
Responsibilities and rewards: Reasoning about design patterns

Neelam Soundarajan and Jason Hallstrom
Computer and Information Science

Ohio State University, Columbus, OH 43210
e-mail:{neelam, hallstro}@cis.ohio-state.edu

Abstract

Design patterns provide guidance to system designers on
how to structure individual classes or groups of classes,
as well as constraints on the interactions between these
classes, to enable them to implement flexible and reliable
systems. Patterns are usually described informally. While
such informal descriptions are useful and even essential, if
we want to be sure that designers precisely and unambigu-
ously understand the requirements that must be met when
applying a given pattern, and be able to reliably predict
the behaviors the resulting system will exhibit, we also need
formal characterizations of the patterns.

In this paper, we develop an approach to formalizing de-
sign patterns. The requirements that a designer must meet
with respect to the structures of the classes, as well as with
respect to the behaviors exhibited by the relevant methods,
are captured in theresponsibilitiescomponent of the pat-
tern’s specification; the benefits that will result by applying
the pattern, in terms of specific behaviors that the result-
ing system will be guaranteed to exhibit, are captured in the
rewardscomponent. One important aspect of many design
patterns is their flexibility; our approach is designed to en-
sure that this flexibility is retained in the formalization of
the pattern. We illustrate the approach by applying it to a
standard design pattern.

1 Introduction

Design patterns[1, 2, 5, 6, 13] are widely regarded as
one of the most powerful tools in designing OO systems.
Specific patterns provide precise guidance on how to struc-
ture individual classes or groups of classes, as well as the
interactions between these classes, to implement flexible
and easily extensible solutions in specific contexts. Using
design patterns helps system designers in two ways: First,
design patterns represent the collective wisdom and experi-
ence of the community, so the application of the relevant
patterns should lead to higher quality systems with pre-

dictable behavior. Second, when a new designer joins the
design team, he or she will be able, given prior knowledge
and understanding of the specific patterns involved, to get
a quicker and more thorough grasp of how the system is
structured, why it behaves in particular ways, etc.

But if we are to fully realize these benefits, we must have
precise ways toreasonabout these design patterns that we
can apply to understand and predict the behavior of systems
built using them. Our goal in this paper is to investigate such
reasoning techniques. In our approach, the specification of
a pattern will consist of two components. Theresponsibili-
tiescomponent will consist of the conditions that a designer
must ensure are satisfied with regards to the structures of the
classes, the behaviors of particular methods of the classes,
and the interactions between various classes. Therewards
component will specify the particular patterns of behaviors
that the resulting system will be guaranteed to exhibit if all
the requirements contained in the responsibilities compo-
nent are satisfied.

In specifying a pattern, we will start by listing theroles
that make up the pattern. For example, in the case of the
Observer pattern [5], which we will use as the running ex-
ample throughout the paper, there are tworoles, Subject
andObserver. This information is already clear from the
standard UML representation of the pattern (Fig. 1). Also
clear from the diagram is the fact that theNotify() method
of Subject will invoke the Update() method on each of
theobservers1. What is not clear is whenNotify() will be
called and by whom. This question is addressed in the com-
mentary (under “Collaborations”) in the description of the
Observer pattern in [5], “. . .subject notifies itsobservers
whenever a change occurs that could make its observers’
state inconsistent with its own.” But it is not clear how the

1We use names starting with uppercase letters such asSubject for
roles; and the corresponding lowercase names such assubject to refer
to the individual objects that play these roles. We also use names starting
with uppercase letters for patterns, classes, and methods; member variables
will have names starting with lowercase letters. In some cases the name of
a pattern is also used for one of the roles in that pattern, as in the case of
theObserver role of theObserver pattern. In such cases, the context will
make clear whether we are talking about the role or the pattern.

subject will know when its state has become inconsistent
with that of one or more of theobservers. Indeed, what
does it mean to say that thesubject state has becomein-
consistentwith that of anobserver? How is this to be de-
termined?

Perhaps more to the point from the point of view of a de-
signer, what exactly are the requirements that the designer
must ensure are met in order to apply the pattern as in-
tended? And what exactly can the designer expect in return
for meeting these requirements? For theObserver pattern,
the return is that the if the pattern is applied as intended,
the view of eachobserver will remain consistent with the
subject’s state – again consistent in what sense? As we will
see, the kind of formal specifications that we develop in this
paper will provide precise answers to these questions.

There is an inherent risk in formalizing design patterns
[12] in that flexibility, which is the hallmark of many de-
sign patterns, may be lost. For example, in the case of
Observer, if we adopt one definition for the notion ofin-
consistency, the pattern may not be usable in systems that
have a different notion of this concept. As we will see, our
approach, while requiring us to provide a precise character-
ization of the pattern, also enables us to retain the flexibility
contained in the pattern.

There is a similarity between our approach to specifying
design patterns and the standard design-by-contract (DBC)
approach [7, 8, 9] using pre/post-conditions and invariants
to specify classes and methods. In DBC, the methods of
each class have a precisely defined pre-condition and post-
condition, and the class as a whole has an invariant associ-
ated with it. Whenever invoking a method of a class, it is
the caller’s responsibility to make sure that the correspond-
ing pre-condition is satisfied. In return, the caller is assured
that when control returns, the post-condition will be satis-
fied (assuming that the method is implemented correctly).
In our formalization of patterns, the specification will spec-
ify a set of requirements that the system designer wishing to
use this pattern must meet; in return, the designer is assured
that the invariant associated with the pattern will be satis-
fied (as long as the ‘pattern instance’ –a notion to be defined
shortly– continues to exist). In a sense, patterns are a natural
extension of classes; while classes focus on how individual
objects should behave, patterns are concerned with interac-
tions between a group of objects and relations between their
respective states. Note that it may well be possible to encap-
sulate this entire group of objects into a class and focus on
the interactions of this class withexternalobjects. If we did
that, we would again be in the domain of standard DBC. But
here we want to think of the objects in this group as indi-
vidual entities and consider the interactionsbetweenthem.
DBC allows us to deal with individual classes in a precise
manner; our work is an attempt to extend that to deal with
the group of objects that a given pattern is concerned with.

Most previous work on patterns has focused on identify-
ing patterns and specifying them informally, usually in the
style introduced by [5]. There has been some work related
to formal aspects of patterns; these have dealt with such
things as modeling patterns using temporal action systems,
categories, etc. To our knowledge, there has not been much
work that has tried to specify patterns by formally defin-
ing the exact program properties that the use of the pattern
will ensure, or the requirements that a system adopting a
given pattern should meet. We will briefly address individ-
ual items of related work later in the paper but one important
notion that we should mention here is Reenskaug’s [11]role
models. Role models allow us to focus on the interactions
between the various objects participating in what he calls
anarea of concern. For example, an area of concern for a
system could be the question of how a group ofobserver
objects keep track of the changes in asubject. An impor-
tant point here is that a given object playing the role of an
Observer may have many other aspects to it that are not rel-
evant to this area of concern. Although Reenskaug’s work is
not concerned with formal specifications, his ideas on role
models have heavily influenced our approach to specifying
patterns formally. As we will see, the major part of the pat-
tern’s specification is the precise specifications of the vari-
ous roles in that pattern.

The rest of the paper is organized as follows: In the next
section, we develop the basic ideas of our approach. We an-
alyze the different components that must be included in the
specification of a pattern and some possible variations. In
Section 3, we apply our approach to theObserver pattern
and develop a specification for this pattern. In Section 4
we consider related work. In the final section, we summa-
rize our approach, reiterate the advantages of having formal
specifications of patterns, and consider pointers for future
work.

2 An Approach to Specifying Patterns

Consider theObserver pattern [5] in Fig. 1. This pat-
tern is intended to be used when one or more (“observer”)
objects are interested in the state of a (“subject”) ob-
ject. When an object wishes to become anobserver of a
subject, it invokes theAttach() method of that object; and
when it is no longer interested in thatsubject, it invokes its
Detach() method. (One might also ask if athird party ob-
ject can enroll a given object to play the role of asubject or
observer; the formal specification in the next section will
answer this question.)

When asubject’s state changes, it executes theNotify()
operation; this results in theUpdate() operation of
each observer being invoked. What theUpdate()
operation does depends on how it is defined in the
ConcreteObserver class(es). The goal of theUpdate()

2

Observer

+Update()

o.Update()
for all o in observers

ConcreteSubject
−subjectState

*

ConcreteObserver

−observerState

+Update()

*

observers

1

subject

1

+Attach(in Observer)

+Detach(in Observer)

Subject

+Notify()

Figure 1. Observer Pattern

operation should be to update the observer’s view of the
state of the subject so that it is consistent with the actual
current state of the subject.

How do we formalize theObserver pattern? Note first
that the pattern does not really tell us anything much about
theConcreteSubject or theConcreteObserver2. The fo-
cus is on theSubject and theObserver, and the interac-
tions between them. Correspondingly, in our specification
of this pattern, we will say that it has tworoles: subject
andobserver. It is worth stressing that a role is neither a
class nor an object. Instead, objects that wish to interact ac-
cording to this pattern willenroll in the pattern to play the
different roles. They will then have to obey the constraints
imposed on the respective roles by the pattern’s specifica-
tion.

Before we turn to those constraints, two other points
should be noted. First, in a given system, at a given time
during execution, it is possible that we have twoobserver
objectsO1 andO2 ‘observing’ thesubject objectS1 while
two other objectsO3 andO4 are observing a different ob-
ject S2. In this situation,S1, O1, O2 form one group
of interacting objects interacting (if the system has been
built correctly) according to theObserver pattern, while
S2, O3, O4 is a second group, independent of the first, also
interacting according to the same pattern. What we have at
this point are twoinstancesof theObserver pattern. Thus

2In fact, in the original diagram in [5] forObserver [5], some
additional information is included about theConcreteSubject and
ConcreteObserver. This information says thatConcreteSubject has a
methodGetState() and that theConcreteObserver’s Update() invokes
that method to get the current state of the subject. But this seems too
restrictive. The diagram in [5] further says thateveryobserver will set
its state (observerState) to the value returned by theGetState() method
of subject. Does that mean allobservers have the same kind of state?
That is clearly not the intention since the whole point of having different
observers is to have different views of the state of thesubject; but a de-
signer studying that diagram could well get such an impression although
the accompanying discussion in [5] should clarify this. In any case, we
believe having formal specifications of the kind we propose in this paper
for patterns can help in eliminating or reducing such misunderstandings.

at any given time, we may have many different instances of
any given pattern. Moreover, a pattern instance is not a per-
manent notion. If, for example,S2 were to cease to exist,
then of courseO3 andO4 cannot observe it any longer, and
the corresponding pattern instance will cease to exist. But,
on the other hand, even if bothO3 andO4 were destroyed,
this pattern instance might continue to exist, withS2 wait-
ing for otherobserver objects to become interested in it in
the future.

Second, apart from the differences in the details of what
the two roles in theObserver pattern are responsible for,
there is one other important distinction between them which
is already implicit in our discussion so far. This is that while
any number of objects may play theObserver role in a
given instance of theObserver pattern, we must have ex-
actly one object playing theSubject role. Indeed, in order
to create a new instance of this pattern, what we need is an
object deciding to play theSubject role. Even if no other
objects have expressed an interest in observing thissubject
object, we will create a new instance of the pattern. This
instance will wait for objects to enroll in the roleobserver,
but no new object can enroll in theSubject role of this in-
stance.

Each role will be specified by arequiresclause and an
ensuresclause for each method. In addition, we will also
use apreservesclause which will just say that the state
components specified in that clause are not changed by
that method. However, we are dealing with roles here, not
classes. This means that we do not know what the com-
plete state of the actual class (of the object that will enroll
to play this particular role) will consist of. All we can be
sure of is that there must be certain components that will
be used to maintain the information dictated by the pattern,
and to achieve the interactions required by the pattern be-
tween its various roles. We will handle this problem as fol-
lows. The pattern specification will include a portion la-
beledstate. This will list all the components needed from
the point of view of the pattern. These components will be
partitioned into states corresponding to the individual roles.
The requires, preserves, andensuresclauses will be writ-
ten in terms of these components. In addition, it may also
be appropriate to have a component corresponding to the
pattern as whole, i.e., that cannot be logically thought of as
being part of one or the other of the roles, but that is not
the case with theObserver pattern. Interestingly, when we
asked ourselves this question, it occurred to us that there
might indeed be a more general version of this pattern that
does have such a component. We will briefly mention this
generalization in the next section.

But thestateportion of the pattern specification is not by
itself adequate to allow us to specify the various methods
of the various roles. Consider, for example, the require-
ment thatNotify() should be invoked when the state of the

3

subject object changes since the views that theobservers
have of thesubject may no longer be consistent with its
new state. But what does it mean to say that the state of the
subject has changed? It surely should not mean that every
time any bit in that object changes, we need to update all the
observers. We need to be able to allow the answer to this
question to be provided when the object in question enrolls
to play theSubject role rather than assuming one particu-
lar answer when defining the pattern. To allow for this, in
our specification, we use the notion ofauxiliary concepts.
Essentially, we parameterize our specification in terms of
these concepts. In the case of theObserver pattern, we will
use two such concepts. One will correspond to the notion
of how to determine if the state of thesubject has changed.
The second will answer the question, corresponding to the
givensubject and eachobserver object, what does it mean
for the observer’s state to be consistent with that of the
subject. At the point that the pattern instance is created or
at the point that an object enrolls to play a particular role in a
currently existing pattern instance, the system designer will
have to provide suitable definitions for these concepts. For
that pattern instance, the specification will use these partic-
ular definitions.

The notion of consistency should in fact be on a per-
observer basis since the whole point of having multiple
observers is that each may adopt a different view of the state
of thesubject, hence what it means for a given view to be
consistent with the state of thesubject will clearly depend
on the view in question. That the notion of consistency to
be used varies from oneobserver to the next will become
evident in our specification where, as part of an object’s en-
rollment in theObserver role, we will have to provide the
definition of the corresponding notion of consistency. This
also raises the possibility that perhaps the notion of what
it means for thesubject’s state to be modified should also
depend in some way on the state of theobserver. For ex-
ample, if a givenobserver is not interested in a particu-
lar part of thesubject’s state then, from the point of that
observer, changes in that portion of the state should not
be counted as “modifying the state of thesubject”; but
a differentobserver that is interested in this part of the
subject’s state will want to count such a change as mod-
ifying thesubject’s state. We will return to this point when
we develop the formal specification in the next section.

Let us now consider an important issue related to the
ensuresclauses of the individual methods in the different
roles. While many of these will be expressible in terms of
the corresponding state components, for some we need a
more elaborate mechanism. This has to do with the fact
that in some situations, the pattern dictates not that a par-
ticular method change the state to meet some specified con-
dition, but that during its execution it make a specific se-
quence of calls to other methods (either other methods of

the same role, or methods of other roles). A good exam-
ple of this is theNotify() method of thesubject role of
Observer; this method is required, during its execution, to
invoke theUpdate() methods of eachobserver. To spec-
ify such requirements, we will use thecall sequenceor trace
that records the calls a method makes during its execution
and allow conditions to be imposed on this trace, as part of
the ensures clause of the method.

So far we have primarily focused on the requirements
that objects enrolling to play specific roles must meet, in
other words on theresponsibilitiescomponent of the pat-
tern. There are some additional aspects to this which we
will see in the next section but for now let us turn to the
rewards component. In many patterns, the main reward
of consistently abiding by the guidelines of the pattern is
that an invariant relation between the states of the various
objects playing roles in that pattern instance will be satis-
fied. Thus, for example, in the case of theObserver, this
invariant is that whenever control is not inside one of the
methods of these objects, the state of eachobserver will
be consistent with that of thesubject where consistency is
as defined in the corresponding auxiliary concept when this
observer object enrolled to play its role. For other patterns,
there are other rewards that the designer can expect to reap
by applying the pattern correctly. One of the rewards to be
expected when using theMemento pattern, for example, is
an information hiding guarantee. In future work, we aim to
characterize other rewards and to investigate the techniques
to specify them.

We conclude this section with a comment about the re-
lation between thecodeof the system and the pattern(s)
it uses. According to our discussion, when an object en-
rolls, for example, in theSubject role of a new instance
of Observer, the designer must provide definitions for the
auxiliary concepts, check that the methods of the class that
this object is an instance of meet the requirements of the
corresponding role specifications, etc. But there is noth-
ing in the code of the system where this object declares
its intention of playing the role ofSubject in an instance
of Observer. Unlike, for example, a class and its meth-
ods, the patterns are not explicit in the code; they are, so to
speak, in the eyes of the design team. To handle this, we
will have to introducepattern-code(which will essentially
be written to fit the format of comments of the underlying
programming language so that normal compilers can ignore
it) at suitable points, in particular at points where a new pat-
tern instance is created as well as at points where an object
enrolls in or dis-enrolls from an existing pattern instance.
Verification responsibilities will materialize, so to speak, at
the points wherever this meta-code exists, requiring a con-
scientious designer to verify that the appropriate responsi-
bilities had been met at these points. This verification may
be fully formal, or semi-formal, or informal depending on

4

the tastes of the designer. Alternately, or in addition, au-
tomated tools can be built that can mechanize part of this
verification task, or possibly test at run-time whether the
appropriate assertions are satisfied at the appropriate points
(in the meta-code).

3 Case Study

In this section, we develop the formal specification of the
Observer pattern. For convenience, we have split the spec-
ification into three separate figures. The first one, Fig. 2, is
concerned with the pattern-level portion of the specification.
The second one, Fig. 3, is concerned with the specification
of theSubject role; and Fig. 3 with the specification of the
Observer role.

pattern Observer {
roles: Subject, Observer*; // see note 1 below

state:
Subject: set[Observer] observers; // note 2
Observer: Subject subject;
pattern: null;

auxiliaryConcepts: // note 3
relation: Consistent(Subject.ασ, Observer.ασ);
relation: Modified(Subject.ασ1, Subject.ασ2);
constraint:

[¬Modified(suασ1, suασ2)
∧ Consistent(suασ1,obασ)]⇒

Consistent(suασ2,obασ)

invariant: // note 4
∀ ob ∈ observers: Consistent(ob.ασ, subject.ασ)

pattern instantiation: //note 5
〈Subject:player, Modified〉

enrolling as Subject: 〈false〉
enrolling as Observer:
〈[(player 6= Subject.player)

∧ (player 6∈ observers)],
Consistent, Subject.player.Attach(self)〉

Figure 2. Observer Specification: Pattern

Notes:

1. There are two roles,Subject andObserver. The ‘*’
at the end of theObserver says that any number of
objects may enroll to play this role in a given instance
of this pattern; by contrast, only one object may play
theSubject role.

2. The state is partitioned into a component correspond-
ing to each role. The part corresponding to theSubject
role consists of a variable,observers, which is aset

of references toobserver objects, these of course be-
ing the objects that have enrolled to play that role. The
part corresponding to theObserver role is subject
which will hold a reference to the object playing that
role; note that since multiple objects may enroll to play
theObserver role, this state component will be dupli-
cated, one corresponding to each suchobserver ob-
ject. In this pattern, there is no component correspond-
ing to the pattern as a whole, hence this part is speci-
fied to benull. One possible generalization would be
to have a pattern in which there is a limit on the num-
ber ofobservers in any given instance of the pattern.
In that case, we could keep a count of the number of
objects currently enrolled to play this role, and one of
the conditions for enrolling as anObserver would be
that the value ofcount be less than the limit.

These are not the ‘complete’ states of the actual
subject or observer objects. Those objects will
have additional components (defined in their respec-
tive classes), and we will have to refer them in our
pattern specification. For example, we will have to
state that when the state of thesubject changes, the
observers will be notified. But what do we mean by
the state of thesubject? This is not the part of the state
that is listed here as belonging to thesubject role. This
part has to do with the state needed by thepattern. The
actual object that plays this role will have additional
state. Indeed, if it didn’t, there would be nothing for
the observers to observe! We will use the notation
ασ (for “additional state”) to refer to this non-pattern
portion of the object’s state.

3. The notion of what it means for the state of an
observer to beConsistent with a state of thesubject
depends on the pattern instance and thesubject
and observer in question, hence it is listed as an
auxiliaryConcept. Similarly, given twosubject states
(which, at the point where we use it in Fig. 3, will be
the state at the start and end of a method insubject’s
class), theModified concept lets us decide whether the
second state is modified or unmodified from the first.
These concepts will be defined when an object enrolls
as anobserver and an object enrolls as asubject at
pattern instantiation time respectively (note (5) below).

But there is an additional condition we need to impose.
Suppose we have two subject states,suασ1, suασ2

that, according to the definition ofModified are the
‘same’; suppose also that there is an observer state
obσ that, according to the definition ofConsistent
is consistent withsuασ1 but not with suασ2. Then
we will have a problem because if the subject state
were to change fromsuασ1 to suασ2, the subject
would not call theUpdate() methods of theobservers

5

since its state has ‘not changed’ according to the given
Modified; but if the state of one of theobservers is
obασ, this would no longer be consistent with the new
state of thesubject! The specified constraint ensures
that this problem will not arise. It may be worth point-
ing out that since theConsistent concept depends on
the particular observerob in question, it may be more
accurate to use the notationConsistentob; we omit
the subscript in the interest of brevity.

4. The pattern invariant is the reward for using this pat-
tern. This asserts that for each observer in the set
observers, its state will be consistent with that of the

state of the object playing theSubject role.

5. Next we specify what is needed for creating a pat-
tern instance and for enrolling in theSubject and
Observer roles. To create a new pattern instance, we
are required, according to this specification, to provide
an object that will play theSubject role, which means
that the class of that object must meet the constraints
(in Fig. 3) for that role; and to provide the definition
for Modified, one of the two auxiliary concepts. (Note
thatplayer is a keyword that represents the object that
wishes to play the role ofSubject in the pattern in-
stance about to be created.)

For enrolling as aSubject after the pattern instance
has been created, we are required to satisfy the impos-
sible conditionfalse. This simply means that another
object cannot decide to enroll into this role once the
pattern instance has been created.

The conditions for enrolling as anobserver are of
course more liberal. The requirements are that the ob-
ject (player) that wants to play this role must not al-
ready be enrolled (in this instance) as anobserver or
subject. Further, when an object enrolls to play this
role, we must provide a definition for the auxiliary con-
ceptConsistent; this definition is the one we referred
to asConsistentob above, and will be used only for
this observer object. The final component states that
to enroll as anobserver, the object needs to invoke
theAttach() method on the object playing theSubject
role, and pass itself as argument.

In addition, when creating a pattern instance or en-
rolling into an existing pattern, we are also required to
provide mappings from the (class of the) actual object
enrolling to play the particular role to the correspond-
ing role state.

Some points are worth noting. The potential incompatibil-
ity between the definitions ofModified andConsistent that
we discuss in point (3) above and the solution we have pro-
posed, in the form of the corresponding constraint seems

to be new. We have not seen this potential problem men-
tioned before and indeed, it was only as we were designing
the formal specification in Fig. 2 that we realized the prob-
lem. A less significant point has to do with the conditions
to be met when an object wishes to enroll in an existing in-
stance of theObserver pattern. This condition too seems to
have been overlooked in much of the literature, the one ex-
ception we are aware of being [10] which gives a temporal
characterization of this condition. The point is that formal
specifications while they are certainly challenging to write
down, allow us to identify potential problems that can be
overlooked in the informal documentations, and to resolve
them. The goal, of course, is to build systems that are more
reliable.

roleSpec Subject {
initCondition observers = Φ; // note 6

invariant true;

methods: //note 7

void Attach(Observer ob):
requires: (ob 6∈ observers) ∧ (ob 6= this)

∧ (ob = caller)
preserves: ob; ασ; //note 8
ensures: observers =

observers@pre ∪ {ob}; //note 9
ensures (call sequence): call ob.Update()

void Detach(Observer ob):
requires: ob ∈ observers; ob = caller
preserves: ob; ασ;
ensures: observers = observers@pre − {ob};

void Notify(): //note 10
requires: true
preserves: ob; observers; ασ;
ensures (call sequence):

calls to ob.Update() for each ob ∈ observers

others: //note 11
requires: true
preserves: observers
ensures (call sequence):

[¬Modified(ασ@pre, ασ)] ∨
[trace has a call to Notify() ∧
¬Modified(ασ′, ασ)] (where ασ′ is the state

recorded in that call)
}

Figure 3. Observer Specification: Subject

Next we turn to the specification of theSubject role in
Figure 3.

6. We first specify the initial condition that must be sat-
isfied when an object enrolls into this role (possibly

6

at the time of the instance creation). Here the condi-
tion states that theobservers component of the ob-
ject must be empty (since no objects should have been
enrolled to play the role ofobserver at this point).
There is no invariant for this role, so this is defined
to betrue.

7. Next we have specifications for the individual methods
of this role.Attach(), as we saw above, is the method
an object wishing to become anobserver should call.
Its pre-condition requires that this object not already
be anobserver; that this object not be thesubject;
and finally that the object callingAttach() be the same
as the one that wishes to become anobserver. In other
words, this clause prevents enrollment of a given ob-
ject as an observer of oursubject by a third object. If
we want to allow for such third-party enrollments, this
clause should be omitted.

We should note that in this pattern, enrollments into
roles is a simple matter. But in more complex patterns
it may be that enrollment of an object into a particu-
lar role takes place only when a number of specified
actions, perhaps by a number of specified objects (not
just the object enrolling), are completed. Specifying
such enrollment requirements will of course be more
complex than that in Fig. 2.

8. The preserves clause tells us that the argumentob will
be unchanged. And further thatασ, the “additional
state” of thesubject object will also be unchanged. In
general, all methods explicitly listed in the specifica-
tion of any role of the pattern are likely to have a simi-
lar clause since these methods are only concerned with
performing the activities required by the pattern, hence
there is no reason for them to modify any component
of the additional state.

9. The first part of the ensures clause simply requires the
newobserver object to be added toobservers. The
second part is a condition on thecall sequenceof the
Attach() method. This part requires that the call se-
quence should consist of a call toob.Update(). The
reason for this is to ensure that once an object becomes
anobserver, its view is consistent with the state of the
subject, as indeed required by the pattern invariant.
This was another requirement whose need we discov-
ered only as we were designing this specification. The
need for such a call does not seem to have been noted
elsewhere in the literature.

10. TheNotify() method has a more complex call sequence
requirement. Essentially, its ensures clause requires
that theUpdate() method of each of theobservers is
called.

11. The actual class of the object playing this role may not
only have additional state, but also additional methods.
The “others” part of the specification is a condition
that must be must be met by all such methods (i.e.,
methods other thanAttach(), Detach(), andNotify()).
The preserves clause requires that these other meth-
ods not make any changes in the value ofobservers
(else the protocol implemented by theAttach() and
Detach() will be clearly compromised). Further, the
ensures clause requires that if the additional state is
modified (as per the definition of the conceptModified
which was provided at the time of the pattern instanti-
ation), then there must be a call toNotify() and no fur-
ther modifications may be made to the state after that
call; in other words, the final state must be same as
the state that existed at the time of the call toNotify().
This will ensure that theobserver’s views are updated
if the subject state changes.

It is perhaps worth noting that [5] does point out the impor-
tance of ensuring this last requirement. We feel, however,
that even if we had been unaware of it at the start, we would
have discovered the need for it when formalizing this part
of the specification. Let us now turn to the specification of
theObserver role in Figure 4.

roleSpec Observer {
initCondition subject = subject.player; // note 12

invariant true;

methods:

void Update(): // note 13
requires: true;
preserves: subject;
ensures: Consistent(subject.ασ, this.ασ)

others: //note 14
requires: true;
preserves: subject;
ensures: Consistent(subject.ασ, this.ασ)

}

Figure 4. Observer Specification: Observer

12. The initialization condition requires that thesubject
field be set appropriately to refer to the object that is
playing the role ofsubject.

13. The specification ofUpdate() says that it should not
modify the value of subject, and that it should up-
date the state of the current object to be consistent (as
per the definition of theConsistent relation provided
when this object enrolled to play this role) with the
state of the object referred to bysubject.

7

14. For the other methods that might be defined in the
ConcreteObserver, the requirement is that they not
change the value ofsubject and that they leave the
state of the current object consistent with the state of
thesubject.

With respect to this last point, it is worth noting that this
permits the state of theobserver to be modified so long
as the new state is also consistent with the current state of
the subject. For example, ifobserver object in question
was one that could be displayed on the screen, we might
iconify it, so clearly its state would change; but this would
be permitted by this specification so long as the definition
of Consistent that has been provided is such that the iconi-
fied state is consistent with the state of thesubject. While,
as we noted above, the need to callNotify() of thesubject
when its state is modified has been explicitly noted in the
literature, we have not see any discussion of what changes
we can make in theobserver object independently of the
subject. The auxiliary conceptConsistent allows us to
give a precise characterization of what changes are permit-
ted.

In terms of sheer size, our formal specification is shorter
than typical informal descriptions of the pattern although,
of course, eve with some practice, it is harder to read than
informal descriptions. More important is the precision our
specification ensures; it was this precision that allowed us to
pinpoint various omissions and gaps in the informal descrip-
tions and allowed us, indeed forced us, to consider ways to
fill them.

We have only developed the formal specification of the
pattern. In a system that uses one or more instances of the
pattern, how do we show that the requirements of the pat-
tern have indeed been met, and how do we make use of the
reward, i.e., the pattern invariant specified in Fig. 2? The
approach we plan to adopt for addressing these questions is
as follows: The designer will be required to include in the
body of the system in question,pattern codethat will repre-
sent such actions as a new pattern instance being created, an
object enrolling in a given role, etc. Thus, for example, at
the point that we decide to create an instance ofObserver
with a given object playing theSubject role, we would in-
clude a line of code such as,

/*@ Observer pI = new Observer
(Subject: xx, Modified: (xx.u′ < xx.u)) */

wherexx refers to the object that is being enrolled to play
the role ofSubject in the new instance ofObserver being
created; theModified predicate is defined to be the relation
specified, whereu is a member variable of the class ofxx.
Recall thatModified is to be a relation between two states of
a given object, here the one thatxx refers to; when a method
operates on this object, it may change the values of one or
more member variables of that object; the “′ refers to the

value of the variable in question when the operation started
and the unprimed variable its value when the operation fin-
ishes. Thus here we are saying that, for the purposes of this
instance ofObserver, we will treat the state of the object to
have been modified if the value ofxx.u has increased; if the
value ofxx.u has decreased or not changed, the object will
be considered unmodified, independent of what might have
happened to the values of the other member variables. In
practice, we would probably have more involved notions of
what it means for the state to be modified. More important,
in practice, we would not want to refer to the states of ob-
jects in terms of the values of its concrete member variables,
but rather in terms of itsabstractstate.pI is a “pattern vari-
able” that will allow us to refer to this pattern instance later
in the program. We need to be able to do this, for example,
when another object wishes to enroll as anobserver in this
particular pattern instance.

Each piece of pattern code will have an association proof
obligation. Thus, for the line of code corresponding to cre-
ating the new instancepI, we would have to show that the
initialization requirements of Fig. 2 are satisfied. In each
line that corresponds to an object enrolling as anobserver,
we would have to show that the definition ofConsistent
given at that point, and ofModified given above, together
satisfy the constraint specified in the pattern specification in
Fig. 2. It is by meeting these proof obligations (formally
or informally depending on our tastes and the needs of the
system), that we would show that we have applied the pat-
terncorrectly. And, in return, we can assert that as long as
pI exists, the invariant specified in Fig. 2 will be satisfied
(whenever control is outside all the methods that modify
any of the objects enrolled in that pattern instance).

4 Related Work

As we noted earlier, most of the work having to do with
design patterns is concerned with informally documenting
specific patterns. Dong [3] considers the question of how
the use of a design pattern in a particular application can be
made clear in a UML diagram. The idea is to annotate the
UML diagram so that for any given class, we can specify,
if it is part of a design pattern instance. The name of the
pattern as well as the ”role” (in the pattern) that this class
plays are shown in the diagram. The individual operations
of the class can similarly carry annotations specifying the
roles they play in the application of the pattern. Dong ac-
counts for the fact that the same class might participate in
the use of several patterns. But Dong’s work does not di-
rectly address the question of specifying precisely the pat-
tern in question or the responsibilities that a designer using
the pattern must meet.

Edenet al. [4] propose a higher order logic formalism in
which a design pattern is a formula. The primitives of the

8

logic are things like classes, methods, etc. The key point
is that the logic is rich enough to specify the relations that
are commonbetweenpatterns. It is not clear whether this
formalism will be of use in specifying an individual patterns
and identifying, to the designer, the specific responsibilities
and rewards that the use of the patterns entails.

Mikkonen [10] specifies a pattern by specifying the
classes involved, including an abstract model and a list-
ing of the relations among the various items. Thus for the
Observer pattern, he specifies thatAttached is a relation
between asubject and anobserver. He uses an action-
system type of specification using a guarded-command lan-
guage, to specify the sequences of actions formally. Some
of Mikkonen’s notations, can we believe, be used to sim-
plify the specification that involve thecall sequenceand we
plan to investigate this in the future. But for the specifi-
cations that do not require the call sequence, using action-
system-based specifications makes them hard to understand
and reason about.

We have already mentioned therole models of
Reenskaug[11]. Riehle [12] extends role models to what
he callspattern composition. Essentially the idea is that
larger patterns can be composed from smaller patterns,
where the larger pattern gains its importance as a result of
synergybetween its components, and indeed without such
synergy Riehle does not consider the result a composite
pattern. His focus is on trying to identify the key roles
in the composite pattern and relate them to the roles in
the component patterns. While the identification of the
roles is done semi-formally, Riehle does not consider the
possibility of specifying the expected behaviors of these
roles formally which, of course, has been our focus.

5 Discussion

The goal of our work was to develop a technique for rea-
soning precisely about design patterns and their application.
First, we extended the notion of design-by-contract to pre-
cisely specify a pattern’s behavior. Second, we provided a
brief overview of reasoning rules that can be applied to ver-
ify the correct application of a pattern, and therefore guar-
antee the behavioral properties described by the pattern’s
specification. In this paper we demonstrated our approach
in the context of theObserver pattern. The pattern serves
as a natural starting point for exploring reasoning issues, as
it manifests a number of interesting behavioral properties.
Moreover, the pattern is widely used in commercial class
libraries like Java Swing and Microsoft’s .Net framework.

Recall that one of the benefits of using design patterns is
to facilitate in the understanding of complex architectures.
When a designer is presented with a new system design,
knowledge of the design patterns that went into its construc-
tion should enable the designer to understand the structure

of the system more quickly and more thoroughly. Without
a precise specification, however, the behavior of each pat-
tern participant, and consequently the pattern as a whole,
is often ambiguous. In trying to understand the behavior
of the Observer pattern so that it could be formally spec-
ified, we were confronted with this ambiguity in a number
of contexts.

First, when writing the specification of Attach, we re-
alized that when an object enrolls as anobserver, it must
update its state to be consistent with the current state of the
subject. We can’t say, for example, wait until thesubject
state changes, at which point Notify will be called, bringing
theobserver into a consistent state. What if thesubject’s
state never changes? Theobserver’s view will forever be
inconsistent with thesubject’s state, which of course vio-
lates the whole point of using the pattern. It was only when
we were writing the formal specification of the pattern that
this became clear.

Second, in writing the specification of Detach, there was
a question of whether theobserver’s subject field should
be set to null, so that it could no longer interact with the
subject. The pattern does not strictly require this behavior,
since it is only concerned withobservers that are attached
to thesubject. However, two designers reading the same
design documentation might assume different system be-
haviors when they see that the system uses theObserver
pattern. This misunderstanding could lead to a number of
problems that could be avoided with the benefit of formal
specifications.

We conclude the paper with a couple of pointers to future
work. First, we plan to further develop the reasoning rules
that can be used to formally verify the correct use of a pat-
tern. These rules will form the basis for a formal proof sys-
tem for verifying the correct application of a pattern, as well
as predicting the behavior that a system will exhibit when
developed using the pattern. Another interesting possibil-
ity is to implement a monitoring system,à la the assertion
monitoring system ofEiffel [9], that checks, at appropriate
points (in the meta-code discussed in Section 2) whether the
corresponding responsibility assertions as specified in the
pattern are indeed satisfied. While a conscientious designer
should check that all responsibilites are indeed met, having
such a tool would simplify this task, especially by identify-
ing points where there is a problem. Developing such a tool
is also work for the future.

References

[1] K. Beck and R. Johnson. Patterns generate architectures. In
Proceedings of the Eighth ECOOP, pages 139–149, 1994.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. A system of patterns. Wiley, 1996.

[3] J. Dong. UML extenstions for design pattern compositions.
In C. Mingins, editor,Proc. of TOOLS, in Special Issue of

9

Journal of Object Technology, vol. 1, no. 3, pages 149–161,
2002.

[4] A. Eden, J. Gil, Y. Hirshfeld, and A. Yehudai. Toward a
mathematical foundation for design patterns. Technical Re-
port 004, Tel Aviv University, 1999.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable OO Software. Addison-
Wesley, 1995.

[6] R. Johnson. Components, frameworks, patterns. InACM
SIGSOFT Symposium on Software Reusability, pages 10–
17, 1997.

[7] G. Leavens and W. Weihl. Specification and verification of
object-oriented programs using supertype abstraction.Acta
Informatica, 32:705–778, 1995.

[8] B. Liskov and J. Wing. A behavioral notion of subtyping.
ACM Trans. on Prog. Lang. and Systems, 16:1811–1841,
1994.

[9] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 1997.

[10] T. Mikkonen. Formalizing design patterns. InProceed-
ings of 20th ICSE, pages 115–124. IEEE Computer Society
Press, 1998.

[11] T. Reenskaug.Working with objects. Prentice-Hall, 1996.
[12] D. Riehle. Composite design patterns. InProc. of OOPSLA,

pages 218–228. ACM, 1997.
[13] D. Riehle and H. Zullighoven. Understanding and using pat-

terns in software development.Theory and Practice of Ob-
ject Systems, 2(1):3–13, 1996.

10

