Interaction Refinement in Object-Oriented Systems
(Extended Abstract)

Neelam Soundarajan

Computer and Information Science
The Ohio State University
2015 Neil Avenue Mall
Columbus, OH 43210
USA

e-mail: neelam@cis.ohio-state.edu
Tel: (614) 292 1444. FAX: (614) 292 2911

Abstract:

An OO designer typically starts with a high-level idea of the interactions between the key objects
in the system. As the design progresses, the desigfi@esthese interactions by identifying

the exact operations of each object that other objects will invoke and the order of invocations,
or by introducing new objects with appropriate operations to mediate the required interactions
between existing objects, etc. These refinements are usually not recorded, so the rationale behind
the design maybe lost. We motivate the notionrgéraction refinementvith a few examples,
provide a precise definition of the concept, and develop a formalism that can be an important tool
in recording and validating OO designs.

1 Introduction and Motivation

‘Stepwise refineménthich we will call procedural refinements one of the most important tools

in procedural design. We believe thateraction refinemenglays an equally important role in OO
design. To see what we mean by interaction refinement consider a simple example. Suppose we
were designing a system consisting of a ‘client obj&D and a ‘server objectSQ The high-

level specification of the system might say that the purpose of the first interaction between these
two objects is to identify the client to the server. The system designer may decide to map this
interaction into a series of interactions betw&¥n andSQ First CO might be required to supply

its ‘user-id’, and then its password; @O provides an invalid passwor&O might allow CO

several chances to get the password right; etc. The designer may also choose to introduce new
objects to mediate this interaction. For instance, the authentication of the password may be done
by an authentication obje&O that encapsulates this task. Indeed it might be a better design to
haveCO send the password directly &0 rather than vieSQ, since the protocol on how many
attempts the client is allowed to get the password correct etc., can then be encapsufdded in
which is probably where it belongs. In any case, what we have done here is to refine the high-level
interactionidentify-clientbetweenCO andSQOinto a series of interactions involvigO, SQ and

AO. This is an example of an interaction-refinement-step. In the rest of the paper we will often
abbreviate interaction refinementl&®.

There is another type of refinement which we will cstitucture refinementor SRfor short,
which is quite different fromR. In a step ofSR we design a particular object in the system,
saySOof the last paragraph, to consist of a number of (member) components and implement the
operations of the object in terms of the operations on its components. In this type of refinement we
are not refining the external interface of the object in question; rather, we are refininigitsal
structure Almost by definition, this refinement has no effect@® and other objects external to
SQ By contrast, in a step dR, we refine a high-level interaction between two (or more) objects
of the system into a series of low(er)-level interactions between these and possibly other objects
in such a way that these low-level interactions achieve the intended purpose of the high-level
interaction.

The key question is, how do we know that the ‘intended purpose’ of the high-level interaction
is indeed achieved by the sequence of low-level interactions that we have refined it into? In other
words, what does it mean for a particular interaction refinement to be correct? We will address
this question in the next section after first introducing the notation that we will use for specifying
interactions, and defining precisely the notion of interaction refinement. We then present a rule
that will allow us to formally show the correctness of a given refinement. In the caSB tiie
corresponding question would be, how do we know that a particular refinement of the structure of
a given object into certain specific component objects and the implementation of its operations in
terms of operations on these components, results in the object exhibiting correct external behavior?
This question has been addressed by many authors [3, 5, 6] and several formal systems proposed
to establish the correctness of a structure-refinementtstep.

The corresponding question for the casepadcedural refinementvas answered by the classic formalisms of
Hoare, Dijkstra, and others.

It is worth noting at this point that the reason we prefer the term ‘procedural refinement’ (or
PR) to the more standard ‘stepwise refinement’ is that what we do in a st®Ra$ to refine
the procedure, or the sequence of actions, needed to perform a certain computation. Moreover,
interaction refinement and structure refinement are also stepwise, i.e., in a complete system design
there are usually several stepsiBfand of SR Thus the key difference between the three types
of refinement is not that one is step-wise and the others are not, bdtahis being refined. In
the case of a step ®R we refine a given high-level action or computation into a composition
of lower-level computations. In the case of 8Rstep, we refine the structure of an object into
its component objects. In the case ofIRastep, we refine a high-level, i.e., abstractly specified,
interaction between a group of objects into a sequence of lower-level interactions between these
objects, and possibly other objects. All three types of refinement are important in OO system
design.

Although the idea of interactiomfinementand the attempt to answer the question “what does it
mean for such a refinement to be correct, and how we can we establish this correctness?”, seem to
be new to this paper, the importance of understanding the desired sequence of interactions between
the various objects of a system, and letting this understanding guide the design of the system, is
well recognized. Indeed, once the interaction sequences havefulberefined, what we have
is essentially the complete collection use-casef4] for the system; and as Jacobson [4] argues,
use-cases play an important role in designing the system. Thus the main contributions of this paper
are to provide a notation for precisely recording the sequence of refinements that we go through in
going from a set of high-level interaction sequences where the interactions between the objects are
rather abstract, to arrive at the set of actual or concrete use-cases applicable to the system when it
is finally built, and a precise method to establish the correctness of these refindments.

The paper is organized as follows: In the next section we introduce the notation for specifying
interaction sequences, define what an interaction refinement is, and present proof rules that will
allow us to show that a given refinement is correct. In the third section we discuss (informally) two
examples of OO systems and show hi&\plays an important role in the design of such systems.

In the final section we reiterate the importancd®in OO design, and the need for a formalism
such as ours to establish the correctness of the resulting designs. We also explailR/iittera
the standard software life cycles. Finally we note the particular importanéeiofistributed OO
systems.

2It may be useful at this point to draw a distinction between what Jacobson calls ‘abstract use-cases’ and our
notion of high-level interaction sequences. As we have explained, high-level sequences are what a system designer
starts with. They consist of elements that represent a high-level of view of the interactions between the various objects
in the system. Jacobson’s abstract use-cases are not in any way related to these sequences. Abstract use-cases art
instead portions of (final) use-cases that happen to appear in more than one use-case. Jacobson suggests that it would
be useful to identify these so that we don’t waste time implementing them more than once.

3

2 Specifying and Verifying Interaction Refinements

Consider an OO systemi consisting of a number of objects interacting with each other. We are
interested in the various possible sequences of interactions between these’oljapisose)

is a possible interaction sequences%f Each element oA represents amteractionamong the
components of the system.

Two types of interactions, simple and compound, may appear Msimple interactiorcorre-
sponds to the invocation of an operation of one of the objectshyf one of the other objects 6f,
or the return from such an invocatiérA compound interactiomvolves two or more objects df
and does not correspond to a single call or return of an operation of one object by one of the other
objects; rather it will beefinedinto a sequence of such calls and returns during one or more steps
of IR. In the sequencg, we will record a simple interaction that corresponds to the invocation of
an operation of one object by another by specifying the name of the calling object, the name of
the called object and the operation invoked, and any parameter values; a simple interaction corre-
sponding to a return will similarly record any result returned to the caller. An elementludt
corresponds to a compound interaction will be specified by providing an appropriate name (such
as ‘identify-client’), specifying the set of objects involved in the interaction (sucfC43 SO}),
and the values of any parameters involved.

How do we specify the set of possible interaction sequences of the sy&teiwe will use an
assertiorny that is satisfied bwll allowed interaction sequences®findonly by these sequences.
This latter requirement that only allowed sequences sdtisfy! is not critical to the development
of our formalism. We decided to impose this requirement mainly in order to mirror the usual style
in which use-cases are used [4]. We will return to this point shortly.

Suppose we have another specificatibfor S. We can now precisely state our basic question:

What relation must hold between the specificatiéramd I’ in order for us to be able
to legitimately claim thaf’ is a (interaction) refinement df?

The obvious answer, thdt is a refinement of only if it implies I is wrong. There are two
problems: First, as we just noted, Afsatisfies/ then S must actually be capable of exhibiting
the behavior corresponding o So I’ cannot be stronger thahbecause then there might be a
sequence that satisfied but not/’, and/’ would no longer be a valid specification 8fsinceS
is capable of exhibiting the behavior corresponding tarhis is clearly a minor problem, and if
necessary we can solve it by reinterpreting a specificatightofbe something that is satisfied by
all possible sequences Sfand omitting the requirement that only these sequences satisfy it. We
won’t pursue this point further in this paper (except to note how rule (1) below will be modified if
we were to omit this requirement).

30f course, in general objects Sfwill also interact with agents —such as actual users— exteri$gldse is usual, we
will represent these by introducing ‘stand-in’ objectsito represent these external agents, and treat these interactions
in the same way as we treat interactions between the actual objefts of

4A use-case is an interaction sequence that consists entirely of simple interactions.

The more serious problem with the answer thais a refinement of if it implies I is the
following: Given our previous discussion, the elements in the sequencekithabncerned with
are not, in general, the same kind of elements as the ones in the sequentas ttmaicerned with.
Rather the former correspond to what we have called high-level interactions, whereas the latter are
low-level interactions (possiblgimpleinteractions) thaimplementhose high-level interactions.
So if I’ were a proper refinement éfand even if we ignore the problem of the last paragraph, an
implication relation will in general not hold. In view of the difference between the elements in the
sequences, let us ugseto denote a general sequence that satigfiesd)\’ to denote a sequence
that satisfied’. Note that both\ and \’ record all the interactions between the objects$'das
well as the ‘stand-in’ objects that represent objects externd).td he difference is that the view
recorded in\ is a high-level view whereas that ¥ is a low(er)-level view.

Let us first consider a relatively simple kind of relation between the elementsimd \'. Let
Y be the set of elements corresponding to the high-level interactions, i.e., those that can appear
in A\, andX the set of elements corresponding to the low-level interactions — those that appear in
. A simple situation would be for the interaction represented by any given eleméhtmbe
implemented by a sequence of element&0ofThus we will need a mapping of the form:

p:u=x"
whereX* is the set of all (finite) sequences over

If p(i) = (i1,...,1,), that means that the high level interactiois being implemented as the
sequence of lower-level interactions. .., i,. (Some ofiy, ..., i, may be simple interactions,
others will be compound; will, of course, be a compound interaction unless- 1 andi = i;.)

Note that there is no assumption that only the objects involved in the interdci@nallowed to

be participants in interactions, .. .,i,. Indeed, it is not even required that all (or any!) of the
participants ini be involved in one or more af;,...,7,. This may seem rather strange; while

it may be appropriate to allow additional objects (such as the authentication object in the client-
server example of the first section) to participate in the implementation of an interaction between
a given set of objects, how can an interaction that at an abstract level involves certain objects be
‘implemented’ at a lower level without the participation of those objects? The answer is that this is
a matter of system design and the formalism should not disallow such possibilities. For instance,
it may be that the nature of the system is such that this interaction is always preceded by certain
other interactions involving certain other objects and hence these other objects can consult with
each other to implement the required interaction without any apparent involvement of certain of
the principals’

Once the mapping function is given, we can see what relation must hold between the specifi-
cations/ and’. Essentially we need to ensure that if a given sequehaatisfies!’, then the
corresponding\ sequence will satisfy, and conversely if a given satisfies/, the corresponding
N must satisfyl’:

VNI = {3NN =pAN) ADHANANT = 3NN =pA\) AT} (2)

wherep(\) is the sequence obtained by applyin¢p each element of and appending together

51t is probably difficult to construct a simple and natural example of this type of situation, so we won't try to do so
here; but our formalism, if it is to be general, must allow for such refinements even if they are unusual.

all the resulting sequences. Thus it is the natural extensipnwich is defined over elements that
correspond to ‘high-level interactions’ to sequences of such elements.

Rule (1) is a natural generalization of the usual implication relation between a specification
I and its refinement’ to take account of the fact that during interaction refinement high-level
interactions are implemented in terms of lower level ones. (The second implication of rule (1) is
needed because of our decision to require every sequence that sattsfies an actual possible
sequence of’; if we removed this requirement, the second implication of (1) will disappear.)

The mapping functiorp and the implications in (1) are however a bit too restrictive. They
require thatevery timea given high-level interaction is implemented, it must be implemented in
exactly the same way as the previous time. This would prevent refinements that exploit past history
in implementing particular interactions. Suppose, for instance, that a system has two ébjects
and F; and that the high level requirement says thatmust send a series of files 6. If in
practice it turns out, as it does in many applications, that frequently a filgihsgnds tof; is a
slight revision of (or even identical to) the previous file that it sent, some designers may choose to
implement this by havindg’; send only this differential information. The high-level specification
would state that; sends a series of files, but the lower-level implementation achieves the effect
much more efficiently. This is exactly the sort of thing we want to be able to deal with but the
formalism we have developed so far will not allow for it, since according tethuaction, a given
high-level interaction must be mapped to a fixed set of low-level interactions.

The solution is clear from the discussion above. The fungtishould not be a function over
theindividual high-level interactions but rather over the high-level sequences:

p:AN=N

whereA is the set of all possible high-level traces (essentially the2$gtand A’ the set of all
possible low-level traces. Requirement (1) doesn’t need any change except to note that the function
p that it refers to is this new one that mapsequences directly t§ sequences.

This is still not general enough. As we will see from the examples in the next section, the
mapping from the high-level sequences to the low-level sequences need not be one-to-one. In
other words, in general we haveelation between elements df and A’ rather than a function
between the two sets. Lgtdenote this relation, i.e., (A, \') holds, that means that is one of
the (possibly many) low-level sequences that the high-level sequeisaelated to. Rule (1) will
correspondingly change as follows:

VAN A(pANN)AT) = TH A NN {L(p(WXN)ANT) = 1} (2)

It might be useful to impose some constraints on the relatiorClearly we would have to
require that for each elemehtof A that there is at least one element/dfthat \ is related to. It
might also be reasonable to require some type of monotonicity condition—isfa prefix of\,,
then for each\] that is related to\,, there be &\, that is related td\, such that\| is a prefix of\;
and vice-versa. But we won't explore these conditions further in this paper (except to briefly note
at the end of section 3 that even such apparently reasonable constraints may be too strong).

Before concluding this section, we should note that in a given stép, dhe designer is trying

to achieve the intended purpose of a set of high-level sequences, in terms of a set of low-level
sequences. But the ‘intended purpose’ is in the eye of the designer, so to speak. A different
designer may well see a different purpose in the same high-level specification (we will see a simple
example of this in the next section). No formalism can expect to capture the intention behind a
specification. But having a precise notation (like thfenction or relation) to specify the particular
mapping of high-level interactions into low-level ones called for by a particular design allows the
designer to precisely record how he intends to achieve the (intended purpose of the) high-level
interactions; and the verification, as required by rule (1), allows him to establish that, given the
mapping called for by his design, his refinement is indeed correct. Other designers will then be able
to check whether they agree with the mapping, i.e., whether it will achieve the intended purpose
of the high-level interaction, as they understand it; and whether the refinement is indeed correct,
given this mapping. This will lead to an improved understanding of the design, and increase our
confidence in its correctness.

3 Some Examples

We believe thatR is used extensively in the design of OO systems and a study of almost any OO
system will show numerous points whdfRis used. We consider two examples in this section,
and show the application dR in the design of each. Our discussion of these examples is quite
informal and far from complete, the main point of the section being to show théRgi&ays in

the design of these systems.

3.1 A Recycling System

For our first example, we consider the ‘recycling system’ from Jacobson [4]. The problem is to
design a recycling machine that a customer can use to return recyclable objects such as cans and
bottles. A customer using the machine will deposit, one at a time, items to be recycled; when he
has deposited all the items, he will request a receipt that should indicate the quantity of each type
of item that the customer returned (the customer can turn in this receipt to a cashier to reclaim his
deposit money). In addition, there is an operator who will, at the end of each day, request a receipt
totaling all the items that have been returned by various customers during the entire day.

At this level of refinement we can see that the interaction sequence will consist of three kinds
of elements:deposit-item(...) , print-customer-receipt(...) , and print-
operator-receipt(...) . But not every sequence consisting of these three types of elements
is a legal sequence. We need to impose some additional conditions:

e The values printed out as a result of a calptint-customer-receipt(...) ele-
ment, which is represented in terms of the parameters (...) of the element, should essen-
tially be the sum of theleposit-item(...) elements preceding it — up to the previous
print-customer-receipt() element.

e The elemenprint-operator-receipt(...) may only appear at the end of interac-
tion sequence. (We are assuming that an interaction sequence corresponds to a full day.)

e The values printed out as a result of a calptint-operator-receipt(...) ele-
ment, which is represented in terms of the parameters of the element, should essentially be
the sum of all theleposit-item(...) elements preceding it.

A more formal discussion of the example would give the precise form of the parameters of the
various types of elements, and formally express the conditions above as clauses in the assertion
that the interaction sequence must satisfy.

What if the recycling machine jams, perhaps because the customer inserts an item incorrectly,
or because there is some other problem? There are two possible ways of dealing with this. The
first approach would be to consider this a problem entirely internal to the recycling machine, to
be dealt with when we actually design the machine, in particular during the implementation of the
deposit-item() function. Perhaps the machine has built into it, some unjamming mechanisms
that are invokednternally when a jam occurs. This would be an examplatofictural refinement
and/orprocedural refinemertdf the machine, rather than a refinement of the interactions between
the machine, the customer, and the operator. The customer and the operator would be entirely
unaware that a jam occurred or that the unjamming mechanism was invoked.

The second approaetouldinvolve refining the interactions between the machine, the customer,
and very likely, the operator. This is the approach that [4] takes.alanm() operation is
provided by the operator which is invoked (by the machine) if an item is stuck. The operator then
invokes arunjam() operation provided by the machine, which can then continue operation. (An
alternative design would have been for the machine to inform the customer of the jam, and for the
customer to invoke an operation provided by the operator.) Corresponding to this refinement, we
need to identify the function (or relation) that maps interaction sequences at the higher level to
sequences at this new level. In fact, in this case it is a relation rather than a function since a given
high-level sequence may be mapped to many different low-level sequences that differ from each
other in the number (and points) at which the machine jams andlénen() operation etc. are
invoked. Indeed, the relation is just that a given (high-level) sequ&nseelated to every (low-
level) sequenca’ that is identical to\ if we remove all thealarm() andunjam() operations
from)\’; in addition, thealarm() andunjam() operations i\’ must appear in the right order
and at the right locations: eaalarm() must be followed by annjam() , and eactalarm()
must appear afterdeposit() .°

Next we need to specify the assertiBrihat the\’ sequences must satisfy. Essentidllywould
say that thealarm() andunjam() operations are in the order just specified, and that if we
project these elements out af, the resulting sequence must satisfy the high-level asseftion
With this, it is easy to check the conditions required by rule (2) of the last section, thus validating

60ne may ask, what if the machine jams again immediately after it is unjammed? Requiring thalaeadh
operation be immediately preceded bgeposit() doesn’t permit this. It is easy enough to do so though: require
analarm() operation to be preceded either bydeposit() or by anunjam() operation. The point is that
having a precise specification of the mapping allows us to identify such problems easily and correct the refinement
appropriately.

the correctness of this refinement.

A few further points should be made regarding this example. We started with a specification that
said that the interaction sequences are made up of elerdeptsit-item(...) , print-
customer-receipt(...) , and print-operator-receipt(...) . Where did this
come from? In fact, we could conceive of a still higher level specification where there is a sin-
gle operatiorrecycle-item(...) and the interaction sequence consists of only instances
of calls to this operation. It is our prior experience with recycling systems that suggested that it
would be useful to provide the customer some (monetary) incentive for recycling, hence the need
for theprint-customer-receipt() operation, etc. Thus at this stage we have already gone
through one level ofR in introducing this operation.

Moreover a designer with a different background (perhaps he comes from a land where people
recycle out of concern for the environment, rather than to get their deposit money back!) may
well design a system that does not have such an operation. Very likely he would still refine the
interactions to take account of possible jams in the machine (unless by coincidence his land is also
the mythical place where machines never jam!) Is such a refinement incorrect? While we might
argue that the earlier design we sketched is likely to be more successful in some sense, there is no
guestion the this hypothetical design is also consistent with the high-level specification (that the
interaction sequence is a sequence of calletycle-item()). The goal of our formalism is
to provide a notation using which designers can precisely record their refinements, and a method
by which the designer can establish, given their particular mapping of higher-level interactions
to lower-level ones, that their refinement is correct. Moreover, the formalism also allows the
refinement to be made in several steps as would be necessary in most actual systems, rather than in
one step. The advantage of recording all the intermediate steps is that another designer can more
easily see the rationale of the final set of interaction sequences (which will essentially be the set of
use-cases) by studying the intermediate steps. And if for some reason the final use-cases are not
satisfactory, we could back up one step of the refinement at a time, rather than going back all the
way to the beginning.

3.2 A Pair of Fax Machines

For our next example consider a pairfak machines\/; and M,.” Suppose\/; wishes to send

a document tal/,. At the highest level, this could be expressed as a single arhosmit-
document(...) , the interaction sequence being a sequence of elements each corresponding to
an instance of this action.

At the next level of refinement, we would probably refine this action into a sequence of three
actions: Establish a connection betwegh and M;, send the document from/; to M,, and

"This example was suggested by the presentation by Buhr and Casselman in their booki§2}case-maps
Use-case-maps are essentially pictorial representations of use-cases. One important advantage of use-case-maps is
that they make it easier to see the causal link between the various calls to operations in various objects more easily
than if we looked at, say, a textual description of the corresponding use-case. It may be interesting to develop a
similar ‘interaction-sequence-map’ notation for pictorial representations of interaction sequences at different levels of
refinement than just at the final level, i.e., at the level of the use-case.

9

finally break the connection betweé, andM/,. The interaction sequence at this level will corre-
spondingly be a sequence of these triples repeated. Defining the apprppuattion (here it is a
function) is straightforward, as is showing the required relation between the respective assertions.

What about the next level? One thing we definitely need to do is to introduce the telephone
networkT into the picture (since faxing documents using smoke signals is not yet a well developed
technology! and if it were, we would have to involve the atmosphere, the smoke signal network,
etc. into the picture). Note that althoughwas not mentioned in the high level interactions,
nor is it an internal component of eith@r; or M, it is entering the picture in the low-level
refinement. This is an example of a situation where a high-level interaction between two objects
will be mediated by a third object when the interaction is refined and is typid&.ddepending
on the details of the telephone system each operation can now be broken down into a sequence
of actions. Thus establishing the connection may involve the sending of the area codk&/from
to 7', followed by the number fol/,; T will then send a message fd; which acknowledges
and accepts the connection (picks up the phoihehen sends a message indicating that
the connection has been set up. Note that the details offhavaps the given area code and the
number to the proceskl, areinternalto 7. Conceivably,I" might be internally organized as a
collection of cooperating processes that interact with each other for this task. This refinement,
being internal tdl', is notan example ofR; rather it is an instance @R

Next we can refine the high-level action bf; sending the document t,, or of tearing down
the connection betweeW; andM,. We will omit the details but we should note that other designs
are possible. For instance, a smarmight decide to simply accept the document sent\by
and store it internally, forwarding it td/, at a later time when traffic is low. This is a different
refinement, and will of course be represented by a diffepemterestingly though, this possible
refinement suggests that even the requiremengt, ohmonotonicity that we mentioned at the end
of section 2 might be too constraining. The problem is that the smanight not send out all
the documents (and other calls) in the same order that they came in. This would be a violation
of monotonicity but it seems a reasonable refinement. Further analysis is needed to see how to
weaken the requirement to allow for such refinements.

10

4 Discussion

Let us return briefly to the example ofient object COandserver object S@f section 1. A dif-

ferent designer working on the same problem might refine the high-itketify-client()

interaction into one simple interaction betwe@® and SQ, in which CO just sends its name to

SQ No passwords or encryption keys or anything like that are introduced. Is this an acceptable
refinement? The answer will probably depend on who you ask. To someone with experience in
security issues, this would be an obviously bad design. But our hypothetical designer, presumably
a trusting soul, can argue that there was nothing about passwords in the high-level specification.
The question is really one of intention. What was the intention behind the high-level specification?

As we said earlier, no formalism can be expected to specify intentions; but having the designer
precisely record the mapping corresponding to his particular refinement, and establish that he is
satisfying the requirements of rules (1) and (2) of section 2, allow other designers to understand the
design better. When they see that, according to the mapping functiodetitdy-client()

is simply mapped to an action in whi€0 sends its name t8Q they can, without having to study

the design any further, question its reasonableness.

This is an important difference betweireraction refinementn the one hand, artocedural
or structural refinement on the other. In neithBR nor SRdoes intention behind the high-level
specification (usually) play a role. Any refinement that ensures that the high-level specification
is met, is considered satisfactory. To an extent, this is not surprisieraction refinementor-
responds to the design activities that go on in the earlier stages of the design. Generally we go
through a series dR steps starting with the very high-level specification, until we reach the set
of use-cases. Then we go through one or more stefRad develop the (internal) structure of
the system, and then stepsRRwhen implementing the various operations. This is not a strictly
sequential process since work on Biesteps may suggest revisions to the previtRisteps, but
generally this is the progression of refinements. Given liRagteps are the earliest ones in the
design, it is natural for most questions about the intentions behind the system to be raised and
answered during theR-steps.

IR-steps, as the reader has no doubt noticed, are what go on during what is usually called
‘analysis’. It has been long realized that the activities that take place during the analysis and
design phases are not unlike each other. We believe that the reason for the similarity is that both
are refinements, with the added complexity in the case of analysis that questions of intention often
arise. Thus one can recast software life-cycles such as Boehm&pirel modelin terms of
different types of refinements. (The remark towards the end of the last paragraph that a step of
SRmay suggest a rethinking of a just-completed sequende-steps, should perhaps be taken to
mean that the spiral might occasionally loop back on itself, rather than proceeding strictly from
one step to the next.) But, to reiterate our main point, having a notation that we can use to precisely
specify the mapping corresponding to a particliRsstep, and a formal method (rules (1) and (2)
of section 2) that can be used to establish that, given this mapping, the refinement step is correct,
allows designers (or analysts) to understand each other’s work, and to have more confidence in the
correctness of the system being designed.

Before concluding, it is worth noting that the considerations in this paper, in particular the

11

idea ofinteraction refinemenrdre especially important in dealing with distributed objects [7]. In a
system of distributed objects, much of the system’s (important) activity consists of communications
between the objects. A given high-level task may be refined into one of several different sequences
of interactions between the objects of the system, and it is important to be able to validate these
refinements. Further, the (actual) communications that take place in the system when it is finally
implemented usually look quite different from the high-level (conceptual) interactions that the
high-level specification is expressed in terms of. As a result, selRrateps may be needed

to arrive at the final interaction sequences; hence it is critical to understand and validate these
refinements to ensure that the final design is satisfactory.

5 References

1. B Boehm, A spiral model of software development and enhancement, Software Eng. Notes,
vol. 11, 1986.

R Buhr, R Casselman, Use case maps for OO systems, Prentice-Hall, 1995.
JV Guttag, Notes on type abstractions, IEEE TSE, vol. 6, 1980.

| Jacobson, Object-oriented software engineering, Addison Wesley, 1992.

a > W DN

GT Leavens, WE Weihl, Specification and verification of object-oriented programs using
supertype abstraction, Acta Informatica, vol. 32, 1995.

o

B Liskov, J Wing, A behavioral notion of subtyping, ACM TOPLAS, vol. 16, 1994.

7. N Soundarajan, Refining interactions in a distributed system, submitted to PODC "97.

12

