work

One approach to making the descriptions of patterns
more precise has been to develop extensions to UML. Vlis-
sides [16] describes an extension based on Venn diagrams,

which identifies the patterns involved in a design, as well as
the classes used to implement each pattern. Vlissides also
describesrole annotationsto identify the roles associated
with each class. Dong [3] extends this to annotate methods
and attributes to identify their role in each pattern. Reen-
skaug [12] uses the notion ofrole modelsto describe how
the roles of a pattern interact with each other. But these au-
thors do not address the question of formally characterizing
the behavioral aspects of the pattern.

In Edenet al.’s [5, 6] approach, patterns are meta-level
programs operating on an intermediate system representa-
tion. Aspects that vary among instances of the pattern are
deferred to the designer. Yauet al. [18] describe a represen-
tation that identifies the participants, their structural prop-
erties (such as method signatures), and interactions. In-
dividual classes are bound to specific participant descrip-
tions, structural conformance is automatically verified, and
wrappers generated to provide the prescribed interactions.
But neither approach specifies the behavioral responsibili-
ties that must be satisfied when applying the pattern.

Mikkonen [10]’s work focuses on behavioral concerns.
He formalizes design patterns by specifying the classes in-
volved, including their abstract models and the relations.
Some behavioral aspects are specified using DisCo, an ac-
tion system notation. Although the approach allows behav-
iors to be specified precisely,how the behaviors are to be
achieved is not part of the specifications in [10]. For exam-
ple, the specification ofMemento in this notation can be
satisfied by theoriginator saving its own state, rather than
creating a separatememento object; but since the main
point of the pattern is the use of thememento to save and
later restore theoriginator, such a specification does not
seem to capture the essence of the pattern. Another problem
with the approach is that it is somewhat inflexible. Thus the
Memento spec would require the entire state oforigina-

tor to be saved; no changes would be allowed in the state of
memento once it is created (assuming that we use a sep-
aratememento object, rather than having theoriginator

save the state internally); etc.

5 Discussion
Our goal was to show how design patterns may be pre-

cisely and unambiguously specified by usingMemento as
a detailed case-study. Specifications of the type we pro-
pose can complement standard informal descriptions and
help ensure that all designers have a common understand-
ing of the requirements that must be met by various parts of
their system if the pattern is to be applied faithfully, as well
as the behaviors that the system will exhibit as a result.

The specification of a pattern in our approach consists
of conditions that must be satisfied when the pattern is in-
stantiated, and when an object enrolls to play a role;re-
quires and ensuresclauses for the methods of each role,
including other methods not required by this pattern but

5

that may be included in the class of the object; aninvari-
ant for each role; and a pattern-levelinvariant relating the
different roles. These assertions are specified in terms of
state components associated with the various roles, and in
terms ofauxiliary concepts and relations. The essence of
the pattern is captured by the invariant relating the different
roles. In the case of theMemento pattern, this invariant
(given the various constraints and the specifications of the
individual roles), specified that the state of eachmemento

remains ‘faithful’ to, i.e., satisfies theMemCopy() relation
with, the state theoriginator was in at the time the partic-
ular memento was created. Similarly, for theObserver

pattern [14], the invariant specifies that the state of eachob-

server remains consistent with the state of thesubject, as
the latter’s state evolves during execution.

An essential aspect of our approach is that it preserves,
and indeed, somewhat surprisingly, helps identify ways to
extend, the flexibility of the pattern. Consider thegraphics
editorof [8], in which theoriginator state, consisting of the
nodes and edges of the graph, is saved in amemento for
later restoration. One possible notion of ‘restoration’, the
one used in [8], would require each node and each edge
to be at exactly thesame positionsthey occupied origi-
nally; we can capture this notion in our approach by defin-
ing the concept ofRestored(os1, os2) appropriately. On
the other hand, if restoration only required the nodes to be
restored to their original locations and the edges reset to en-
sure thesame connectivityas before but not necessarily oc-
cupy their original locations, the designer can do so by ap-
propriately loosening the definition ofRestored(). Indeed,
an even weaker notion might only require that all the nodes
are restored to their original locations, with no conditions
on the edges; this too is handled by redefiningRestored()

appropriately. In a sense, theRestored() conceptencour-
agesthe discovery of such new notions of restoration, mak-
ing the pattern more flexible than ever. Of course, once we
discover these additional dimensions of flexibility, we can
update the informal descriptions appropriately; but the fact
remains that it was the work of developing the specifications
that led to the identification of these dimensions.

We conclude with a couple of pointers to future work.
We plan to develop the specifications of a number of other
patterns. Patterns for concurrent/distributed systems would
be of special interest, raising issues not present in sequen-
tial patterns. We also intend to work on ways to verify that
a given system built using a pattern meets the requirements
of the pattern’s specification. One problem is that, in a
sense, the use of the pattern is not explicit in the system
code; rather, it is in the ‘eye of the designer’. A way around
this would be to require the system to beannotatedsuitably
to provide information about the pattern instantiations, the
definitions of the auxiliary concepts, etc. Given such an an-
notation, we can then try to show the system does meet the
requirements of the pattern specification.

References

[1] K. Beck and R. Johnson. Patterns generate architec-
tures. InProceedings of the Eighth ECOOP, pages
139–149, 1994.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, and M. Stal.A system of patterns. Wiley, 1996.

[3] J. Dong. UML extenstions for design pattern com-
positions. In C. Mingins, editor,Proc. of TOOLS, in
Special Issue of Journal of Object Technology, vol. 1,
no. 3, pages 149–161, 2002.

[4] A. Eden. A visual formalism for object-oriented archi-
tecture. InProceedings, Integrated Design and Pro-
cess Technology (IDPT-2002), June 2002.

[5] A. Eden, J. Gil, Y. Hirshfeld, and A. Yehudai. Toward
a mathematical foundation for design patterns. Tech-
nical Report 004, Tel Aviv University, 1999.

[6] A. Eden, A. Yehudai, and J. Gil. Precise specification
and automatic application of design patterns. InAuto-
mated Software Engineering, pages 143–152, 1997.

[7] T. Elrad, R. Filman, and A. Bader, editors.CACM Spe-
cial Issue on Aspect Oriented Programming. ACM,
Oct. 2001.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable OO Software.
Addison-Wesley, 1995.

[9] R. Johnson. Components, frameworks, patterns. In
ACM SIGSOFT Symposium on Software Reusability,
pages 10–17, 1997.

[10] T. Mikkonen. Formalizing design patterns. InPro-
ceedings of 20th ICSE, pages 115–124. IEEE Com-
puter Society Press, 1998.

[11] S. Owicki and D. Gries. An axiomatic proof technique
for parallel programs. Acta Informatica, 6(1):319–
340, 1976.

[12] T. Reenskaug.Working with objects. Prentice-Hall,
1996.

[13] D. Riehle and H. Zullighoven. Understanding and
using patterns in software development.Theory and
Practice of Object Systems, 2(1):3–13, 1996.

[14] N. Soundarajan and J. Hallstrom. Responsibilities and
rewards: specifying design patterns. InProc. of Int.
Conf. on Software Engineering (ICSE). IEEE, 2004.

[15] T. Taibi and D. Ngo. Formal specification of design
patterns – a balanced approach.Journal of Object
Technology, 2(4):127–140, July–August 2003.

[16] J. Vlissides. Notation, notation, notation.C++ Re-
port, April 1998.

[17] J. Warmer and A. Kleppe.The Object Constraint Lan-
gauge. Addison-Wesley, 1999.

[18] S. Yau and N. Dong. Integration in component-based
software development using design patterns. InThe
Twenty-Fourth Annual International Computer Soft-
ware Applications Conference, pages 369–, Taipei,
Taiwan, October 2000.

6

