
Documenting Framework Behavior

Neelam Soundarajan

Computer and Information Science
The Ohio State University
2015 Neil Avenue Mall
Columbus, OH 43210

USA

e-mail: neelam@cis.ohio-state.edu
Tel: (614) 292 1444. FAX: (614) 292 2911

Frameworks [Johnson, Foote, Sparks] promise to dramatically reduce the time and effort needed
to develop complete applications. A frameworkF for a given application area typically provides
thecontrol flowamong the various methods of the various classes. A developer who wants to use
F to develop a complete applicationA need only provide the code for the various (pure) virtual
methods1 in the various abstract base classes ofF . But in order for the promise of frameworks to
be truly realized, the frameworkF must include documentation that provides the application de-
veloper with suitable information aboutF . In the absence of such documentation, the application
developer will be forced to go through the code ofF to extract the information, thereby substan-
tially negating the advantages that the use of frameworks was supposed to provide. In the rest of
this article we point out the need for a new approach to the formal specification2 of the behavior of
frameworks, sketch a possible approach, and briefly indicate how an application developer could
combine such a specification of framework behavior with appropriate information about the code
he supplies to arrive at a specification of the entire application.

What is different about frameworks that necessitates the development of a new approach to
their specifications rather than using the standard approaches, such as those discussed in, for ex-
ample, [Meyer, Guttag, Leavens??] etc., that are used in dealing with ‘normal’ OO programs?
The key problem is the critical role that virtual (and pure virtual) functions play in frameworks
and applications built using them. While virtual functions can also, of course, be used in other
OO programs, the standard approaches to OO specifications in a sense downplay the contribution
that the definitions of the bodies of the virtual functions in the derived classes (which, in the case
of frameworks, would be the code designed by the application developer) make to the overall be-
havior of the system. More precisely, supposef is a virtual function; in effect what the usual
approaches to OO specifications do is to require that the designer of the base class of whichf

1For concreteness we useC++ terminology but the ideas in this paper are language independent; further, we will
often use the terms ‘method’ and ‘function’ interchangeably.

2Formal specifications are often considered, perhaps with some justification, too hard to understand, and even
harder to create, and many designers preferinformal documentation. Nevertheless, it is useful to develop the formal
approach since insights gained in the formal approach can often be used effectively in informal specifications; thus,
for example, loop invariants were developed as part of the work on formal specification and verification of procedural
code and are used extensively in informal documentation. We will briefly return to this point towards the end of the
article.

1

is a member provide asufficiently generalcharacterization of the behavior off , perhaps in the
form of pre- and post-conditions, such that redefinitions (or definitions iff is pure virtual) off
in derived classes satisfy this characterization. Further, and this is what makes these approaches
unsuitable for use with frameworks, theonly knowledgethat clients have regardingf is whatever
is provided by this general characterization; in other words, the differences between the different
definitions of the virtual functions is abstracted away. In the case of frameworks this would mean
thatall applications built on a given frameworkF would be equivalent to each other since the only
differences between these applications is in how they define the various virtual functions of the
abstract base classes ofF ! Clearly we need a new approach, one that will allow us to distinguish
between these applications depending upon the differences in the behaviors implemented by the
various application developers in their respective definitions for the virtual functions.3

To make the discussion more concrete, let us introduce a simple model of frameworks. Although
most real frameworks are too complex to fit this model, the model does include the essential aspects
of frameworks. A frameworkF in our model will consist of a concretecontroller class calledC,
zero or more other concrete classesC1, . . . , Cm, and one or more abstract classes4 A1, . . . , An.
Thecontroller classC will have a distinguished methodrun() which, as the name suggests, will
determine how control flows among the various methods of the various classes ofF . In order to
develop an application using this framework, we must define one or more concrete derived classes
corresponding to each ofA1, . . . , An. LetCAij, j = 1, . . . be the concrete classes corresponding
toAi.5 We will denote byA′ this set of concrete classes; the entire applicationA is thus made up
of F andA′. Finally, in order to use the applicationA, a client will create an objectd that is an
instance of the controller classC, and apply therun function to it:d.run(). We should note that
run() is usually a non-terminating function. *** something about member variables of type ?? in
order to be able to invoke the other functions? Or maybe this can be explained as part of the next
para when explaining the example?

A simple example may make our model clearer: The example is the diagram editor framework
of Horstmann [Horst]. This is a fairly standard, if simplified, framework for editing diagrams
consisting ofnodesandedges. The framework provides the usual functionalities such as tracking
the mouse movement, interpreting mouse clicks, etc. The framework contains two abstract classes,
node andedge. An example virtual function in thenode class,isIn(), allows us to determine if the
current mouse position (which is supplied as a parameter toisIn()) is inside the specified node; the
reason this is a (pure) virtual function is that the procedure for determining whether a given point is
inside a node is something that very much depends on the type of the node in question (such as cir-
cle, smiley-face, etc.), and hence must be defined in the corresponding derived class;6 another is, of
course, thedisplay() function; etc. Theedge class of the framework has similar virtual functions.
The main concrete class of the framework (ourcontrollerclass) is calleddiagramEditor; the main

3This problem will likely show up in any OO system in which there is even just one virtual function; for ways of
dealing with the problem that work in limited situations, but not for general frameworks, see [Stata, Tools].

4A class is abstract if it has one or more pure virtual functions; for simplicity, we will assume that all our virtual
functions arepure.

5If for one or more of the abstract classes we did not have any concrete classes, we would have another framework
–rather than an application– but one that would be more concrete thanF ; we will ignore this possibility here.

6The only aspect of a node that is specified in the base classnode is the coordinates of ananchorpoint of the node.

2

functionality provided by the framework is encoded in therun() function of this class. To build
an actual diagram editor, all the application builder does is to define the concretenode andedge
classes, in particular providing the definitions for the various virtual functions of the corresponding
base classes. The client of this application applies therun() function on adiagramEditor object;
when therun() function termiantes, that also terminates the application.7

Our approach, which we will summarize next, to documenting the behavior of frameworks has
an important property: given an appropriate specification ofF , and an appropriate specification
of A′, the application developer will be able to combine them to obtain the specification ofA.
This ensures that application developers do not have to reanalyze the code ofF everytime a new
application is developed usingF .

The key contribution thatF makes to the applicationA is thecontrol flowprovided by therun()
function. In a sense, this control flow acts as abehavioral skeleton, transferring control to the
appropriate (pure) virtual functions of the various abstract classesA1, . . . , An at appropriate times.
What these functions will do in turn is decided not byF but byA′. Effectively, the application
developer, by providing specific bodies for these functions, hasrefinedthe behavior(al skeleton) of
F to obtainA. How do we specifyF? Let us introduce atracevariableτrun to record the various
calls thatrun makes and the corresponding returns; in other words,τrun is a sequence whose
initial value is the empty sequence, and each of whose elements represents either a call to a virtual
function or a return. Supposef is such a function, and there is a callx.f(. . .) to this function.
The call will be recorded as an element that specifies thatf is being called at this point, and the
values of all the parameters, including the state of the objectx; the return similarly is recorded
as an element that specifies the values returned byf , including the state ofx whenf returns. Of
course, we need some way to tell the call-element from a return-element; we will assume that the
notation used for these elements allows for that. More important is the question, given that it is a
pure virtual function, how can we know what valuesf will return? Indeed we do not know; that
is something that theapplication developerwill decide when he provides the body off (as part
of A′). What we need to do when specifying the behavior ofF is to make sure that we allow for
all possible values thatf might return; unless we do this, each application designer will have to
reanalyze the behavior ofF and that is precisely what we want to avoid. To achieve this, we will
specify the behavior ofF as aninvariant IF involving the state of the objectd (recall that this is
the ‘main’ object used by the client, and therun function is applied to it),andthe traceτrun.

Conclusion: Need to work out details; but there are some other important problems too; we will
mention two: generalize model – not too difficult; work on ‘composing frameworks’ – much more
difficult and interesting.

7This is obviously a simplified description of Horstmann’s framework; in particular we have left out initialization
issues.

3

What is the key contribution thatF makes toA? If we can identify this, and if we can tailor
our approach to the specification ofF so that this aspect ofF plays a central and explicit role
in it, then the approach, as well as informal versions of it, are likely to be useful. As we said at
the start of this article, the fundamental contribution thatF makes to applications built on it is the
flow-of-controlamong the various functions, especially the (pure) virtual functions. How do we
capture this aspect ofF without getting into other internal details ofF? Let us introduce atrace
variableτF that records the various calls to and returns from

Old:

What type of documentation? We can consider three kinds: Informal documentation tailor-
made byF ’s designer for the particular framework; informal butstructureddocumentation in the
style, for instance, of [John92]; formal documentation along the lines of the literature on formal
specification [see, for example, ??]. The first is probably the easiest, at least from the point of view
ofF ’s designer, but it is also the one that is least likely to be useful to the application developer. The
potential dangers of informal documentation arising from possible ambiguities, incompleteness,
etc. are well known, although often ignored.8 In the case of frameworks the potential problems
are even more serious because a misunderstanding, on the part of the application developer, of
the behavior of the framework will make it almost impossible to build a correct application. The
reason for this is the so-called ‘Hollywood principle’ [John97], i.e., which parts of the framework
code and which parts of application code are invoked at what points is decided by the framework
– not by the application code. Thus, while a software developer using a library can simply avoid
using the portions of the library that he doesn’t fully understand, such an option is not available to
an application developer building an application on the frameworkF .

What about the question of difficulty of creating formal specifications and of understanding
them? There is indeed some validity to the claim that many, perhaps most, software designers
find it hard to read, and even harder to create, formal specifications for systems of any degree of
complexity. We believe the right approach is to seek middle ground: First develop an approach
and the underlying formalism thatcould be used to formally specify and verify the behavior of
frameworks and applications built on them; next, use the insights gained by the formalism in
informal9 but precisely structured ways such as proposed by Johnson [John92, John97]. In the
rest of this article we will sketch a possible approach to the precise specifications of the behaviors
of frameworks and applications built on them; in the last paragraph of the article we will briefly
indicate how the main ideas underlying the approach can be used in informal specifications.

8The main reason why these dangers are ignored and why informal documentation is popular is, of course, the not
entirely unfounded concern thatformalspecifications are hard to provide and hard to understand; we will return to this
issue shortly.

9This would be similar to the use of loop invariants in informal specifications of procedural code; the notion of loop
invariant is formal and precise –indeed the idea was developed as a key part of the axiomatic approach to program
verification– but loop invariants, even those stated informally in English rather than in predicate calculus, can be
extremely useful in informal specifications of such code.

4

