
Reusing Patterns through Design Refinement

Jason O. Hallstrom1 and Neelam Soundarajan2

1 School of Computing, Clemson University, jasonoh@cs.clemson.edu
2 Computer Sc. & Eng., Ohio State University, neelam@cse.ohio-state.edu

Abstract. Refinement concepts, such as procedural and data refine-
ment, are among the most important ideas of software engineering. In
this paper, we investigate the idea of design refinement, the process of
refining a set of design patterns to arrive at application-specific design
components, and ultimately, to system implementations. The approach
also enables designers to refine a given pattern to arrive at more special-
ized versions of that pattern —sub-patterns— thus enabling the creation
of pattern hierarchies.

We present three contributions: (i) We explore the concept of de-
sign refinement and consider what it means for such a refinement to be
correct, in the sense of being faithful to the pattern being refined. (ii)
We describe a two-part formalism for documenting patterns and sub-
patterns. A pattern contract captures the requirements and behavioral
guarantees associated with a given pattern, while a subcontract captures
the ways in which the pattern is specialized for use in a particular appli-
cation or sub-pattern. Contracts and subcontracts serve as the basis for
validating the correctness of a given refinement. (iii) We consider how
related patterns may be organized into suitable hierarchies based on the
notion of design refinement. We focus on variations of the standard Ob-
server pattern as examples. A key feature of our formalism is that while
it enables us to specify patterns and subpatterns precisely, it allows us
to do so without compromising their flexibility.

1 Introduction

Refinement has been a central theme in software engineering since the inception
of the field. Development techniques based on procedural refinement and data
refinement provide a powerful set of methods for designing and implementing
software. Equally important, they provide a foundation for ensuring software
correctness. For each refinement technique, suitable reasoning methods and/or
calculi [1, 2] have been developed to help software practitioners validate the cor-
rectness of their refinement steps. The result has been a dramatic improvement
in software quality.

Our work is based on the observation that there is another form of refine-
ment, design refinement, that has become increasingly important during the past
decade as the use of design patterns has become ubiquitous in software practice.
Design refinement corresponds to the process of transforming a set of design
patterns into system design components, and ultimately, to system implemen-
tation components that exhibit specific behavioral properties — provided that
the refinement steps applied respect the requirements dictated by the pattern.
In this paper, we investigate the principles of design refinement and explore its

application in capturing hierarchies of related patterns in a manner that enables
designers to reuse the effort involved in understanding them. We additionally
consider how to ensure that the particular refinement steps applied in specializ-
ing a pattern satisfy the requirements associated with its correct usage.

While there is extensive literature documenting various aspects of patterns
and the advantages of using them (e.g., [3–5]), questions related to precisely
specifying the requirements associated with applying patterns and associated
techniques for checking if those requirements are met —i.e., ensuring design
correctness— have not been fully addressed. Our goal is to develop such tech-
niques. In our approach, the requirements that must be met when applying a
pattern and the consequent behaviors that are expected as a result are expressed
in the form of a pattern contract. Details concerning the specialization of the pat-
tern as used in a particular system are expressed in the form of a corresponding
pattern subcontract.

While pattern formalization can be expected to provide the usual benefits,
such as eliminating ambiguity and serving as the basis for ensuring correctness,
the process runs the risk of compromising pattern flexibility [3]. This is a serious
concern; much of the power of patterns and the driving force behind their broad
adoption derives from the flexibility they afford in applying them. The notion
of abstraction concepts, an essential part of formalism, helps preserve this flex-
ibility while simultaneously achieving specification precision. Each abstraction
concept corresponds to a dimension of flexibility that must be preserved. Indeed,
the process of identifying these abstraction concepts can help to identify latent
dimensions of flexibility missing from standard pattern descriptions [6].

Thus, in our approach, a pattern contract specifies the requirements that
must be satisfied to ensure the correct application of a given pattern, with the
abstraction concepts used in its definition allowing for appropriate variations
based on the needs of particular systems. The design refinement process ef-
fectively “pins down” these variations by providing suitable definitions for the
abstraction concepts, while ensuring that the requirements dictated by the con-
tract are satisfied. These definitions are supplied in a corresponding subcontract.
To summarize, the information contained in a pattern contract applies to all pos-
sible uses of a given pattern, while the information contained in a subcontract
captures how the pattern was specialized for use in a given application.

In some cases, however, it may be desirable to leave some of the abstraction
concepts undefined, with the corresponding flexibility dimensions unbound. In
this case, the subcontract will not capture a pattern application, but rather, a
more specialized version of the original pattern — a sub-pattern. The contract
for this new pattern is formed by the original contract as specialized by the
subcontract for this refinement. This approach introduces an interesting possi-
bility: Patterns related through a series of refinements can be classified in the
form of a pattern hierarchy. The benefits of doing so are two-fold. First, pattern
hierarchies can highlight the interconnections among related patterns, aiding
developers in the pattern selection process. Second, pattern hierarchies enable
designers to reuse the reasoning effort involved in understanding a given pattern

when reasoning about sub-patterns of that pattern. We illustrate these points by
considering variations on the standard Observer pattern [4]. Although some of
the variations in the resulting hierarchy have been documented in the literature,
others, equally natural from the point of view of design refinement, have not.

The work reported in this manuscript represents a substantial revision and
extension of our earlier work in pattern specification [6, 7]. Although the earlier
work was also based on the idea of pinning down flexibility dimensions when
documenting pattern applications, the kinds of abstraction concepts used in the
formalism were limited. Most important, the formalism did not support variation
in the interaction sequences among participating objects. Hence, the associated
flexibility was also limited. Further, and partly as a result of this, the formalism
could not help identify or characterize relations among patterns, nor organize
them into suitable hierarchies.

Paper Organization. The remainder of the manuscript is organized as
follows. Section 2 surveys related work in pattern formalization. Section 3 intro-
duces the principles of design refinement, including the three types of abstraction
concepts at its core. Section 4 summarizes the basic structure of pattern contracts
and subcontracts. Section 5 demonstrates the principles of design refinement by
constructing a hierarchy of patterns based on the standard Observer pattern.
Finally, Section 6 concludes with a summary of contributions.

2 Related Work

A number of authors have investigated issues related to pattern formalization.
Structural properties have been an important focus. Eden [8, 9] presents an ap-
proach to specifying the structural properties of patterns using a higher-order
logic notation. Each set of pattern formulae specify the participating classes,
methods, and inheritance hierarchies, and the corresponding relations among
them. Kim and Carrington [10] present an Object-Z-based formalization of pat-
terns using role concepts. Each role concept describes a pattern participant, such
as a class, class feature, or like element. The resulting formalizations capture,
in Object-Z, the structural relations among role concepts. Sunye et al. [5] and
Dong [11] consider UML extensions used to model the structural aspects of pat-
terns. Lano [12] also focuses on structural issues, using model transformations to
formalize patterns. His work shows how a pattern can be viewed as a transforma-
tion from a given set of classes to another set of classes with the desired pattern
properties. In contrast to the work of these authors, our focus is on behavioral
properties — which are not readily captured using any of the above approaches.

Mikkonen et al. [13, 14] focus on behavioral properties using an action system
notation that abstracts over the flow of control among participants. Superposition
is used to support pattern refinement. And while the approach has been shown
to be useful in reasoning about the temporal aspects of pattern behavior, the
flexibility enabled by our abstraction concepts is richer. It is worth noting that
Taibi and Ngo [15] combine the action system approach of Mikkonen et al.
with the higher-order logic approach of Eden. While the resulting formalism is

more comprehensive, the behavioral portion of the formalism suffers the same
flexibility limitations as Mikkonen et al. ’s approach.

Closest to our work is that of Helm et al. [16], published before the seminal
patterns book [4]. While the authors consider some structural issues, they focus
on capturing behavioral properties. The specification notation includes support
for refining object interactions and for arriving at application-specific behaviors.
But the formalism’s expressivity is limited. For example, the notion of a call se-
quence as a mathematical object is underdeveloped. It is impossible, for instance,
to quantify over a call sequence to require that a particular method be invoked
exactly once. There is also nothing similar to our use of concept constraints to
prevent incorrect concept refinements. Nor can conditions be imposed on be-
haviors of methods not named in the pattern being specified. As a result, these
other methods might nullify behaviors implemented by the named methods.

Before concluding this section, it is interesting to note that aspects of our
approach are related to important issues identified by authors who use an in-
formal approach to documenting patterns. According to Buschmann et al. [3],
“You should be able to reuse the pattern in many implementations, but so that
its essence is still retained. . . . After applying a pattern, an architecture should
include a particular structure that provides for the roles specified by the pattern,
but adjusted and tailored to the specific needs of the problem at hand.” What is
the essence of a pattern and what types of “adjusting and tailoring” of roles are
allowed? The answer to the former question is provided by pattern contracts,
the answer to the latter by the notion of design refinement.

We should also mention the work on generative reuse [17–19]. Although not
based on design patterns, the type of refinement that underlies this work is,
in some ways, similar to design refinement. Hence our approach may also be
applicable to reasoning about generative software.

3 Design Refinement and Abstraction Concepts

A key benefit of any refinement-based approach is the flexibility it provides in
the form of abstractions that may be realized in various ways. While design
refinement builds upon the ideas of procedural and data refinement, it affords
much greater flexibility via more powerful types of abstractions that are unique
to patterns. These abstractions can be classified into structural abstraction, state-
relation abstraction, and interaction abstraction.

Consider the standard Observer pattern [4], which defines two roles, Subject

and Observer. The pattern’s intent is to maintain consistency between the state
of the object playing the Subject role and the state(s) of the object(s) playing
the Observer role. The subject maintains a set, obs, of references to the observers
attached to the subject. Subject provides attach() and detach() methods for at-
taching and detaching observers, respectively. The subject must also provide a
notify() method, which must be invoked whenever there is a significant change
in the subject’s state. notify() is required to invoke update() on each attached
observer, which must in turn update the observer’s state to make it consistent
with the new state of the subject.

In a system built using Observer, a developer need not implement classes
named Subject and Observer; application-specific names are likely to be more
appropriate. Role methods, such as update() and notify(), may also be suitably
renamed. Thus, in the example that Gamma et al. [4] consider, the subject is
a spreadsheet, the observers being windows, each displaying the information in
the spreadsheet in different formats such as a bar graph, pie chart, etc. The
corresponding classes and their methods will be named appropriately. Further,
in implementing application-specific versions of update() and notify(), the corre-
sponding method signatures need not match those prescribed by the pattern. An
application might, for instance, require additional parameters as part of the up-

date() signature to pass state components from the object playing the Subject role
to those playing the Observer role. Structural abstraction affords this flexibility.
The role maps, corresponding to the various roles of the pattern, in the pattern
subcontract for a given system, will specify the details of these refinements.

Consider now the update() method defined by the Observer role. As noted
above, when this method is invoked on an observer, it must make the observer’s
state consistent with the current state of the subject. But what precisely does
this mean? One possibility is that the observer makes a copy of the subject’s state.
While this is what some standard descriptions of the pattern suggest, it is in-
appropriate if an observer needs partial information about the subject. It is even
possible that in an application, instances of two different classes, both playing
the Observer role, might be simultaneously attached to a subject and maintain
information about different aspects of the subject’s state. The solution is to treat
the notion of consistent as a state-relation abstraction concept —henceforth re-
lation abstraction concept— between the states of the subject and the observers.
The definition of the Consistent() concept will be tailored to suit the needs
of particular applications or sub-patterns. Another relation abstraction used in
specifying this pattern corresponds to the notion of significant modification in
the state of the subject. The relation, Modified(), is defined between two states
of the subject and used to determine which subject state changes trigger calls to
notify(). The pattern contract will require that if Modified(s1, s2) is true (respec-
tively, false), and the subject’s state changes from s1 to s2, then notify() must
(respectively, need not) be invoked. The subcontract for a system built using the
pattern will provide definitions, applicable to that system, for both concepts.

Finally, consider the implementation of the notify() method. When notify()

is called, it is required, according to standard descriptions, to invoke update()

on each attached observer. While this strategy will achieve consistency with all
the observers, there are other ways to accomplish this goal. For example, the
observers might be arranged in a chain, with each observer maintaing a reference
to the next. When update() is invoked on a given observer, it would then update
its state and propagate the call to its successor. In this case, notify() need only
invoke update() on the first observer in the chain. Alternately, the observers might
be arranged in clusters, with one member of each cluster responsible for invoking
update() on the others. In this case, notify() must invoke update() only on the
designated cluster head within each cluster.

One could argue that such variations are not allowed by the Observer pat-
tern, given its standard descriptions. But that is simply an issue of terminology.
One could introduce a new pattern, General Observer, which only requires that
notify() invoke update() on appropriate observers to ensure consistency of the
entire observer set. Then Standard Observer and the variations described above
would be legitimate refinements of that pattern. We call this type of refinement
interaction refinement since it is the sequence of interactions among the objects
that is being refined. In the pattern contract for Observer, interaction abstrac-
tion concepts are used to capture these points of flexibility. The subcontract for
an application would provide definitions for these concepts applicable to that
system. Similarly, the subcontract for a sub-pattern such as Standard Observer
would provide definitions for these concepts — without, however, providing def-
initions for the other abstraction concepts, such as Consistent().

4 Contracts and Subcontracts

Suppose that a system S is constructed using a pattern P . During the execution
of S, there will be zero or more groups of objects interacting according to P .
Each such group, pi, is an instance of P , and each object in pi is enrolled to
play a role R in P . Further, each such object may be simultaneously enrolled in
other instances. We use a ghost variable, players i[], to denote the set of objects
currently enrolled in pi.

P ’s contract will include a role contract for each role. Role R’s contract
consists of an abstract data model for R and pre and post specifications of its
methods. If a class C of S plays role R in some pi, the subcontract will specify
how the state of C maps to R’s model and how the methods of C map to the
methods of R. Correctness of this refinement requires that these methods of
C, under the mappings specified in the role contract, satisfy the corresponding
method specifications in the role contract.

R’s contract will include an others clause that must be satisfied by any re-
maining (unmapped) methods of C to prevent those methods from violating
the intent of the pattern. The role contract also includes enrollment and dis-
enrollment clauses that specify how objects enroll in and dis-enroll from the
role, respectively; we omit these details. Finally, P ’s contract will specify an in-
variant over the objects in the players[] array for each pi. Ensuring appropriate
relations between these objects is the purpose of applying P , thus the invariant
is a key part of the pattern contract. The specifications of the role methods and
invariant will be in terms of the models of P ’s roles and will include clauses
involving the relation abstraction concepts of P , representing some of the ways
in which P can be refined.

With each pi, we associate an instance trace τi, a ghost variable that records
information about the method invocations involving objects in pi. At runtime,
when such a call is made, an element is added to τi that records the method name,
the identity of the target object, the calling object, and any parameter/return
values; the states of the caller and callee are also included in the record. A
similar post-conditional record is added to τi when the invocation completes.

Between the pre record and the post record, additional records may be added to
τi, corresponding to calls made from the original method, calls from within those
methods, etc. As long as the calls involve objects in pi, they will be recorded on
τi. These traces provide a pattern-centric view of the object interactions within
S. For example, examining the records in τi that correspond to methods that
enroll/dis-enroll objects in various roles yields the set of objects currently in pi.

Both the pattern invariant and the role methods defined by P ’s contract
may include conditions on τi. For example, the role method specification of
notify() in the Standard Observer contract will require that upon completion,
τi be extended by calls to update() on each observer. In general, these clauses
will involve the interaction abstraction concepts of P , representing the ways in
which the interactions of P may be refined. The contract will typically impose
constraints on these concepts, as well as on the relation abstraction concepts,
that govern the allowable definitions that may be supplied in a subcontract, lest
the pattern invariant (and the correctness of the refinement) be violated.

Now consider the subcontract corresponding to S. It specifies how the ab-
stractions of P are refined to satisfy the requirements of S. Structural refinement
is achieved through the role maps defined by the subcontract. For each class C
of S that plays a role R of P , the subcontract specifies a role map that maps the
concrete state and methods of C to the abstract model and methods of R. These
methods must satisfy, under the defined mappings, the corresponding method
specifications defined by R’s role contract. The subcontract also provides defini-
tions for each relation abstraction concept and interaction abstraction concept.
The definitions must satisfy the constraints specified in P ’s contract.

Now suppose that PS is a specialized sub-pattern of P and R is a role of
P . The simplest case is when the role contract for R is inherited by PS from
P . More interesting is the case when the data model for R is inherited, but
the specification of one or more methods is strengthened by weakening the pre-
condition and/or strengthening the post-condition. The role model may also be
different, in which case the role map would be similar to that for a class playing
role R. Two roles of PS might also play role R. The role map for each would
define mappings from the respective role models to R’s model and might provide
strengthened specifications for some of the methods, inheriting the rest from R.

Another possibility is that PS may include a new role that does not map
to any role of P . The corresponding role contract is not constrained by P ’s
contract. The interaction traces for instances of PS will record method calls on
objects playing such additional roles. When checking whether the assertions of
PS imply the corresponding assertions of P —in particular, when dealing with
the assertions over the traces— we effectively project out these elements. The PS

subcontract may also introduce new abstraction concepts and include constraints
on these concepts; the constraints may involve the concepts inherited from P . (Of
course, all constraints in the contract of P are inherited.) The precise syntax for
the various elements defined within pattern contracts and subcontracts is part of
our ongoing work. We omit these details due to space limitations, but illustrate
some of the most important ideas in the next section.

5 Observer Hierarchy

Consider General Observer, the generalized Observer pattern intended to serve
as the specialization base for (i) Standard Observer, (ii) Chained Observer (with
the observers arranged in a chain), (iii) Clustered Observer (with the observers
arranged in multiple clusters), and other sub-patterns. The contract for General
Observer cannot require that notify() directly invoke update() on each attached
observer since some of these specializations would not meet this requirement.
But it would not be sufficient to simply require that when notify() finishes, each
attached observer’s state be Consistent() with the subject’s state. This could be
satisfied by, for example, simply resetting the subject’s state back to its pre-
conditional value (i.e., before the change that triggered notify()) rather than
updating the observers’ states.

Another point related to the flexibility of the Observer pattern is worth
noting. Many standard treatments of the pattern require that the other methods
of the Observer role not make any changes to the observer’s state, lest it become
inconsistent with the subject’s state. This is too restrictive since, for example,
it doesn’t allow an observer to change the format used to display information
about the subject. In [6], we relaxed this to allow other methods of Observer to
make changes as long as those changes left the observer in a state consistent with
the same subject state that held at the start of the modifying Observer method.
While this improves flexibility, it is still not flexible enough. For example, in
the MVC architecture [3], both View and Controller play the Observer role. While
View’s other methods meet this requirement, Controller’s methods do not. Indeed,
in some MVC-based systems, the only way for a user to modify the subject’s (i.e.,
model’s) state is via these methods. So, to maintain consistency, the state of the
controller (and other observers) would have to be updated, not left unchanged.

To allow for the types of variation described above in regard to how update()

is invoked on the various attached observers, we introduce the AllObsUpdated()
interaction abstraction concept. The concept is defined over the subject state and
the interaction trace and represents the notion of whether all attached observers
have been updated, as necessary, to make them consistent with the current state
of the subject. This intuition is captured in the following constraint, declared as
part of the General Observer contract:

AllObsUpdated(s, τ) ⇒
[¬Modified(s,@CurrState(s, τ))∧
∀ob ∈ s. obs : Consistent(s,@CurrState(ob, τ))]

@CurrState() is an auxiliary function that returns the state of the specified
object in the most recent record in τ involving the object. Hence, the first clause
of the consequent requires that the current subject state be unmodified from s,
which represents the state of the subject at the start of the notify() call. That is,
the clause requires that the subject’s state not be modified while the observers are
updated. The second clause of the consequent requires that for each observer in
the obs set, the most current state recorded in τ be consistent with the subject’s
state. This allows the various updating strategies used in the sub-patterns, while

ensuring that all the observers are updated. Thus, we use AllObsUpdated() in the
specification of notify() in the contract of General Observer. This ensures, given
the above constraint, the intended behavior of the method.

The subcontract for each specialization of General Observer will provide an
appropriate definition for AllObsUpdated(). For example, the subcontract for
Standard Observer will define AllObsUpdated() to be true if τ contains a sequence
of calls to update() on each element of obs, and false otherwise. The definitions
corresponding to the subcontracts for Chained Observer and Clustered Observer
will be more complex since they must account for the richer structure of the
associated interaction sequences.

Interestingly, the variation in the behavior of the other methods of Observer,
as in the Controller of MVC, can be represented without additional abstraction
concepts. The others specification in the base pattern contract will require that
changes in the observer state during execution of these methods must be due
to intervening calls to update(), which themselves are due to changes in the
subject state that result in calls to notify(). This requirement will be imposed by
specifying suitable constraints on elements of τ as part of the others clause.

6 Conclusion

We have described a new form of refinement that plays a fundamental role in
the design and implementation of object-oriented systems. Design refinement
complements traditional refinement concepts and corresponds to the process of
transforming a set of design patterns into design components, and finally, into
implementations. Further, design refinement allows us to refine existing patterns
to arrive at specialized sub-patterns and pattern hierarchies. This not only aids
in pattern selection, but enables reuse of the effort involved in reasoning about
a given pattern when reasoning about its variants.

We presented three contributions. First, we developed the idea of design
refinement, including the three types of abstraction at its core. Second, we de-
scribed an approach to specifying pattern requirements and behavioral guaran-
tees in the form of pattern contracts, and to specifying pattern subcontracts that
correspond to particular refinements of a pattern. A key consideration was to
ensure that the flexibility of the pattern being specified was not compromised;
the three types of abstraction concepts supported by the formalism ensure this.
Indeed, a natural result of developing pattern contracts is that the contracts
suggest partial refinements that correspond to specialized patterns and hierar-
chies. Thus, as the third contribution of the paper, we explored a hierarchy of
Observer patterns.

Although the Observer pattern has been discussed widely in the literature,
and various authors have suggested variations, our work seems to be the first
to investigate them systematically. We were able to do so because the notion
of design refinement, as well as the contracts for the various Observer variants,
provided a natural foundation on which to base the hierarchy. In our future
work, we intend to investigate other pattern hierarchies. This should be of great
help to developers since each pattern in the hierarchy will be clearly specified.

References

1. de Roever, W., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge (2001)

2. Morgan, C.: The specification statement. ACM Transactions on Programming
Languages and Systems 10 (1988) 403–419

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons (1996)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

5. Sunye, G., Guennec, A., Jezequel, J.: Design patterns application in UML. In:
The 14th European Conference on Object-Oriented Programming. (2000) 44–62

6. Soundarajan, N., Hallstrom, J.: Responsibilities and rewards: Specifying design
patterns. In: The 26th International Conference on Software Engineering, IEEE
Computer Society (2004) 666–675

7. Hallstrom, J., Soundarajan, N., Tyler, B.: Amplifying the benefits of design pat-
terns. In: The 9th International Conference on Fundamental Approaches to Soft-
ware Engineering, Springer (2006) 214–229

8. Eden, A.: Formal specification of object-oriented design. In: The International
Conference on Multidisciplinary Design in Engineering. (2001)

9. Eden, A.: LePUS: a visual formalism for object-oriented architectures. In: The 6th

World Conference on Integrated Design and Process Technology, IEEE Computer
Society (2002) 149–159

10. Kim, S., Carrington, D.: Using integrated metamodeling to define OO design
patterns with Object-Z and UML. In: The 11th Asia-Pacific Software Engineering
Conference, IEEE Computer Society (2004) 257–264

11. Dong, J.: UML extensions for design pattern compositions. Journal of Object
Technology 1 (2002) 151–163

12. Lano, K.: Formalising design patterns as model transformations. In: Design Pattern
Formalization Techniques. IGI Publishers (2007) 156–182

13. Mikkonen, T.: Formalizing design patterns. In: The 20th International Conference
on Software Engineering, IEEE Computer Society Press (1998) 115–124

14. Helin, J., Kellomki, P., Mikkonen, T.: Patterns of collective behavior in Ocsid. In:
Design Pattern Formalization Techniques. IGI Publishers (2007) 73–93

15. Taibi, T., Ngo, D.: Formal specification of design patterns – a balanced approach.
Journal of Object Technology 2 (2003) 127–140

16. Helm, R., Holland, I., Gangopadhyay, D.: Contracts: Specifying behavioral com-
positions in object-oriented systems. In: The European Conference on Object-
Oriented Programming, ACM (1990) 169–180

17. Batory, D., Singhal, V., Thomas, J., Geraci, B., Sirkin, M.: GenVoca model of
software-system generators. IEEE Software 11 (1994) 89–94

18. Biggerstaff, T.: A perspective of generative reuse. Annals of Softw. Eng. 5 (1998)
169–226

19. Neighbors, J.: Draco: a method for engineering reusable softw. sys. In: Software
reusability: vol. 1, concepts and models. ACM (1989) 295–319

