
Inheritance: From Code Reuse to Reasoning Reuse

Neelam Soundarajan and Stephen Fridella
Computer and Information Science

The Ohio State University
Columbus, OH 43210

Abstract
In the Object-Oriented approach a designer can,

given an existing base class, use inheritance to build a
derived class that extends, or that slightly differs from
the base class. But in order to exploit the full poten-
tial of inheritance to build systems incrementally, the
designer must also be able to reason about the derived
class incrementally. This paper presents a specifica-
tion notation and verification procedure that allows
such incremental reasoning out; the approach makes
important use of the concrete specification of a class,
in addition to the usual abstract specification. The
reasoning reuse that the approach enables is illustrated
by applying it to a simple example.

1 Introduction and Motivation
The Object-Oriented approach to developing large

systems is extremely powerful. Much of this power
derives from the key notion of inheritance. Given an
existing base class, a designer can use inheritance to
build a new derived class that extends, or that slightly
differs from the base class. The effort involved in
building a new class using inheritance from an existing
base class is often significantly less than if the designer
had started from scratch. But code reuse by itself is of
little value in the absence of reasoning reuse. In order
to exploit the full potential of inheritance to build sys-
tems incrementally, the system designer must be able
to reason about the derived class in an incremental
manner from the base class. The goal of this paper
is to present a specification notation and verification
procedure that will allow the derived class designer
to reason incrementally, given the specification of the
base class.

Note that we are not asking the question ‘Given a
base class B and a derived class D, under what con-
ditions can a client program use objects that are in-
stances of D in place of instances of B?’ The answer
to that question is provided by the work on behavioral
subtyping [1, 7, 8]. Informally, a class A is a behavioral
subtype of another class B if the behavior exhibited

by objects that are instances of A is in some sense
consistent with behaviors allowed by the class B. The
class A may be a behavioral subtype of B indepen-
dently of whether it is implemented from scratch or
as a derived class of B. And conversely, if D is a de-
rived class of B there is no guarantee that it will be
a behavioral subtype of B. The work on behavioral
subtyping is motivated by the desire to free the de-
signer of the client code from having to reverify his1

code if instances of one class are used where objects
that are instances of another class were expected. Our
work on the other hand is motivated by the desire to
free the designer of the derived class from having to
re-specify or reverify code that the base class designer
has already specified and (presumably) verified.

Despite the distinction between behavioral subtyp-
ing and inheritance, it is often claimed, and in this
context this requirement is often called the Liskov Sub-
stitution Principle (LSP), that the derived class must
be a behavioral subtype of the base class (see, for in-
stance, [9]). The reason for this seems to be the con-
cern that unless this requirement is imposed, inher-
itance will be no more than mere code reuse (terms
such as ‘code scavenging’ or ‘code hack’ are often used
to describe inheritance in the absence of behavioral
subtyping). Our work shows that such concerns are
ill-founded, and that using our approach the derived
class designer can exploit inheritance to achieve not
only code reuse, but significant specification and rea-
soning reuse as well.

A key idea underlying our approach is to associate
two specifications with each class B. The first which
we call the abstract specification of B is for use by
the clients of B and is the standard specification of
the class in terms of an abstract model of the class.
The other specification of B which we call the con-
crete specification is for use by derived class designers;
it describes the behavior of the methods (which we will
also occasionally refer to as functions or operations) of

1Following standard practice, we use ‘he’, ‘his’, etc. as ab-
breviations for ‘he or she’, ‘his or her’ etc.

the class in terms of their effects on the internal struc-
ture, i.e., the member variables2 of the class. The in-
formation contained in the concrete specification of B
is critically important to the designer of D, a derived
class of B, since any methods which are newly defined
in D, or are defined in B but redefined in D, must
work with these same member variables. More im-
portantly, the new methods of D must cooperate with
the methods inherited unchanged from B and these
methods, of course, use these variables. The concrete
specification of B will also include an invariant.

The derived class D will similarly have an abstract
specification and a concrete specification. The por-
tions of the concrete specification of B that correspond
to methods that are inherited unchanged into D will
be inherited into the concrete specification of D; this
is the specification reuse that mirrors the code reuse
that the designer achieves by inheriting the methods.
Further, the designer does not have to reverify these
methods, this being the verification reuse correspond-
ing to the same code reuse.3 The invariant in the
concrete specification of D may be different from that
of B, or it may be identical to it, or a strengthening of
it. It is often argued that inheritance is a dangerous
mechanism because the derived class designer might
inadvertently destroy, in one of the functions he intro-
duces or redefines in D, some invariant relation that
the base class methods rely upon. Our work shows
that while it is true that the amount of verification
reuse may be greater if the derived class preserved
the base class invariant, correctness does not require
it and moreover, a considerable degree of verification
reuse is possible even if the derived class has a quite
different invariant than the base class. The idea of
concrete specifications is of course not new; see, for
instance, [5, 6]. What is new is that in keeping with
the spirit of reuse, the concrete specification of a class
B is serving double duty in our approach, once to help
in verifying the class B, and a second time to help the
derived class designer in reasoning about D.

The main contributions of this paper may be sum-
marized as follows:

• Makes the case that common wisdom to the con-
trary notwithstanding, inheritance not only facil-
itates code reuse, but also specification and veri-
fication reuse for the resulting derived class; and
this is true independent of whether the derived
class is a behavioral subtype of the base class.

2We will use C++-like terminology and notation but our ap-
proach is generally applicable to all class-based OO languages.

3We will see later that there are difficulties in dealing with
dynamic binding, i.e., the virtual functions of C++.

• Presents a specification notation, and a verifica-
tion procedure, that allow the derived class de-
signer to reuse appropriate portions of both the
specification and verification that has been per-
formed for the base class; and applies the ap-
proach to a simple example.

• Explores the relation between specifications (of
different classes) required by behavioral subtyp-
ing, and the relation, corresponding to inheri-
tance, between abstract and concrete specifica-
tions of the base and derived classes.

The rest of the paper is organized as follows: In the
next section we present abstract and concrete specifi-
cations. We consider how much specification reuse we
can expect under different situations; and show how
the concrete specification of the derived class may be
obtained from that of the base class. In the third sec-
tion we present our verification procedure, again focus-
ing on the question of how much reuse we can expect,
in what steps of the verification procedure, and un-
der what conditions. We present a simple example in
the fourth section and show how our approach works
for this example. Again the focus in this section is
on how much reuse we are able to get in the specifica-
tion and verification, so many of the details, especially
with regards to the verification of actual method bod-
ies, are omitted. In the final section, we reiterate the
importance of inheritance in building systems incre-
mentally, and the equal importance of an incremental
specification and verification procedure such as ours;
and contrast the motivation and purpose of our system
with that of work on behavioral subtyping.

2 Reusing Specifications
Consider a base class B and a derived class D (de-

fined by inheritance from B). In a language like C++,
any of the members of B can be declared public, pro-
tected, or private; the public and protected members
of B are accessible in D but not the private members.
Following generally accepted principles of OO design,
we will assume that all the public members are meth-
ods, i.e., there are no public data members. Further,
in order to simplify the discussion we will assume that
there are no private members.4

The specification 〈A, C〉 of B consists of two com-
ponents, A, the abstract specification of B, and C, the

4We consider private members in [11]. Eiffel has no private
members, only public and protected; thus all members of a class
are accessible in derived classes. Java allows not only derived
classes, but all other classes that are in the same ‘package’ as B
to access all members of B except those declared private. But
these other classes themselves are not visible outside so it should
be possible to extend our approach to deal with this case.

concrete specification of B. A will be the usual ADT-
type specification [4], consisting of a conceptual model
of B, and the specifications of the methods of B in
terms of pre- and post-conditions in this model. The
pre-condition of a method will be an assertion on the
(conceptual) state of the object that must be satis-
fied when the method is invoked; the post-condition
an assertion involving both the state at the time the
method is invoked, and the state when the method
completes execution. For simplicity, we do not include
an invariant in the abstract specification.

The concrete specification will also consist of spec-
ifications of the operations of B in terms of pre- and
post-conditions, but in terms of the (protected) data
members of the class, not the conceptual model. In
addition, C will contain an abstraction function that
maps the concrete state, i.e., the values of the set of
protected member variables of the class, to the cor-
responding conceptual state. Finally, C will contain
an invariant over the data members of B that will be
satisfied prior to and at the end of execution of each of
the methods of B. The invariant and the abstraction
function will allow us to relate C and A.

Consider now the derived class D. Three kinds of
operations may exist in D: operations inherited from
the base class B, new operations defined in D, and
operations that are defined in B but are redefined in
D.5 In addition, the derived class may declare new
member variables which are available for use by the
operations defined or redefined in D.

Suppose f is an operation of D inherited from B.
The concrete specification of f will be exactly the same
as its concrete specification in B. This mirrors, in the
specification task, the code reuse that the designer
achieved in inheriting the function. There is a minor
problem we need to handle: The specification of f
inherited from B will not say anything about the effect
of f on any new member variables introduced in D
since these variables did not even exist when the base
class was being specified. But since the body of f (as
coded in the class B) will not refer to these variables,
we can be sure that the execution of f will not have
any effect on these variables. Hence we can strengthen
the concrete specification inherited from B by adding
a clause to the post-condition of f asserting that the
values of the member variables introduced in D are
unaffected by the execution of f .6

5In Eiffel when an operation is redefined, it is possible to
change the types of the parameters or of the results, subject to
Eiffel’s co-variant rules; C++ does not permit such changes. We
will follow the C++ convention and thereby also avoid the type-
related problems concerning covariance versus contravariance.

6If f is a so-called recursive or polymorphic function, i.e., it

As far as operations that are defined or redefined
in D are concerned, we must, of course, come up with
appropriate concrete specifications describing their ef-
fects on the various member variables (both those de-
clared in D as well as those inherited from B).

What about the (concrete) invariant for D? Since
new variables have been declared in D and since the
invariant for D may have to include information about
these variables, we cannot expect to simply reuse the
invariant from B. But even in the absence of such
variables, the invariant of B may not be valid in D
since the operations defined (or redefined) in D may
not maintain this invariant.7 The amount of reuse
in the verification task, in particular in showing that
the (derived) class meets its abstract specification, will
partly depend upon the relation between the base class
and derived class invariants. Later in the paper we will
discuss three possible situations: the first where the
invariants of B and D are identical to each other; the
second in which the invariant for D is stronger than
the invariant for B (i.e., implies it); and the third in
which D’s invariant is just different from B’s.

Next consider the abstract specification of D. In
general, there is no relation between the abstract spec-
ifications of the base and derived classes. This is per-
haps the most important difference between behav-
ioral subtyping and the formalism we are proposing.
Behavioral subtyping imposes specific requirements on
this relation; but inheritance in general allows us to
define derived classes that may, from the point of view
of the client, behave quite different from the base class.
This difference will be reflected in the difference be-
tween the abstraction functions of the two classes. In
many cases though, these functions will be similar to
each other; and to that extent, when using the abstrac-
tion function to show that the concrete specification
of D implies the abstract one, the designer of D can
reuse the corresponding work that has been done for
the base class. We will see this in the example we

invokes another method g of B that is declared virtual, and g is
redefined in D, then even if f is not redefined in D its behavior
when applied to instances of D might be different than when
applied to instances of B since in the former case the g that f
will invoke will be the one defined in D, not the one in B. This
means the specification of f may have to be changed to reflect
this new behavior. We will consider such functions briefly later
in the paper.

7The invariant Inv of a class is not an assertion that is re-
quired to hold at the start of each operation f ; rather f will
guarantee that if the state when f starts execution satisfies Inv,
then the state at the end of f will also satisfy it. Thus even
if the invariant of the base class is not maintained by the de-
rived class, one or more of the operations defined in the base
class may be inherited by D. This is different from the kind of
invariant that, for instance, [10] uses.

consider in section 4; in that example the abstraction
function in the derived class is the same as in the base
class.

Before concluding this section it may be worth not-
ing that the specification reuse is mainly at the con-
crete level. This should not be surprising; inheritance
is at the concrete level, and hence we can expect to
reuse much of the concrete specification of the base
class. But there is no guarantee that the abstract
specifications will be reusable since there is no nec-
essary relation between the abstract models of B and
D. Much criticism of inheritance that does not pro-
duce behavioral subtypes seems to be based on the
assumption that because the abstract specification is
not reusable, that there is no reuse at all; but that is
incorrect as the discussion in this section (as well as
the discussion in the next section about proof reuse)
shows.

3 Reusing Verification
Consider again the base class B and the derived

class D. Let us assume we have the concrete and
abstract specifications for both classes, the concrete
specifications for methods of D that are inherited from
B being the same as in B, as we saw in section 2.

How do we verify that the class D meets its spec-
ifications? We will assume that B has already been
verified to meet its specification; indeed the focus in
this section will be to see how much of the verification
already carried out for B can be reused for D. We
have three sets of proof obligations in verifying D:

1. The various methods of D, both those inherited
from B and those defined (or redefined) in D,
meet their concrete pre- and post-conditions.

2. The various methods of D leave its invariant sat-
isfied when they complete execution.

3. Given that D meets its concrete specification
(which is what steps 1 and 2 establish), D meets
its abstract specification.

Let us consider each of these in turn. For (1), if a
given function f is defined or redefined in D then we
use standard approaches to verify that f ’s meets its
(concrete) pre- and post-conditions. We have to, of
course, take care of parameters of f appropriately but
inheritance introduce no new problems here.

Many times, when a function f is redefined in D,
the reason for the redefinition is that we want to add
something to what f does. Thus the redefined f often
calls the f defined in the base class, plus has some
additional code. When verifying such a redefinition,

we will rely upon the base class (concrete) specification
of f to understand what this call will do. Thus even
in this case, we achieve some reuse by having access
to the concrete specification of the base class f . If we
did not have the information provided by this concrete
specification, we will be forced to look at the code of
the base class f to understand the effect of this call
because the abstract specification will not generally
provide us the required information.

If f is inherited from B rather than being
(re)defined in D, then its concrete specification must
also have been inherited from B as we saw in the last
section. Since neither the body of f , nor its pre- and
post-conditions have changed, there is no need to do
any verification since this has already been done by
the base class designer. This reuse of the verification
performed in the base class mirrors the code reuse that
we achieved by inheriting the code of f from B.

There is one situation where even if f and its (con-
crete) specification are inherited from B, we may still
have to reverify it. This is the case of the polymor-
phic function we mentioned in section 2: suppose f
calls another function g that is also a method of B.
Suppose f is inherited unchanged into D but g is re-
defined. Suppose also that g is declared ‘virtual’ in
B.8 In this situation if (in the client code) we apply f
to an object that is an instance of D, the g that will
be invoked during this call of f will be the one that is
defined in D, not the one defined in B. Now, in veri-
fying that f meets its specification as part of verifying
the correctness of B, the designer of that class must,
of course, have assumed that the function g invoked
in the body of f would behave according to its speci-
fication in B. If the redefined g’s behavior matches its
specification in B (and this is what [12] requires) then
there would be no need to reverify f but this seems an
unlikely scenario; why redefine g if its new behavior is
going to match its old specification?9

If g’s redefined behavior does not match its spec-
ification in B then there are two possibilities: First,
we could simply require any f that invokes a (vir-
tual) g that is redefined in D to be re-analyzed and
re-specified based on the new behavior of g defined
in D. Alternately, we could provide (in B) a com-
plex specification of f , one that includes information

8In Eiffel all functions are virtual by default.
9One possibile reason is that g is redefined so its effects on the

variables of B are the same as before, but it has some effect on
the new variables introduced in D. In this case it would seem
that the behavior of the redefined g matches its specification
in B; but even here we cannot inherit the specification of f
because that specification does not capture the effect a call to f
(applied to an instance of D) will have on the member variables
introduced in D.

about how and when it invokes g in such a manner
that we could ‘plug-in’ the behavior of the redefined
g into this specification to obtain the actual behavior
of f (when applied to instances of D). The advantage
of the first approach is simplicity, but at the expense
of some reuse in specification and verification. The
second approach is quite complex but would probably
be useful in situations, such as OO frameworks, where
such functions are used heavily. In the current paper
we will assume that the first approach is used.

Next consider the second task of verifying that each
method of D leaves its invariant satisfied. Formally we
need to establish for each f the following:

I(ω) ∧ c.pref (ω) ∧ c.postf (ω, ω′)⇒ I(ω′)

where I is the invariant on the state ω, c.pref is the
concrete pre-condition of f , c.postf its concrete post-
condition (involving the initial state ω and the final
state ω′). For simplicity, we have ignored the param-
eters of f .

Note that we do not need to refer to the bodies of
the methods, only their concrete specifications. Is any
reuse of the work done in the base class possible in this
task? That depends on the relation between the in-
variants of B and D. If the invariant of D is identical
to that in B, then we do not have to do anything in this
step as far as functions inherited from the base class
are concerned; for functions (re)defined in D (as well
as for polymorphic functions whose concrete specifica-
tions have changed because one or more of the virtual
methods they call have been redefined) we of course
have to verify that they preserve the invariant.

If the invariant of D is stronger than that of B, i.e.,
it implies the invariant of B, then we can inherit part
of step 2 for functions inherited from the base class. If
f is such a function, then we have already verified that
it preserves the base class invariant; hence all we have
to do is to check that it also preserves the additional
clauses of D’s invariant. There is a special case that is
worth mentioning here: if the only difference between
D’s invariant and B’s invariant concerns the values
of member variables introduced in D, we need do no
work for step 2 for inherited functions since they do
not access these additional variables.10

10The reader may be wondering about the complementary
case where the invariant of D is weaker than, i.e., is implied
by, B’s invariant. Unfortunately, no reuse is possible here. The
problem is that what we have shown in the base class is that if
the initial state when f starts execution satisfies B’s invariant
(and, of course, f ’s pre-condition) then the final state will satisfy
B’s invariant. When considering D, we can only assume that
the initial state will satisfy D’s invariant, and if that is weaker
than that of B, no automatic conclusion can be drawn about
whether the final state will satisfy D’s invariant.

If the invariant of D is different from that of B,
then clearly no reuse is possible. We will just have to
verify from scratch that each method of D preserves
its invariant.

Finally, consider step 3. We have to show, for
each f , that an appropriate relation holds between
the abstract pre-condition of f and its concrete pre-
condition; and similarly for the post-conditions. For
the pre-conditions, this amounts to:

[a.pref (ε(ω)) ∧ I(ω)]⇒ c.pref (ω)

ε, the abstraction function, maps the concrete state
of D to its abstract state. a.pref is the abstract pre-
condition of f ; I is the (concrete) invariant; in other
words, if the abstract version of a state ω satisfies
a.pref , and if ω satisfies the invariant, then it also
satisfies the concrete pre-condition of f . For post-
conditions we have a similar requirement:

[a.pref (ε(ω)) ∧ I(ω) ∧ c.postf (ω, ω′)]⇒
a.postf (ε(ω), ε(ω′))

Note that both the concrete and abstract post-
conditions are assertions involving both the initial
state and final state.

Is any reuse possible in this step? If f is (re)defined
in the derived class, chances are its concrete pre- and
post-conditions will be different from those in the base
class and no reuse will be possible. But even if f is
inherited from the base class, if the abstraction func-
tion in the derived class is not the same as in the base
class, we won’t be able to reuse the work from the base
class in these steps. But if the abstraction function is
the same, and if the invariant is the same, then no
additional work is needed in the derived class (assum-
ing, as is usually true if these conditions are satisfied,
that the abstract pre- and post-conditions of f are
also the same as in the base class); this will be the
case in the example we consider in the next section.
If the abstraction function is the same and the invari-
ant is stronger, then again no work is needed since the
stronger invariant appears on the left sides of the two
implications above. If the invariant is weaker than, or
different from, the invariant of the base class, no reuse
will be possible in this step.

Thus the degree of reuse possible depends heavily
on the amount of code that is being reused, i.e., in
the number of functions being inherited unchanged;
it also depends, especially in the final step, on the
differences between the abstraction functions and the
invariants of the base and derived classes. One point
to note is that even in the final step which is concerned
with the abstract specifications, reuse does not require
the derived class to be a behavioral subtype of the

base class. Behavioral subtyping would require every
function f that is redefined in the derived class to have
an abstract specification that matches that in the base
class. No such requirement applies to the kind of reuse
we are discussing.

4 Example

In this section we will illustrate our method with
a simple example. Rather than giving complete de-
tails of the specifications and verification, we focus on
showing the general structure of our approach, and
demonstrating the various levels of specification and
verification reuse that we talked about earlier.

Consider a BankAccount class. The conceptual
model of a BankAccount is a tuple of three values:

BankAccount ≡ (balance : real ; history : sequence
of trans ; month : integer)

balance is the current balance in the account; month
represents the current month; and history the sequence
of transactions that have taken place so far in the cur-
rent month. The methods of the class will allow a
client to perform new transactions (deposits and with-
drawals) on the account, inspect the transactions that
have taken place so far during the month, get the
current balance, find out the starting balance for the
month, and reset for the next month (which will set
the history to the empty sequence 〈〉).

In the implementation of the BankAccount class
sketched in in Figure 1, we use an array to store the
transactions and two bal and sbal to store the current
balance and starting balance, respectively.

class BankAccount {
protected:

int mth; // current month
real bal, sbal; // current and starting balances
int size; // number of transactions
trans his[MAXTRANS];

public:
BankAccount(int m)

{ bal = sbal = 0.0; size = 0 ; mth = m }
void AddTransaction(trans t)

{ bal += t.amt ; his[size++] = t }
trans GetTransaction(int i) { return his[i−1] }
int CurrentMonth() { return mth }
real CurrentBalance() { return bal }
real StartingBalance() { return sbal }
void NextMonth()

{ sbal = bal ; size = 0; mth++ }
}

Figure 1: Base class BankAccount

The number of transactions so far in the current
month is stored in size. Note also that all member
variables are declared protected so that derived classes
have access to them.

AddTransaction lets us apply a new transaction
to the account. GetTransaction returns information
about a transaction earlier in the month. Current-
Month and CurrentBalance return the current month
and balance respectively. StartingBalance tells us what
the balance was at the start of the month. NextMonth
resets for the next month.

Next we provide abstract and concrete specifica-
tions for the class. We have already specified the con-
ceptual model of the class. What remains of the ab-
stract specification is the pre- and post-conditions for
each operation. Let us consider one of these functions,
AddTransaction:

abs.pre.AddTransaction(trans t) ≡
balance + t.amt ≥ 0

abs.post.AddTransaction(trans t) ≡
(balance′ = balance + t.amt) ∧
(history′ = history ∗ <t>) ∧ (month′ = month)

where ∗ represents concatenation of sequences, and
var′ in a post-condition refers to the value of var in the
state immediately after the method completes. The
pre-condition states that a withderawal greater than
the balance is not allowed; the post-condition that the
balance is updated, and the transaction added to the
history.

Next we consider the concrete specification of the
class. The abstraction function ε is easy: it maps bal
to balance, mth to month, the first size elements of the
his array to the abstract history sequence, and throws
away sbal. The invariant assures us that size is never
negative, and that the values of sbal and bal are con-
sistent with each other given the current value of his

Inv ≡ (bal = sbal +
∑size−1

i=0 his[i].amt) ∧
(size ≥ 0)

Note that Inv is critical to showing that the code of
StartingBalance is correct. Since the starting balance
of the month is not a part of the abstract state, the ab-
stract post-condition of StartingBalance would be writ-
ten in terms of balance and history.

abs.post.StartingBalance() ≡
(returns (balance −

∑len(history)
j=1 historyj)) ∧

(balance′ = balance) ∧ (history′ = history) ∧
(month′ = month)

However, the concrete post-condition of StartingBal-
ance will simply state that the value of sbal is returned.
It is only with the information that is provided by Inv,

that the value of sbal is always consistent with the cur-
rent balance and the transaction history, that we will
be able to conclude that the abstract post-condition
is valid. This reasoning would be part of step 3 (from
section 3) for the verification of BankAccount.

Next let us consider the concrete specification of
the AddTransaction function:

con.pre.AddTransaction(trans t) ≡ size ≥ 0

con.post.AddTransaction(trans t) ≡
(bal′ = bal + t.amt) ∧ (his′ = his([size] : t) ∧
(sbal′ = sbal) ∧ (size′ = size +1) ∧ (mth′ =mth)

where his([i] : val) is the same as the array his with
the item which was originally at position i replaced
by val. Note that the concrete pre-condition of Ad-
dTransaction does not rule out negative balances in the
account. There is no need to do so because the code
of the function does not depend on it. Not includ-
ing this in the concrete pre-condition means a later
derived class that wants to allow, in the conceptual
model, negative balances will be able to do so.

However, we will consider a different derived class,
one in which we want to add an operation that will
let us cancel a preceding transaction; perhaps this op-
eration corresponds to a new facility provided to the
bank customers – that of canceling fraudulent trans-
actions. Let us name this operation RemTransaction,
and the new class BetterAccount.

We could of course implement BetterAccount from
scratch but that would be a crime against the reuse
philosophy given that we can implement it incremen-
tally by using inheritance from the existing BankAc-
count class. It is also worth noting that we cannot
implement BetterAccount by layering on the BankAc-
count class since that class does not permit transac-
tions to be selectively removed from the history.

The implementation of BetterAccount as a derived
class of BankAccount appears in Figure 2.

class BetterAccount : BankAccount {
public:

void RemTransaction(int i) {
bal −= his[i−1] ; size−− ;
// Shift each element of his from
// i - 1 to size - 1 down one.

}
}

Figure 2: Derived class BetterAccount

The RemTransaction function removes the appropri-
ate transaction from his, shifts the remaining trans-
actions one element forward in his, and updates bal

appropriately. Note that the code of RemTransaction
would not have compiled if we had declared bal and his
as private data members. In that case we would be in
the same position as if we had tried to layer the im-
plementation of BetterAccount on top of BankAccount.

Next we must specify and verify BetterAccount.
Much of the specification of the base class can be
inherited. First consider the abstract specification.
The conceptual model of the class is the same as for
BankAccount. The specifications of all the inherited
functions are also the same. The only additional thing
we need to provide is the abstract specification of the
newly introduced method, RemTransaction:

abs.pre.RemTransaction(int i) ≡ 0 <i≤ len(history)

abs.post.RemTransaction(int i) ≡ (month′ =month)
∧ (balance′ = balance − historyi.amt) ∧
(history′ = history1...i−1∗ historyi+1...len(history))

The post-condition states that the transaction has
been removed from the history and the balance restored
appropriately.

Now consider the concrete specification. The ab-
straction function is identical to its counterpart in the
base class, as is the invariant. The concrete specifica-
tions of all the functions defined in the base class can
be inherited since none of them is redefined. The only
thing we need to do to complete the concrete specifi-
cation is to specify the pre- and post-condition of the
new operation:

con.pre.RemTransaction(int i) ≡ 0 <i≤ size

con.post.RemTransaction(int i) ≡ (size′ = size − 1)
∧ (bal′ = bal − his[i−1].amt) ∧
(∀j, 0 ≤ j < size−1,

(j < i− 1 ⇒ his[j]′ = his[j]) ∧
(i− 1 ≤ j < size−1 ⇒ his[j]′ = his[j + 1]))

∧ (sbal′ = sbal) ∧ (mth′ =mth)

The post-condition asserts that the method subtracts
the amount of the transaction to be removed from the
balance, decrements size, and for each array element
after the one to be removed, copies it to the position
immediately below it.

This is a remarkable degree of specification reuse
that handily matches the code reuse. One might
be tempted to argue that the reason for this is that
BetterAccount is a (weak) behavioral subtype [2] of
BankAccount.11 But we will shortly mention another
equally simple example which is not a behavioral sub-
type, strong or weak, of BankAccount for which also

11BetterAccount is not a behavioral subtype of BankAccount
according to the definition of Liskov and Wing [7, 8], but it is
a weak behavioral subtype, as per the definition of Dhara and
Leavens [2].

we will be able to inherit much of the base class spec-
ification.

Next let us consider the verification task. As we
saw in the last section, there are three steps in the
verification task. Here again we will be able to inherit
almost all of the work done in the base class.
Step 1

Recall that in this step we verify that all the meth-
ods meet their concrete specification. Since all the
methods of the base class have been inherited un-
changed, our approach allows us to skip the verifi-
cation of their method bodies. This is the most basic
level of verification reuse allowed by inheritance. The
only thing that has to be done for this step is to verify
that the newly defined method RemTransaction meets
its concrete specification. We will leave that to the
interested reader.
Step 2

In this step we have to verify that each method, as
per its pre- and post-conditions, maintains the invari-
ant of the class. But as we saw in specifying the class,
the invariant is the same as in the base class, and so,
as we saw in section 3, there is no work to be done
as far as the inherted methods are concerned! This is
the second level of verification reuse that is often pos-
sible with inheritance. That only leaves us with the
task of verifying that RemTransaction preserves the in-
variant. This is easily done. Suppose Inv holds in a
state ω. This asserts that the sum of sbal and each
of the transaction amounts in the array his is equal to
bal. RemTransaction removes one transaction from the
his array, effectively subtracting that amount from the
sum of the transactions. However, at the same time
it subtracts the same amount from bal, thereby main-
taining the original equality.
Step 3

The final step is to check that, for each method,
the abstract specification and concrete specification
are consistent with each other. Again, since the ab-
straction function as well as the invariant are the same
in the base and derived classes, the verification pro-
cedure described in section 3 approach allows us to
reuse the verification work done in the base class for
all of the inherited functions. This is the third level
of verification reuse that we can obtain in the verifica-
tion of a derived class. All that remains for us to do is
to check that the relations specified toward the end of
section 3 between the abstract and concrete pre- and
post-conditions of RemTransaction hold.

To see this, note that the abstract pre-condition
requires that i is a number anywhere from one to the
length of the history sequence in the current state. ε

maps the first size elements of the array his to the
history sequence, and thus size represents the length
of the sequence. This means that the abstract and
concrete pre-conditions are identical. The concrete
post-condition states that the ith element of the his
array is subtracted from bal and removed from the
array. Since ε maps bal to balance and, as we saw
above, the elements of his to history, this condition is
identical to the abstract post-condition.

That completes the verification of the derived class.
Again, as in the case of specification reuse, the degree
of verification reuse is remarkable and easily matches
the degree of code reuse.

Before concluding this section, let us briefly con-
sider another possible derived class of BankAccount.
Suppose the bank decides to impose a per transaction
service charge c. How do we implement this? Again
we can implement it as a derived class (WorseAccount)
of the BankAccount class. This time we cannot inherit
all the functions from the base class. In particular we
have to redefine AddTransaction so that it subtracts
the appropriate fee from the balance. The remaining
functions can be inherited without change.

class WorseAccount : BankAccount {
public:

void AddTransaction(trans t) {
BankAccount::AddTransaction(t);
bal −= c;

}
}

Figure 3: Derived class WorseAccount

Let us briefly consider the specification of this class.
The conceptual model of this class is again the same
as in BankAccount class. The abstract specifications
of all the operations are also the same, except for the
StartingBalance operation and the redefined AddTrans-
action. The concrete specification also can be mostly
inherited from the base class; the abstraction function
is the same, as are the pre- and post-conditions of
all the inherited operations. The invariant is different
because we have to allow for the transaction fee when
considering the relation between bal and sbal.

What about the verification? Because the invariant
is different, we can expect only limited reuse in steps
2 and 3. There is considerable reuse in step 1 because
of all the inherited operations. Even for the redefined
operation, because it invokes the base class operation,
the verification task is simplified since we do not have
to go through the body of the base class operation,
although we are making use of it. Thus although the

situation is not as good as in the case of BetterAccount,
there is still considerable reuse in both specification
and verification in this example also. And this reuse
is possible although WorseAccount is not a behavioral
subtype, weak or strong, of BankAccount.

5 Discussion
Discussions of inheritance often use the term ‘is-a’

to describe it, the idea being that every object that is
an instance of the derived class D is also an instance
of the base class B. While at the informal level this
is a useful way to describe inheritance, imposing this
as a formal requirement can ham-string a designer.
Consider our example of bank accounts. While in-
tuitively instances of the derived class WorseAccount
can be considered as BankAccount objects, from a for-
mal point of view they are not, since, for instance, the
behavior of the AddTransaction operation, when seen
from a client’s point of view, is different in the two
classes. This is why we believe that imposing a formal
version of ‘is-a’, such as (strong or weak) behavioral
subtyping, will outlaw many reasonable uses of inher-
itance.

But at the same time we do not want inheritance to
be merely a code reuse mechanism. Unless the code
reuse is matched by reasoning reuse, system design-
ers would gain little by using inheritance. That is
the challenge we have tried to meet in this paper: To
design a specification notation and verification proce-
dure that will allow the designer of the derived class
to reuse as much as possible of the specification and
verification that has been performed for the base class.
The key insight behind our approach is that the reuse
that inheritance enables is (usually) not at the ab-
stract level, but rather at the concrete level. That is
not to say that the designer looks at the code of the in-
dividual methods and decides to reuse bits and pieces
of them. Rather, once he understands the effects of
the various methods on the member variables of the
class, he can see which can be reused and which need
to be redefined, and what additional methods (and
variables) need to be introduced, in order to arrive at
a class that will serve his current purposes. Since this
is the information contained in the concrete specifica-
tion of the class, once he has access to this specifica-
tion, the designer can design the derived class without
having to study the base class code. This is particu-
larly important in situations where the designer does
not have access to the base class code, as might be the
case if the base class was purchased from a software
vendor who may not have provided the source code
for the class.

This is perhaps the most important difference be-

..

..

..

...

DB
Specification

Reuse

Step 3

Concrete Spec.of Concrete Spec. of

Steps 1, 2

DB
Inheritance

Implementation of Implementation of

(Code Reuse)

DB
Behavioral

Subtyping

Abstract Spec. of Abstract Spec.of

Verification

Reuse

Figure 4: Levels of Reasoning Reuse

tween behavioral subtyping [7, 3, 2] and our work;
whereas the work on behavioral subtyping focuses
on the relation between the abstract specifications of
classes, our work shows how the derived class designer
can use the concrete specification of the base class to
build derived classes that are similar to but not (nec-
essarily) behavioral subtypes of the base class; and
how, in the derived class, he can reuse much of the
specification and verification that has been performed
for the base class. Figure 4 may make the relations
between the various specifications clearer. The verti-
cal lines in the figure represent the reasoning steps we
described in section 3.

Inheritance is essentially a programming mecha-
nism that the designer uses to construct the imple-
mentation of D by reusing (possibly a part of) the
implementation of B. The horizontal line joining the
boxes corresponding to these implementations repre-
sents this code reuse. The next two horizontal lines
represent that specification and verification reuse that
our approach enables. Note that while the line labeled
’verification reuse’ appears on the figure to be related
only to steps 1 and 2 of the verification process, as we
described in section 3, we often have such reuse during
step 3 as well.

If further, we abide by the requirement that the
derived class must be a behavioral subtype, then the

abstract specifications of B and D will have the rela-
tion described by, for instance, Liskov and Wing [7, 8];
this is represented by the top most horizontal line in
the figure, joining the boxes corresponding to the ab-
stract specifications of B and D. But note that in
general there is no guarantee that (the abstract spec-
ification of) D will be a behavioral subtype of (the
abstract specification of) B, so this line may or may
not be present. Dhara and Leavens [2] consider re-
strictions on how inheritance is used to ensure that
the behavioral subtype relation holds. Our work shows
that even if these restrictions are not satisfied, we have
considerable specification and verification reuse, rep-
resented by the two intermediate horizontal lines. Ed-
wards [3] considers a somewhat intermediate situation;
he considers the reasoning reuse that may be achieved
if the derived class is not necessarily a behavioral sub-
type of the base class, but the conceptual model, the
abstraction function, and the invariant are required
to be the same in the derived class as they are in the
base class. For this situation, he arrives at essentially
the same conclusions as ours. In addition our work
shows that even if one or more of these requirements
is not satisfied, we can still achieve a degree of rea-
soning reuse. Of course, if the derived class designer
redefines every single method of the base class, we will
not be able to reuse any part of the specification (or
verification) of B; but then in this case, there was
no code reuse either. Thus the degree of specification
and verification reuse that our approach allows closely
parallels the degree of code reuse.

As we noted earlier in the paper, the motivation
underlying behavioral subtyping is different from the
motivation underlying our work. Our work was mo-
tivated by the desire to match, in the task of reason-
ing about the derived class, the code reuse that the
derived class designer achieves in inheriting from the
base class. Behavioral subtyping, on the other hand,
tries to promote reuse in the task of reasoning about
the code of the client that uses these classes. The idea
is that if the client has verified that his code will meet
its specification if we use objects that are instances of
a class B, then the code will also work correctly if we
instead use objects that are instances of a class D, pro-
vided D is a behavioral subtype of B. But note that
this assurance comes at a price: we must be willing to
ignore the differences between these classes.

We will conclude by noting that it would be
straightforward to extend our approach to handle mul-
tiple inheritance. Suppose a class D is defined by
inheritance from more than one base class, say B1
and B2. The concrete specification of a method in

D which is inherited from B1 can be reused from the
concrete specification of B1, provided we strengthen
the specification with clauses stating that none of the
members variables introduced in D, nor any of the
member variables of B2, are affected by the method
execution. No reverification of this specification will
be necessary since the body of the method is not be-
ing changed. One important question would have to
do with the invariant for D. The most useful case, and
one that would enable the greatest degree of reasoning
reuse, would be if D’s invariant implied the invariants
of both B1 and B2. We will not go into further de-
tails here, but it should be clear that the approach
extends easily and naturally to handle multiple inher-
itance. And the specification and verification reuse
that we achieve matches the code reuse the designer
has achieved by inheriting from B1 and B2.

References
[1] P. America. Designing an object oriented pro-

gramming language with behavioral subtyping.
In Foundations of Object-Oriented Languages,
REX School/Workshop, LNCS 489, pages 69–90.
Springer-Verlag, 1991.

[2] K.K. Dhara and G.T. Leavens. Forcing behav-
ioral subtyping through specification inheritance.
In ICSE-18, pages 27–51. Springer-Verlag, 1996.

[3] S. Edwards. Representation inheritance: A safe
form of ‘white box’ code inheritance. In Software
Reuse, pages 27–51. Springer-Verlag.

[4] J. Guttag, J. Horning, and J. Wing. The larch
family of specification languages. IEEE Software,
2, 1985.

[5] C. A. R. Hoare. Proof of correctness of data repre-
sentations. Acta Informatica, 1(4):271–281, 1972.

[6] C. Jones. Systematic Software Development Us-
ing VDM. Prentice-Hall, 1990.

[7] B. Liskov and J. Wing. A new definition of the
subtype relation. In ECOOP, 1993.

[8] B. Liskov and J. Wing. A behavioral notion of
subtyping. ACM TOPLAS, 16:1811–1841, 1994.

[9] R. Martin. Designing object oriented C++ ap-
plications using the Booch method. Prentice-Hall,
1995.

[10] B. Meyer. Object-Oriented Software Construc-
tion. Prentice Hall, 1988.

[11] N. Soundarajan and S. Fridella. Inheriting and
modifying behavior. In TOOLS, 1997.

[12] R. Stata and J.V. Guttag. Modular reasoning in
the presence of subclassing. In OOPSLA. ACM
Press, 1995.

