
Interaction Refinement in Object-Oriented Systems

(Extended Abstract)

Neelam Soundarajan

Computer and Information Science
The Ohio State University
2015 Neil Avenue Mall
Columbus, OH 43210

USA

e-mail: neelam@cis.ohio-state.edu
Tel: (614) 292 1444. FAX: (614) 292 2911

Abstract:

An OO designer typically starts with a high-level idea of the interactions between the key objects
in the system. As the design progresses, the designerrefinesthese interactions by identifying
the exact operations of each object that other objects will invoke and the order of invocations,
or by introducing new objects with appropriate operations to mediate the required interactions
between existing objects, etc. These refinements are usually not recorded, so the rationale behind
the design maybe lost. We motivate the notion ofinteraction refinementwith a few examples,
provide a precise definition of the concept, and develop a formalism that can be an important tool
in recording and validating OO designs.

1



1 Introduction and Motivation

‘Stepwise refinement’ which we will call procedural refinement, is one of the most important tools
in procedural design. We believe thatinteraction refinementplays an equally important role in OO
design. To see what we mean by interaction refinement consider a simple example. Suppose we
were designing a system consisting of a ‘client object’CO and a ‘server object’SO. The high-
level specification of the system might say that the purpose of the first interaction between these
two objects is to identify the client to the server. The system designer may decide to map this
interaction into a series of interactions betweenCO andSO. FirstCO might be required to supply
its ‘user-id’, and then its password; ifCO provides an invalid password,SO might allow CO
several chances to get the password right; etc. The designer may also choose to introduce new
objects to mediate this interaction. For instance, the authentication of the password may be done
by an authentication objectAO that encapsulates this task. Indeed it might be a better design to
haveCO send the password directly toAO rather than viaSO, since the protocol on how many
attempts the client is allowed to get the password correct etc., can then be encapsulated inAO
which is probably where it belongs. In any case, what we have done here is to refine the high-level
interactionidentify-clientbetweenCO andSOinto a series of interactions involvingCO, SO, and
AO. This is an example of an interaction-refinement-step. In the rest of the paper we will often
abbreviate interaction refinement toIR.

There is another type of refinement which we will callstructure refinement, or SRfor short,
which is quite different fromIR. In a step ofSR, we design a particular object in the system,
saySOof the last paragraph, to consist of a number of (member) components and implement the
operations of the object in terms of the operations on its components. In this type of refinement we
are not refining the external interface of the object in question; rather, we are refining itsinternal
structure. Almost by definition, this refinement has no effect onCO and other objects external to
SO. By contrast, in a step ofIR, we refine a high-level interaction between two (or more) objects
of the system into a series of low(er)-level interactions between these and possibly other objects
in such a way that these low-level interactions achieve the intended purpose of the high-level
interaction.

The key question is, how do we know that the ‘intended purpose’ of the high-level interaction
is indeed achieved by the sequence of low-level interactions that we have refined it into? In other
words, what does it mean for a particular interaction refinement to be correct? We will address
this question in the next section after first introducing the notation that we will use for specifying
interactions, and defining precisely the notion of interaction refinement. We then present a rule
that will allow us to formally show the correctness of a given refinement. In the case ofSR, the
corresponding question would be, how do we know that a particular refinement of the structure of
a given object into certain specific component objects and the implementation of its operations in
terms of operations on these components, results in the object exhibiting correct external behavior?
This question has been addressed by many authors [3, 5, 6] and several formal systems proposed
to establish the correctness of a structure-refinement-step.1

1The corresponding question for the case ofprocedural refinementwas answered by the classic formalisms of
Hoare, Dijkstra, and others.

2



It is worth noting at this point that the reason we prefer the term ‘procedural refinement’ (or
PR) to the more standard ‘stepwise refinement’ is that what we do in a step ofPR is to refine
the procedure, or the sequence of actions, needed to perform a certain computation. Moreover,
interaction refinement and structure refinement are also stepwise, i.e., in a complete system design
there are usually several steps ofIR and ofSR. Thus the key difference between the three types
of refinement is not that one is step-wise and the others are not, but inwhat is being refined. In
the case of a step ofPR, we refine a given high-level action or computation into a composition
of lower-level computations. In the case of anSR-step, we refine the structure of an object into
its component objects. In the case of anIR-step, we refine a high-level, i.e., abstractly specified,
interaction between a group of objects into a sequence of lower-level interactions between these
objects, and possibly other objects. All three types of refinement are important in OO system
design.

Although the idea of interactionrefinement, and the attempt to answer the question “what does it
mean for such a refinement to be correct, and how we can we establish this correctness?”, seem to
be new to this paper, the importance of understanding the desired sequence of interactions between
the various objects of a system, and letting this understanding guide the design of the system, is
well recognized. Indeed, once the interaction sequences have beenfully refined, what we have
is essentially the complete collection ofuse-cases[4] for the system; and as Jacobson [4] argues,
use-cases play an important role in designing the system. Thus the main contributions of this paper
are to provide a notation for precisely recording the sequence of refinements that we go through in
going from a set of high-level interaction sequences where the interactions between the objects are
rather abstract, to arrive at the set of actual or concrete use-cases applicable to the system when it
is finally built, and a precise method to establish the correctness of these refinements.2

The paper is organized as follows: In the next section we introduce the notation for specifying
interaction sequences, define what an interaction refinement is, and present proof rules that will
allow us to show that a given refinement is correct. In the third section we discuss (informally) two
examples of OO systems and show howIR plays an important role in the design of such systems.
In the final section we reiterate the importance ofIR in OO design, and the need for a formalism
such as ours to establish the correctness of the resulting designs. We also explain whereIR fits in
the standard software life cycles. Finally we note the particular importance ofIR in distributed OO
systems.

2It may be useful at this point to draw a distinction between what Jacobson calls ‘abstract use-cases’ and our
notion of high-level interaction sequences. As we have explained, high-level sequences are what a system designer
starts with. They consist of elements that represent a high-level of view of the interactions between the various objects
in the system. Jacobson’s abstract use-cases are not in any way related to these sequences. Abstract use-cases are
instead portions of (final) use-cases that happen to appear in more than one use-case. Jacobson suggests that it would
be useful to identify these so that we don’t waste time implementing them more than once.

3



2 Specifying and Verifying Interaction Refinements

Consider an OO systemS consisting of a number of objects interacting with each other. We are
interested in the various possible sequences of interactions between these objects.3 Supposeλ
is a possible interaction sequence ofS. Each element ofλ represents aninteractionamong the
components of the system.

Two types of interactions, simple and compound, may appear inλ. A simple interactioncorre-
sponds to the invocation of an operation of one of the objects ofS by one of the other objects ofS,
or the return from such an invocation.4 A compound interactioninvolves two or more objects ofS
and does not correspond to a single call or return of an operation of one object by one of the other
objects; rather it will berefinedinto a sequence of such calls and returns during one or more steps
of IR. In the sequenceλ, we will record a simple interaction that corresponds to the invocation of
an operation of one object by another by specifying the name of the calling object, the name of
the called object and the operation invoked, and any parameter values; a simple interaction corre-
sponding to a return will similarly record any result returned to the caller. An element ofλ that
corresponds to a compound interaction will be specified by providing an appropriate name (such
as ‘identify-client’), specifying the set of objects involved in the interaction (such as{CO,SO}),
and the values of any parameters involved.

How do we specify the set of possible interaction sequences of the systemS? We will use an
assertionI that is satisfied byall allowed interaction sequences ofS andonly by these sequences.
This latter requirement that only allowed sequences ofS satisfyI is not critical to the development
of our formalism. We decided to impose this requirement mainly in order to mirror the usual style
in which use-cases are used [4]. We will return to this point shortly.

Suppose we have another specificationI ′ for S. We can now precisely state our basic question:

What relation must hold between the specificationsI andI ′ in order for us to be able
to legitimately claim thatI ′ is a (interaction) refinement ofI?

The obvious answer, thatI ′ is a refinement ofI only if it implies I is wrong. There are two
problems: First, as we just noted, ifλ satisfiesI thenS must actually be capable of exhibiting
the behavior corresponding toλ. SoI ′ cannot be stronger thanI because then there might be a
sequenceλ that satisfiesI but notI ′, andI ′ would no longer be a valid specification ofS sinceS
is capable of exhibiting the behavior corresponding toλ. This is clearly a minor problem, and if
necessary we can solve it by reinterpreting a specification ofS to be something that is satisfied by
all possible sequences ofS and omitting the requirement that only these sequences satisfy it. We
won’t pursue this point further in this paper (except to note how rule (1) below will be modified if
we were to omit this requirement).

3Of course, in general objects ofS will also interact with agents –such as actual users– external toS; as is usual, we
will represent these by introducing ‘stand-in’ objects inS to represent these external agents, and treat these interactions
in the same way as we treat interactions between the actual objects ofS.

4A use-case is an interaction sequence that consists entirely of simple interactions.

4



The more serious problem with the answer thatI ′ is a refinement ofI if it implies I is the
following: Given our previous discussion, the elements in the sequences thatI is concerned with
are not, in general, the same kind of elements as the ones in the sequences thatI ′ is concerned with.
Rather the former correspond to what we have called high-level interactions, whereas the latter are
low-level interactions (possiblysimpleinteractions) thatimplementthose high-level interactions.
So if I ′ were a proper refinement ofI and even if we ignore the problem of the last paragraph, an
implication relation will in general not hold. In view of the difference between the elements in the
sequences, let us useλ to denote a general sequence that satisfiesI, andλ′ to denote a sequence
that satisfiesI ′. Note that bothλ andλ′ record all the interactions between the objects ofS (as
well as the ‘stand-in’ objects that represent objects external toS). The difference is that the view
recorded inλ is a high-level view whereas that inλ′ is a low(er)-level view.

Let us first consider a relatively simple kind of relation between the elements inλ andλ′. Let
Σ be the set of elements corresponding to the high-level interactions, i.e., those that can appear
in λ, andΣ′ the set of elements corresponding to the low-level interactions – those that appear in
λ′. A simple situation would be for the interaction represented by any given element ofΣ to be
implemented by a sequence of elements ofΣ′. Thus we will need a mapping of the form:

ρ : Σ⇒ Σ′∗

whereΣ′∗ is the set of all (finite) sequences overΣ′.

If ρ(i) = 〈i1, . . . , in〉, that means that the high level interactioni is being implemented as the
sequence of lower-level interactionsi1, . . . , in. (Some ofi1, . . . , in may be simple interactions,
others will be compound;i will, of course, be a compound interaction unlessn = 1 andi = i1.)
Note that there is no assumption that only the objects involved in the interactioni are allowed to
be participants in interactionsi1, . . . , in. Indeed, it is not even required that all (or any!) of the
participants ini be involved in one or more ofi1, . . . , in. This may seem rather strange; while
it may be appropriate to allow additional objects (such as the authentication object in the client-
server example of the first section) to participate in the implementation of an interaction between
a given set of objects, how can an interaction that at an abstract level involves certain objects be
‘implemented’ at a lower level without the participation of those objects? The answer is that this is
a matter of system design and the formalism should not disallow such possibilities. For instance,
it may be that the nature of the system is such that this interaction is always preceded by certain
other interactions involving certain other objects and hence these other objects can consult with
each other to implement the required interaction without any apparent involvement of certain of
the principals.5

Once the mapping function is given, we can see what relation must hold between the specifi-
cationsI andI ′. Essentially we need to ensure that if a given sequenceλ′ satisfiesI ′, then the
correspondingλ sequence will satisfyI, and conversely if a givenλ satisfiesI, the corresponding
λ′ must satisfyI ′:

[∀λ′.I ′ ⇒ {∃λ.(λ′ = ρ(λ) ∧ I)}] ∧ [∀λ.I ⇒ {∃λ′.(λ′ = ρ(λ) ∧ I ′)}] (1)

whereρ(λ) is the sequence obtained by applyingρ to each element ofλ and appending together

5It is probably difficult to construct a simple and natural example of this type of situation, so we won’t try to do so
here; but our formalism, if it is to be general, must allow for such refinements even if they are unusual.

5



all the resulting sequences. Thus it is the natural extension ofρ which is defined over elements that
correspond to ‘high-level interactions’ to sequences of such elements.

Rule (1) is a natural generalization of the usual implication relation between a specification
I and its refinementI ′ to take account of the fact that during interaction refinement high-level
interactions are implemented in terms of lower level ones. (The second implication of rule (1) is
needed because of our decision to require every sequence that satisfiesI to be an actual possible
sequence ofS; if we removed this requirement, the second implication of (1) will disappear.)

The mapping functionρ and the implications in (1) are however a bit too restrictive. They
require thatevery timea given high-level interaction is implemented, it must be implemented in
exactly the same way as the previous time. This would prevent refinements that exploit past history
in implementing particular interactions. Suppose, for instance, that a system has two objectsF1

andF2 and that the high level requirement says thatF1 must send a series of files toF2. If in
practice it turns out, as it does in many applications, that frequently a file thatF1 sends toF2 is a
slight revision of (or even identical to) the previous file that it sent, some designers may choose to
implement this by havingF1 send only this differential information. The high-level specification
would state thatF1 sends a series of files, but the lower-level implementation achieves the effect
much more efficiently. This is exactly the sort of thing we want to be able to deal with but the
formalism we have developed so far will not allow for it, since according to theρ function, a given
high-level interaction must be mapped to a fixed set of low-level interactions.

The solution is clear from the discussion above. The functionρ should not be a function over
the individualhigh-level interactions but rather over the high-level sequences:

ρ : Λ⇒ Λ′

whereΛ is the set of all possible high-level traces (essentially the setΣ∗), andΛ′ the set of all
possible low-level traces. Requirement (1) doesn’t need any change except to note that the function
ρ that it refers to is this new one that mapsλ sequences directly toλ′ sequences.

This is still not general enough. As we will see from the examples in the next section, the
mapping from the high-level sequences to the low-level sequences need not be one-to-one. In
other words, in general we have arelation between elements ofΛ andΛ′ rather than a function
between the two sets. Letρ denote this relation, i.e., ifρ(λ, λ′) holds, that means thatλ′ is one of
the (possibly many) low-level sequences that the high-level sequenceλ is related to. Rule (1) will
correspondingly change as follows:

[∀λ, λ′.{(ρ(λ, λ′) ∧ I ′)⇒ I}] ∧ [∀λ, λ′.{(ρ(λ, λ′) ∧ I)⇒ I}] (2)

It might be useful to impose some constraints on the relationρ. Clearly we would have to
require that for each elementλ of Λ that there is at least one element ofΛ′ thatλ is related to. It
might also be reasonable to require some type of monotonicity condition – ifλ1 is a prefix ofλ2,
then for eachλ′1 that is related toλ1, there be aλ′2 that is related toλ2 such thatλ′1 is a prefix ofλ′2;
and vice-versa. But we won’t explore these conditions further in this paper (except to briefly note
at the end of section 3 that even such apparently reasonable constraints may be too strong).

Before concluding this section, we should note that in a given step ofIR, the designer is trying

6



to achieve the intended purpose of a set of high-level sequences, in terms of a set of low-level
sequences. But the ‘intended purpose’ is in the eye of the designer, so to speak. A different
designer may well see a different purpose in the same high-level specification (we will see a simple
example of this in the next section). No formalism can expect to capture the intention behind a
specification. But having a precise notation (like theρ function or relation) to specify the particular
mapping of high-level interactions into low-level ones called for by a particular design allows the
designer to precisely record how he intends to achieve the (intended purpose of the) high-level
interactions; and the verification, as required by rule (1), allows him to establish that, given the
mapping called for by his design, his refinement is indeed correct. Other designers will then be able
to check whether they agree with the mapping, i.e., whether it will achieve the intended purpose
of the high-level interaction, as they understand it; and whether the refinement is indeed correct,
given this mapping. This will lead to an improved understanding of the design, and increase our
confidence in its correctness.

3 Some Examples

We believe thatIR is used extensively in the design of OO systems and a study of almost any OO
system will show numerous points whereIR is used. We consider two examples in this section,
and show the application ofIR in the design of each. Our discussion of these examples is quite
informal and far from complete, the main point of the section being to show the roleIR plays in
the design of these systems.

3.1 A Recycling System

For our first example, we consider the ‘recycling system’ from Jacobson [4]. The problem is to
design a recycling machine that a customer can use to return recyclable objects such as cans and
bottles. A customer using the machine will deposit, one at a time, items to be recycled; when he
has deposited all the items, he will request a receipt that should indicate the quantity of each type
of item that the customer returned (the customer can turn in this receipt to a cashier to reclaim his
deposit money). In addition, there is an operator who will, at the end of each day, request a receipt
totaling all the items that have been returned by various customers during the entire day.

At this level of refinement we can see that the interaction sequence will consist of three kinds
of elements:deposit-item(...) , print-customer-receipt(...) , andprint-
operator-receipt(...) . But not every sequence consisting of these three types of elements
is a legal sequence. We need to impose some additional conditions:

• The values printed out as a result of a call toprint-customer-receipt(...) ele-
ment, which is represented in terms of the parameters (. . . ) of the element, should essen-
tially be the sum of thedeposit-item(...) elements preceding it – up to the previous
print-customer-receipt() element.

7



• The elementprint-operator-receipt(...) may only appear at the end of interac-
tion sequence. (We are assuming that an interaction sequence corresponds to a full day.)

• The values printed out as a result of a call toprint-operator-receipt(...) ele-
ment, which is represented in terms of the parameters of the element, should essentially be
the sum of all thedeposit-item(...) elements preceding it.

A more formal discussion of the example would give the precise form of the parameters of the
various types of elements, and formally express the conditions above as clauses in the assertion
that the interaction sequence must satisfy.

What if the recycling machine jams, perhaps because the customer inserts an item incorrectly,
or because there is some other problem? There are two possible ways of dealing with this. The
first approach would be to consider this a problem entirely internal to the recycling machine, to
be dealt with when we actually design the machine, in particular during the implementation of the
deposit-item() function. Perhaps the machine has built into it, some unjamming mechanisms
that are invokedinternally when a jam occurs. This would be an example ofstructural refinement
and/orprocedural refinementof the machine, rather than a refinement of the interactions between
the machine, the customer, and the operator. The customer and the operator would be entirely
unaware that a jam occurred or that the unjamming mechanism was invoked.

The second approachwouldinvolve refining the interactions between the machine, the customer,
and very likely, the operator. This is the approach that [4] takes. Analarm() operation is
provided by the operator which is invoked (by the machine) if an item is stuck. The operator then
invokes anunjam() operation provided by the machine, which can then continue operation. (An
alternative design would have been for the machine to inform the customer of the jam, and for the
customer to invoke an operation provided by the operator.) Corresponding to this refinement, we
need to identify theρ function (or relation) that maps interaction sequences at the higher level to
sequences at this new level. In fact, in this case it is a relation rather than a function since a given
high-level sequence may be mapped to many different low-level sequences that differ from each
other in the number (and points) at which the machine jams and thealarm() operation etc. are
invoked. Indeed, the relation is just that a given (high-level) sequenceλ is related to every (low-
level) sequenceλ′ that is identical toλ if we remove all thealarm() andunjam() operations
from λ′; in addition, thealarm() andunjam() operations inλ′ must appear in the right order
and at the right locations: eachalarm() must be followed by anunjam() , and eachalarm()
must appear after adeposit() .6

Next we need to specify the assertionI ′ that theλ′ sequences must satisfy. EssentiallyI ′ would
say that thealarm() andunjam() operations are in the order just specified, and that if we
project these elements out ofλ′, the resulting sequence must satisfy the high-level assertionI.
With this, it is easy to check the conditions required by rule (2) of the last section, thus validating

6One may ask, what if the machine jams again immediately after it is unjammed? Requiring that eachalarm()
operation be immediately preceded by adeposit() doesn’t permit this. It is easy enough to do so though: require
an alarm() operation to be preceded either by adeposit() or by anunjam() operation. The point is that
having a precise specification of the mapping allows us to identify such problems easily and correct the refinement
appropriately.

8



the correctness of this refinement.

A few further points should be made regarding this example. We started with a specification that
said that the interaction sequences are made up of elementsdeposit-item(...) , print-
customer-receipt(...) , and print-operator-receipt(...) . Where did this
come from? In fact, we could conceive of a still higher level specification where there is a sin-
gle operationrecycle-item(...) and the interaction sequence consists of only instances
of calls to this operation. It is our prior experience with recycling systems that suggested that it
would be useful to provide the customer some (monetary) incentive for recycling, hence the need
for theprint-customer-receipt() operation, etc. Thus at this stage we have already gone
through one level ofIR in introducing this operation.

Moreover a designer with a different background (perhaps he comes from a land where people
recycle out of concern for the environment, rather than to get their deposit money back!) may
well design a system that does not have such an operation. Very likely he would still refine the
interactions to take account of possible jams in the machine (unless by coincidence his land is also
the mythical place where machines never jam!) Is such a refinement incorrect? While we might
argue that the earlier design we sketched is likely to be more successful in some sense, there is no
question the this hypothetical design is also consistent with the high-level specification (that the
interaction sequence is a sequence of calls torecycle-item() ). The goal of our formalism is
to provide a notation using which designers can precisely record their refinements, and a method
by which the designer can establish, given their particular mapping of higher-level interactions
to lower-level ones, that their refinement is correct. Moreover, the formalism also allows the
refinement to be made in several steps as would be necessary in most actual systems, rather than in
one step. The advantage of recording all the intermediate steps is that another designer can more
easily see the rationale of the final set of interaction sequences (which will essentially be the set of
use-cases) by studying the intermediate steps. And if for some reason the final use-cases are not
satisfactory, we could back up one step of the refinement at a time, rather than going back all the
way to the beginning.

3.2 A Pair of Fax Machines

For our next example consider a pair offax machinesM1 andM2.7 SupposeM1 wishes to send
a document toM2. At the highest level, this could be expressed as a single actiontransmit-
document(...) , the interaction sequence being a sequence of elements each corresponding to
an instance of this action.

At the next level of refinement, we would probably refine this action into a sequence of three
actions: Establish a connection betweenM1 andM2, send the document fromM1 to M2, and

7This example was suggested by the presentation by Buhr and Casselman in their book [2] onuse-case-maps.
Use-case-maps are essentially pictorial representations of use-cases. One important advantage of use-case-maps is
that they make it easier to see the causal link between the various calls to operations in various objects more easily
than if we looked at, say, a textual description of the corresponding use-case. It may be interesting to develop a
similar ‘interaction-sequence-map’ notation for pictorial representations of interaction sequences at different levels of
refinement than just at the final level, i.e., at the level of the use-case.

9



finally break the connection betweenM1 andM2. The interaction sequence at this level will corre-
spondingly be a sequence of these triples repeated. Defining the appropriateρ function (here it is a
function) is straightforward, as is showing the required relation between the respective assertions.

What about the next level? One thing we definitely need to do is to introduce the telephone
networkT into the picture (since faxing documents using smoke signals is not yet a well developed
technology! and if it were, we would have to involve the atmosphere, the smoke signal network,
etc. into the picture). Note that althoughT was not mentioned in the high level interactions,
nor is it an internal component of eitherM1 or M2, it is entering the picture in the low-level
refinement. This is an example of a situation where a high-level interaction between two objects
will be mediated by a third object when the interaction is refined and is typical ofIR. Depending
on the details of the telephone system each operation can now be broken down into a sequence
of actions. Thus establishing the connection may involve the sending of the area code fromM1

to T , followed by the number forM2; T will then send a message toM2 which acknowledges
and accepts the connection (picks up the phone),T then sends a message toM1 indicating that
the connection has been set up. Note that the details of howT maps the given area code and the
number to the processM2 are internal to T . Conceivably,T might be internally organized as a
collection of cooperating processes that interact with each other for this task. This refinement,
being internal toT , is notan example ofIR; rather it is an instance ofSR.

Next we can refine the high-level action ofM1 sending the document toM2, or of tearing down
the connection betweenM1 andM2. We will omit the details but we should note that other designs
are possible. For instance, a smartT might decide to simply accept the document sent byM1

and store it internally, forwarding it toM2 at a later time when traffic is low. This is a different
refinement, and will of course be represented by a differentρ. Interestingly though, this possible
refinement suggests that even the requirement, onρ, of monotonicity that we mentioned at the end
of section 2 might be too constraining. The problem is that the smartT might not send out all
the documents (and other calls) in the same order that they came in. This would be a violation
of monotonicity but it seems a reasonable refinement. Further analysis is needed to see how to
weaken the requirement to allow for such refinements.

10



4 Discussion

Let us return briefly to the example ofclient object COandserver object SOof section 1. A dif-
ferent designer working on the same problem might refine the high-levelidentify-client()
interaction into one simple interaction betweenCO andSO, in which CO just sends its name to
SO. No passwords or encryption keys or anything like that are introduced. Is this an acceptable
refinement? The answer will probably depend on who you ask. To someone with experience in
security issues, this would be an obviously bad design. But our hypothetical designer, presumably
a trusting soul, can argue that there was nothing about passwords in the high-level specification.
The question is really one of intention. What was the intention behind the high-level specification?
As we said earlier, no formalism can be expected to specify intentions; but having the designer
precisely record the mapping corresponding to his particular refinement, and establish that he is
satisfying the requirements of rules (1) and (2) of section 2, allow other designers to understand the
design better. When they see that, according to the mapping function, theidentify-client()
is simply mapped to an action in whichCOsends its name toSO, they can, without having to study
the design any further, question its reasonableness.

This is an important difference betweeninteraction refinementon the one hand, andprocedural
or structural refinement on the other. In neitherPR nor SRdoes intention behind the high-level
specification (usually) play a role. Any refinement that ensures that the high-level specification
is met, is considered satisfactory. To an extent, this is not surprising.Interaction refinementcor-
responds to the design activities that go on in the earlier stages of the design. Generally we go
through a series ofIR steps starting with the very high-level specification, until we reach the set
of use-cases. Then we go through one or more steps ofSRto develop the (internal) structure of
the system, and then steps ofPRwhen implementing the various operations. This is not a strictly
sequential process since work on theSRsteps may suggest revisions to the previousIR steps, but
generally this is the progression of refinements. Given thatIR-steps are the earliest ones in the
design, it is natural for most questions about the intentions behind the system to be raised and
answered during theIR-steps.

IR-steps, as the reader has no doubt noticed, are what go on during what is usually called
‘analysis’. It has been long realized that the activities that take place during the analysis and
design phases are not unlike each other. We believe that the reason for the similarity is that both
are refinements, with the added complexity in the case of analysis that questions of intention often
arise. Thus one can recast software life-cycles such as Boehm’s [1]spiral modelin terms of
different types of refinements. (The remark towards the end of the last paragraph that a step of
SRmay suggest a rethinking of a just-completed sequence ofIR-steps, should perhaps be taken to
mean that the spiral might occasionally loop back on itself, rather than proceeding strictly from
one step to the next.) But, to reiterate our main point, having a notation that we can use to precisely
specify the mapping corresponding to a particularIR-step, and a formal method (rules (1) and (2)
of section 2) that can be used to establish that, given this mapping, the refinement step is correct,
allows designers (or analysts) to understand each other’s work, and to have more confidence in the
correctness of the system being designed.

Before concluding, it is worth noting that the considerations in this paper, in particular the

11



idea ofinteraction refinementare especially important in dealing with distributed objects [7]. In a
system of distributed objects, much of the system’s (important) activity consists of communications
between the objects. A given high-level task may be refined into one of several different sequences
of interactions between the objects of the system, and it is important to be able to validate these
refinements. Further, the (actual) communications that take place in the system when it is finally
implemented usually look quite different from the high-level (conceptual) interactions that the
high-level specification is expressed in terms of. As a result, severalIR steps may be needed
to arrive at the final interaction sequences; hence it is critical to understand and validate these
refinements to ensure that the final design is satisfactory.

5 References

1. B Boehm, A spiral model of software development and enhancement, Software Eng. Notes,
vol. 11, 1986.

2. R Buhr, R Casselman, Use case maps for OO systems, Prentice-Hall, 1995.

3. JV Guttag, Notes on type abstractions, IEEE TSE, vol. 6, 1980.

4. I Jacobson, Object-oriented software engineering, Addison Wesley, 1992.

5. GT Leavens, WE Weihl, Specification and verification of object-oriented programs using
supertype abstraction, Acta Informatica, vol. 32, 1995.

6. B Liskov, J Wing, A behavioral notion of subtyping, ACM TOPLAS, vol. 16, 1994.

7. N Soundarajan, Refining interactions in a distributed system, submitted to PODC ’97.

12


