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Abstract

Inheritance and polymorphism are key mechanisms of the object-oriented approach that enable
designers to develop systems in an incremental manner. In this paper, we develop techniques for
reasoning incrementally about the behavior of such systems. A derived class designer will be able,
using the proposed approach, to arrive at the richer behavior that polymorphic methods inherited
from the base class will exhibit in the derived class, without reanalyzing the code bodies of these
methods. The approach is illustrated by applying it to a simple case study.

Keywords and phrases: Incremental design, Incremental reasoning, Behavior of polymorphic
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1 Introduction and Motivation

Much of the power of the OO approach derives from the key notions of inheritance and polymor-
phism. Given an existing base class B, a designer can use inheritance to build a new derived class
D that extends B. Some of the methods of B are redefined in D while others are inherited un-
changed. Polymorphism! ensures that not just the methods redefined in D, but also other methods,
these being the polymorphic methods, that invoke the redefined methods exhibit enriched behavior
even though the polymorphic methods themselves are inherited unchanged from B. Inheritance
and polymorphism were two of Simula’s [DN66] fundamental contributions that have revolution-
ized software design. But if we are to be able to exploit the full potential of inheritance and
polymorphism, we must not only be able to build systems incrementally, but also to reason about
their behavior incrementally. Our goal is to investigate the problems involved in such incremental
reasoning and to develop techniques to address them.

What information about the base class B does the designer of the derived class D need in
order to reason incrementally about the behavior of D? Suppose ¢() is a method of B and that
it invokes another method h() of B, and suppose h() is redefined in the derived class D. If ¢() is
applied to an object of type D, the h() that will be invoked during this execution of ¢() will be
the one defined in D (rather than the one in B). In a sense, the polymorphic method provides the

n this paper, by polymorphism we will mean the subtype polymorphism of [CW85], implemented using run-time
dispatch in standard OO languages.



pattern, or template, of the calls to the methods that are intended to be redefined as needed in the
derived class, while the template itself is inherited unchanged. It is for this reason that polymorphic
methods are called template methods in the design patterns literature [GHIJV95], the methods they
invoke being called hook methods. If B includes methods? such as t(), the designer of D not only
needs to reason about the behavior of the methods she defines or redefines in D, but also about the
modified behavior of the polymorphic methods of B resulting from redefinitions of methods that
they invoke. One possibility would be for this designer to reanalyze the behavior of the body of ¢()
appealing, during this reanalysis, to the modified behavior of the redefined methods. While this
would work, it is clearly not an incremental approach. Thus the central question we are interested
in is the following:

What information should we include in the (base-class) specification of the template

method so that a derived class designer can, in a sense, “plug-into” this specification,

the behaviors of the hook methods as defined in the derived class, to arrive at the en-

riched behavior that the template method would exhibit (when applied to instances of the

derived class), without having to reanalyze the body of the template method?
Note that reanalysis of the template method bodies is not only undesirable, it may even be im-
possible if, for example, the template method is part of a base class that was purchased from a
software vendor who, for proprietary reasons, did not provide access to the source code.

We will see the full details of our answer to this question later, but the key is to include, in
its specification, information about which hook methods ¢() invokes, the order it invokes them in,
the arguments passed to the hook methods in these calls, etc. In order to provide this type of
information, we will make use of a trace, denoted by the symbol 7 (or sometimes 7;), to record the
hook method calls that ¢() makes. The specification of ¢(), in particular its post-condition, will give
us information not only about the final values of the member variables when ¢() finishes but also
about the value of 7, i.e., information about the identity of the hook methods ¢() invoked during
its execution, the values of the arguments it passed in these calls, etc. As we will see, the derived
class designer can then plug into this specification, the behavior of the redefined hook methods to
arrive at the corresponding new behavior of ().

There is one important requirement that these redefinitions must satisfy. Suppose that h() is
one of the hook methods t() invokes. In arriving at the specification of #() by analyzing its code
in the base class, we would have made some assumptions about the effects of the call(s) to h()
contained in the body of #(). Typically, these would correspond to the behaviors exhibited by h()
as defined in the base class and (presumably) specified in the base class specification of h(). Unless
the redefinition of h() in the derived class satisfies its base class specification, this analysis of ¢()
may no longer be valid, and we would be forced to reanalyze the body of (). Since we want to
avoid such reanalysis, we will require the redefinition of h() in the derived class to satisfy its base
class specification.

Such a requirement is, in fact, not new to our work. It is the essential idea underlying the
work on behavioral subtyping [Ame91, LW94, DL95]. Informally, a class A is a behavioral subtype®

*In Simula and C++, h() must have been flagged as wirtual, else the h() that is invoked during the execution of
t() would be the one defined in B. In languages like Java and Fiffel, all methods are virtual unless explicitly declared
final. For concreteness, we occasionally use language-specific terminology but our approach is not language-specific.
Note also that we use the terms ‘method’ and ‘function’ interchangeably.

3 Although from a formal point of view class and type are distinct notions, in most standard OO languages, as well
as in much of standard OO practice, the two notions are identified. Hence in this paper we will use the two terms
interchangeably. More importantly, we will only be interested in the notions of behavioral subtype/subclass based on



of another class B if the behavior exhibited by objects that are instances of A is in some sense
consistent with behaviors allowed by the specification of class B, in other words, if the methods of
class A satisfy the specifications of the corresponding methods of B. If A is a behavioral subtype
of B, then any reasoning that we may have performed on a piece of code that includes calls to
methods of B will continue to be valid if these calls are instead dispatched to the corresponding
methods defined in A since in any such reasoning, we could only have appealed to the specifications
of the methods in B and the methods defined in A satisfy these specifications. In our case, we
want to be sure that whatever conclusions we have arrived at about the behavior of the template
method t(), on the basis of the base class specifications of the hook method h(), continue to be
valid in the derived class, so we must require that the derived class definition of h() satisfy its base
class specification.

What is new about our work is that, if this requirement is satisfied, then the “plugging-in”
process we outlined above will allow us to arrive at the richer behavior that () acquires as a result
of the redefinition of h(). Thus our work is in a sense a key extension of the behavioral subtyping
approach: behavioral subtyping ensures that what we have already concluded (from the analysis
of ¢() in the base class) continues to hold following the redefinition of the hook methods in the
derived class; our work allows us to reason about the richer behavior of () resulting from this
redefinition. Since the very raison d’étre of polymorphism is the ability to enrich the behavior of
the polymorphic methods by suitable redefinitions of the hook methods, it is essential that the
reasoning system enable us to reason about this enriched behavior. In Section 6, we will consider
other related work in some detail.

The main contributions of this paper may be summarized as follows:

e It identifies the key problems involved in specifying precisely the behavior of template methods
and hook methods and in arriving at the derived-class behavior of a template method on the
basis of its base class specification.

e It develops an incremental reasoning technique to allow the base class designer to specify the
behavior of the methods of her class, and to allow the derived class designer to plug-in informa-
tion about the hook methods re-defined in the derived class into the bass-class-specifications
of the template methods, to arrive at the derived-class behavior of these methods.

e It illustrates the reasoning technique by applying it to a simple case study.

The rest of the paper is organized as follows: In the next section, we introduce a simple OO
language fragment focused on polymorphism. In the third and fourth sections, we develop our
incremental reasoning systems for specifying and verifying the behaviors of programs written in
this language. The fifth section presents a simple case study to illustrate our reasoning technique.
The sixth section considers related work. The seventh section reiterates the importance of an
incremental reasoning system for dealing with polymorphism, summarizes our approach to such a
system, and discusses possible extensions.

the behaviors of the methods of the classes in question, not in syntactic notions of subtype/subclass based on the
signatures of the methods.



2 Language and System Model

The qualification of a method as virtual in Simula or C++, and the complementary qualification
of a method as final in Java or Eiffel, allow the compiler to determine whether or not run-time
dispatching must be used in dealing with that method. For reasoning about the behavior of the
methods, a more useful characterization is in terms of hook methods and template methods. Given
that these notions were introduced in order to talk about the designs underlying particular OO
systems, it should not be surprising that they are also useful in reasoning about the behavior of
such systems. In this section we introduce a simple language notation and model that characterize
methods in these terms; in the next two sections we will present our reasoning technique in terms
of this model. The (partial) BNF grammar for our simple language appears in Figure 1; ¢ in these
productions denotes the empty string; note also that the symbols “{” and “}” that appear in the
productions are terminal symbols (rather than extended BNF symbols indicating repetition of the
enclosed constructs).

(class) = class (id) { (variables) (constructor) (methods) }
| class (id) : (id) { (variables) (constructor) (methods) }
(variables) = ¢ | (variable) (variables)
(variable) (simple type) (id);
<constructori = (id) ((parlist)) {(stmts)}
)
)

(methods e | (method) (methods)

(method (method kind) (id) ({parlist)) {(stmts)}
method kind) ::= h-method | t-metho t-method | nht-metho

hod kind h hod hod | h hod | nh hod

Figure 1: (Partial) Grammar for simple OO language

The following points should be noted:

1. A base class definition specifies the name of the class, the member variables of the class, the
constructor function, and the methods of the class. A derived class definition, in addition to
the above, also specifies the name of the class it inherits from; note that we consider only
single inheritance.

2. We assume that all member variables are protected, i.e., accessible to the derived class but
not to client code; we also assume that all methods are public. Hence there are no keywords
such as private or protected.

3. Each class has a (single) constructor. The name of the constructor will, as usual, be the
same as the name of the class. When an instance of a derived class is constructed, the base
class constructor is executed first, then the derived class constructor. Classes do not have
destructors.

4. A method may be a hook method (h-method), a template method (t-method), a hook-template
method (ht-method), or a non-hook-template method (nht-method). Run-time dispatching is
done for h-methods and ht-methods but not for t-methods or nht-methods. h-methods and
nht-methods may invoke only nht-methods; t-methods and ht-methods may invoke h-methods,
ht-methods, and nht-methods.

5. Only h-methods and ht-methods may be redefined in a derived class; t- and nht-methods must
be inherited unchanged. When a method is redefined, no changes may be made in the number
and types of parameters it expects.



6. All member variables of a class are of simple types such as integer, boolean, etc. So an
object will not contain references to other objects. The problem with allowing references to
other objects is that this can lead to aliasing which presents some well-known problems when
reasoning about behavior; since these problems are not directly related to inheritance and
polymorphism which is the focus of our work, we feel it is appropriate to eliminate aliasing
from the picture.

7. The parameters (other than the self object) to a method are of simple types and are all passed
by-value-result. Here again allowing for passing by-reference could lead to aliasing which we
wish to avoid.

Our h- and ht-methods are like the virtual / non-final / non-frozen methods of Simula, C++, Java or
Fiffel respectively, while the t- and nht-methods are like non-virtual / final / frozen methods. Simula
and C++ allow non-virtual methods to be redefined in the derived class but such redefinitions have
no effect on base class (template) methods that invoke them; we could have similarly allowed our
nht-methods to be redefined without this having an effect on the t- and ht-methods that invoke them:;
the changes in our reasoning technique to deal with this would be straightforward. Alternately, and
more importantly, we could have treated all methods as ht-methods. While this would be general, it
would also make the reasoning task unnecessarily complex since ht-methods are the most difficult to
reason about. This is similar to a base class designer flagging appropriate methods as final, rather
than leaving, in the name of generality, every method open to redefinition in the derived classes.
One point of terminology: henceforth, we will use the term ‘hook method to mean ‘h-method or
ht-method’, since these are the two kinds of methods in our language that can be used to serve
the role that hook methods are intended to serve; similarly, we will use ‘template method to mean
‘t-method or ht-method’.

Most OO languages allow the hook methods to be abstract in the base class; indeed, in Simula,
a method that is defined in the class cannot be flagged as virtual. For simplicity, we do not allow
such methods in our language fragment but our reasoning technique can deal with such methods,
as well as with Java-type interfaces where all the methods are abstract, in a natural manner. One
other point worth noting is that a compiler for the language could easily ensure that the conditions
on which types of methods may be invoked by a method of a given type are indeed satisfied (or, if
not, produce appropriate error messages), and ensure, in the object code, that run-time dispatching
is used for the appropriate types of methods; this is no different than a Simula or C++ compiler
ensuring that run-time dispatching is used for wvirtual methods but not for non-virtual methods.

We conclude this section with an Account class written in our language notation. This class,
in Figure 2, will serve as the base class for our case study later in the paper where we will demon-
strate the application of our reasoning technique. Account has a single member variable balance
that maintains the current balance in the account; the derived classes we define later will introduce
additional variables. The deposit() and withdraw() operations update balance in the expected man-
ner; these are h-methods and will be redefined in the derived class(es) to provide richer behavior.
The getlnfo() operation returns, as a string, the current balance in the account; note that string()
returns the string representation of the value of its (integer) argument. getinfo() is also an h-method
and will be redefined in the derived class; in fact, it is via this redefinition that we will be able
to see, so to speak, the enriched behaviors of the other operations. It is with an eye toward this
redefinition that we have defined getInfo() to return a result of type string (rather than int).

The template method that will invoke these h-methods is processTransSeq(). This method will
allow us (i.e., the client code) to process a sequence of transaction requests, each request being



class Account {
int balance; // current balance

Account(int b) { balance := b; }
h-method deposit(int amt) { balance := balance + amt; }
h-method withdraw(int amt) { balance := balance — amt; }
h-method string getInfo() { return string(balance); }
t-method processTransSeq( string transs, string results) {

results := ();

while( transs # () )

{ nextReq := NextTrans( transs ); transs := RestTrans( transs );
trans := TransName( nextReq ); amount := Amount( nextReq );

if( trans == "deposit” ) { deposit( amount ); }
if( trans == "withdraw" ) { withdraw( amount ); }
if( trans == “printInfo” ) { results += “<";

results += getlnfo(); results += “>"; } }

Figure 2: Class Account

for one of deposit, withdraw, or printInfo transactions. processTransSeq() has two string arguments,
transs which will contain all the transaction requests, and results via which the method will return
the result. processTransSeq() repeatedly reads the next transaction request from transs and pro-
cesses it. In order to avoid getting involved with issues of string manipulation, we make use of
a set of functions (whose definitions we omit) that allow us to extract individual transaction re-
quests and conveniently manipulate them; thus NextTrans(transs) is the first transaction in transs;
RestTrans(transs) is the string consisting of all the remaining transactions (beyond the first one);
TransName(nextReq), where nextReq is a single transaction request, is the name of the transac-
tion (“deposit”, “withdraw”, or “printInfo”); and Amount(nextReq), is the amount involved in the
transaction (0 if the type of transaction is “getInfo”)*.

If the next transaction requested is “deposit” or “withdraw”, processTransSeq() invokes the
corresponding operation. If the transaction requested is “printInfo”, processTransSeq() calls getInfo()
and appends the returned result to results (enclosing this inside a pair of angle brackets, “<” and
“>" to separate this result from the previous result in results); note that “+=" is the string append
operator. This means that depending on the derived class design, when this transaction is processed,
appropriate information about that particular type of account, as implemented in the (re-)definition
of getInfo() in the derived class, will be appended to results. The key reasoning questions are, what
information do we include in the base class specification of processTransSeq(), and how, from this
specification and the derived class behaviors of the h-methods, can the derived class designer arrive
at this richer behavior of processTransSeq(), as exhibited in the value it returns in results? We will
see the answers to these questions in the case study section.

4Good OO design principles suggest that it would probably make sense to introduce an auxiliary class, Transaction,
into which methods such as NextTrans() can be collected but in the interest of space, we will not do so. Note also
that we have omitted the declarations of local variables, nextReq, trans, and amount, in processTransSeq().



3 Reasoning About the Base Class

Consider a base class B. The specification of B will consist of an invariant I; and specifications for
each of its methods. I, an assertion over the state, i.e., the member variables of B, will be satisfied
at the start and end of execution of each method. Next, consider the various kinds of methods.
Suppose n() is an nht-method. Its specification will be of the usual form:

(pre.n(), post.n()) (1)

where the pre-condition pre.n() is an assertion over the state, and the parameters passed to n() at
the time that n() starts execution, and the post-condition post.n() is an assertion over the state
and the parameters to n() at the time it starts execution and at the time it finishes execution. In
the post-condition, we will use the OCL [WK99] notation z@pre to refer to the value of the variable
x at the time n() starts, and x to refer to its value when n() finishes execution.

The specification of h-methods is similar. The difference between these two types of methods will
show up when we consider derived classes in the next section. For nht-methods, we will essentially
inherit the specification from the base class since these methods cannot be redefined in the derived
class; for h-methods, we will either inherit the base class specification if the method is not redefined,
or come up with an appropriate new specification if the method is redefined.

Next consider a t-method ¢(). We will associate two specifications with ¢(). The first, its
functional- or f-specification, will be similar to (1) and will specify the effect of of ¢() on member
variables of B and the parameters of ¢(). The second, its enrichment- or e-specification, will be for
use by the derived class designer and will include information about invocations of hook methods.
We will use 7, the trace (or sequence), to record this information, and the e-specification will give
us information about the value of 7:

F-specification: (pre.t(), vbpost.t())
E-specification: (epre.t(), epost.t()) (2)

At its start, ¢() has not yet invoked any h- methods so 7 at that point will be the empty sequence ¢.
epost.t() will give us information about the values of the member variables of B, of ¢()’s parameters,
and of course about the value of 7 when ¢() finishes execution. Thus the relation that must hold
between the assertions of the f- and e-specifications is as follows:

epre.t() = (pre.t() A (T =¢))
epost.t() = post.t() (3)

What information concerning calls to hook methods (i.e., h- and ht- methods) that #() makes
should we include in 77 A few examples will help us answer this question. Suppose B consists of
just two methods, ¢() and an h-method h1(). Suppose h1(), as defined in B, makes no changes to
the values of any of the member variables of B. Suppose in a derived class D we introduce a new
(integer) variable i and redefine h1() to increment 7 by 1 (and leave the other member variables,
inherited from B, unchanged). If #() is applied to an instance of D, during this execution of ¢(), calls
to h1() will be dispatched to the one defined in D, and hence this call to ¢() will increment ¢ (which
is a component of the object ¢() is applied to since this object is an instance of D) by an amount
equal to the number of times t() invokes h1(). In order to enable the derived class designer to arrive
at the value that i will be incremented by during such an execution of () without reanalyzing the
body of t(), the base class specification of ¢() would therefore have to include information about
how many times ¢() invokes hook methods.



It is easy to see that this alone is not sufficient in general. Suppose in this example that there
were two h-methods h1() and h2(), and that ¢() invokes each of them several times. Suppose h1()
is redefined in D to increment ¢ by 1 as before, and h2() is redefined to increment i by 2. Then, in
order to know what effect an execution of ¢() (applied to an instance of D) will have on i, we need
to know how many times t() invokes h1() and how many times it invokes h2(), rather than just the
combined total of the two. But this is also insufficient in general. Suppose that two variables i, j
are introduced in D and that while h1(), as before, increments 7 by 1 each time it is invoked, h2()
does not change ¢ but increments j by the current value of 7, i.e., the value that ¢ had at the time
of this invocation of h2(). Then the effect that an execution of ¢() has on j will depend not only
on how many times h1() and h2() are invoked but also on how these invocations are interleaved,
for example, if ¢() were to invoke h1() twice and h2() once during its execution, then during this
execution the value of j would increase by ¢ @pre, or i @pre+ 1, or i @pre+ 2, where as noted earlier
1@pre denotes the value of i at the start of this execution of ¢(), depending respectively on whether
t() invokes h2() before calling h1(), or after the first call to h1(), or after the second call to h1().

Hence we need to be able to provide information about the order of the calls ¢() makes to the
hook methods. This is still insufficient. Suppose, we revise the example so that h2() (as defined
in D) increments j not by ¢ but by (¢ + k) where k is a member variable of B. Now it is quite
possible that ¢() has changed the value of k before calling h2() and that it will change it further
once the call from h2() returns. In this case, to arrive at the effect that #() will have on j without
reanalyzing its body, we will need to know what value ¢() has left in k£ immediately before the call
to h2(). In general, we would need to know the entire ‘state’, i.e., the values of all member variables
of B, before each call ¢() makes to a hook method, and this information will have to be recorded
in 7. It turns out that we also need to record the state immediately following the return from each
call to a hook method; this is because it is possible that the hook method might, according to its
specification, assign one of two different values to one of the member variables (of B) and what ¢()
does following the return from the hook method, including what other hook methods it calls, might
depend on this value; so in order to be able to relate the values in these variables to what these
later calls might do (including, in particular, assigning values to other member variables, some of
which might be introduced in the derived class), we need to record in 7 the state following each
hook method call. Finally, if the hook method receives any additional parameters, we also need
to record the values of these arguments and the results returned by the hook method since, as in
the case of the values of member variables of B, what t() does following the return will, in general,
depend on these results.

To record all this information, we will use the following structure for the sequence 7. Each
element of 7 will represent one call to a hook method and the corresponding return. As noted
earlier, at the start of the execution of ¢(), 7 will be the empty sequence €. Suppose at some point
in this execution the current state, i.e., the values of all member variables of B, is ¢/, and #() invokes
an h-method h(), the values of the additional arguments passed to h() being a@a’; and suppose that
the state when h() returns is o, and the result values of the additional parameters are aa. Then
this call-return will be recorded in 7 as the element:

(h, o', ad, o, aa) (4)
If h() were an ht- rather than an h-method, we would again record the same information in 7 about
a call from () to h(). Note that in this case, during its execution, h() may in turn invoke another
h-method (or ht-method), call it g(). Although this call to g() did arise as a result of the original
call that ¢() made to h(), the call to g() will not be recorded in the trace of ¢() (it will, of course,
be recorded in the trace of h()). If g() were to be redefined in the derived class, the derived class



designer would be able, as we will see in detail in the next section, to arrive incrementally at the
resulting enriched behavior of h() on the basis of the e-specification of h() (and the information
that specification provides about the calls to g() that h() makes), and then arrive at the enriched
behavior of t() on the basis of the e-specification of ¢() and the information it provides about
the calls that ¢() makes to h(). Thus the enrichment in the behavior of ¢() arises because of the
enrichment in the behavior of h(); whether that latter enrichment is due to a redefinition of h()
in the derived class or due to a redefinition of an h-method that h() invokes is not relevant when
reasoning about the enriched behavior of ¢(). In other words, the functioning of ¢() depends only
on what the call to h() does and what enrichment is done to this behavior of A(), not how that
enrichment is achieved, so we only need record the call to hA() in the trace of ¢(), not the calls to
h-methods that A() in turn may make.

So much for the structure of 7. In what form should information about 7 be included in
epost.t(), the e-post-condition of ¢()? One extreme approach would be to explicitly list, in epost.t(),
all the possible values 7 could have when ¢() finishes, i.e., list all the different sequences of hook
method calls that ¢() could have gone through during its execution, and for each, provide complete
information about each component of each element of 7. While this would work, doing it naively
would generally be far too tedious. A better approach is to define suitable functions, the details of
which may depend on the particular application, on 7, and write the specification in terms of these
functions; we will see in our case study.

Further, it is usually not necessary to provide complete information about 7. This depends
in part upon the kind of enrichments the base class designer expects will be made in the derived
classes. If, for example, in the case of the Account class defined in the last section, we do not
expect the hook methods to be redefined in such a way as to depend on the value of balance at
the time that the hook method is invoked, then there is no need to include information about this
in specifying the t-method processTransSeq(). On the flip-side, if the derived class designer does
redefine a hook method in such a way that its enriched behavior critically depends on the value of
balance, she would be unable to reason incrementally about the corresponding enriched behavior
of processTransSeq(). We will return to this point later.

How do we show that () meets its specifications? The main problem has to do with showing
that the body of ¢() meets its e-specification because once we do that, we simply need to check
that the relation specified in (3) holds in order to conclude that ¢() meets its f-specification as well.
When reasoning about the body of ¢(), we use standard axioms and rules for dealing with standard
statements such as assignment and if-else. The one statement for which we need a new rule is call
to h-method (or ht-method), to account for recording on 7, information about the call.

R1. h/ht- Method Call
p = (Iy A\ pre.h(T)[T — aal)
[(Fo’,ad).[ p[r — abl(T), o — o', aa — ad]
A post.h(T)[oc @pre — o', TQpre « ad, T < aa] A I,
Alast(t) = (h,o',ad ,0,aa) |] = ¢

{p}n@); {q}

h() is the method being called, @a being the (additional) arguments for this call. The first
antecedent of R1 requires us to show that if the assertion p which is the pre-condition of the call is
satisfied, then Iy, the invariant of B is satisfied; and the pre-condition pre.h() of the (f-)specification



of the method® is satisfied with the actual arguments (@a) substituting for the formal parameters
(Z); “«” denotes (simultaneous) substitution of all occurrences, in the given assertion, of the
variable(s) on the left side of the “~” by the expression(s) on the right. The second antecedent
requires us to show that we have added a new element to 7 corresponding to this call and that the
state at this point (and the returned values of the arguments) satisfy the post-condition of the call
to h(). last(), as the name suggests, is the last, i.e. the rightmost, element of 7; abl(7) stands for
“all but the last element of 77 and is the sequence obtained from 7 by omitting its last element.
In more detail, in this antecedent, ¢’ denotes the state that existed immediately before the call to
h() and @@ the values of the arguments at that point; so this antecedent requires us to show that:
if the state (and argument values) that existed immediately before the call and the trace, less its
last element, satisfy the assertion that is the pre-condition of the call; and if the post-condition of
the f-specification of h() is satisfied with appropriate substitutions for the before- and after-states
and argument values; and if the class invariant is satisfied; and if the (newly added) last element
of 7 consists of the name of the called method (h), the state (¢’) immediately before the call, the
initial value (ad’) of the arguments, the state (o) immediately after the return from h, and the final
values of the arguments (aa); Then it must be the case that the specified post-condition ¢ of this
call to h() is also satisfied. If these two antecedents can be shown then, by appealing to the rule,
we may derive the specified conclusion.

Although the rule looks rather involved, the complexity is mostly notational. It just captures
the fact that the effect of the call to h() is to modify the values of the member variables of B and
the arguments passed to h() as specified in the (functional) post-condition of h(), and to append an
appropriate element to 7 to represent the call/return. In practice, in reasoning about the body of
t(), we encounter such a call we would typically simply write appropriate pre- and post-conditions
for the call statement and check semi-formally that what these assertions say about the changes in
the values of the member variables of B, the values of the arguments to h(), and the value of 7, are
consistent with what the f-specification of h() says will be the effect of the method on the members
of B and the parameters to h(), and with recording this call/return on 7.

The final type of method is the ht-method. Suppose ht() is such a method. Its specification will
be similar to that of a t-method. In other words, ht() will have f- and e-specifications. The former
specifies the effect of an execution of ht() on the member variables of B and the parameters of ht(),
and the latter provides information also about the calls that ht() makes to hook methods during its
execution. The key difference with t-methods will show up when we consider derived classes. For
t-methods, we will use the e-specification from the base class and arrive at its enriched behavior
(and the corresponding f-specification) by appealing to the richer behavior of the hook methods it
invokes. We will do the same also for ht-methods that are inherited unchanged from the base class.
But if an ht-method is redefined in the derived class, we will come up with appropriate new f- and
e-specifications.

Let us now briefly turn to invariants. In our system, when reasoning about the base class B,
we use a standard approach to dealing with invariants. In other words, for each method f(), the
result we establish for S, the body of f() is:

{ Iy Apre.f() } S{ Ip A post.f() } ()

where [, is the invariant for B. Further, when establishing this result, for dealing with calls in S

SIf h() is an ht-method, it will have, as we will see shortly, both an f- and an e-specification in the same manner
as t-methods. But as far as t() is concerned, only the functional effect of h() is relevant; thus the pre- and post-
assertions referred to in the antecedents of R1 are from h()’s f-specification.
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to other methods (either nht-methods or hook methods) of B, we must check that not only is the
pre-condition of the method being called satisfied but also the invariant; and, conversely, we may
assume, when the method call returns, that not only will the method’s post-condition be satisfied
but also the invariant. Any functions redefined in a derived class D of B will also have to maintain
this invariant (since otherwise, if f() were a t-method and one of the calls in S is dispatched to
such a redefined method, the assumption made in establishing (5) that I, will hold when this call
returns will no longer be valid); we will formalize this requirement in the next section. One type of
method we have not considered so far is constructors. Clearly, we must check that each constructor
¢() of B is such that when it finishes execution, I is satisfied. The final step in reasoning about B
is to ensure that it meets its abstract specification, intended for use by clients of B. This can be
done in a standard fashion, see for example [Jon90]; inheritance and polymorphism do not add any
complexity to these issues, so we will not discuss them further.

We conclude this section with a comment about our trace 7. 7 is like an auziliary variable of
Owicki and Gries [OG76], but there are some differences. In systems such as those of [OG76], we
are allowed, when reasoning about the behavior of a piece of code, to introduce as many auxiliary
variables of whatever types as we wish; we also have to introduce suitable assignment statements
(into the code whose behavior we are reasoning about) to update the values of the auxiliary variables
at appropriate points as we wish. By contrast, in our system, 7 is the only additional variable; its
structure is fixed, as specified in (4); the updates to 7 take place automatically with each call that
t() makes to a hook method; this is represented in our system by the rule R1. Note also that 7 is
not a member variable of the class; it only records the calls that this method #() makes to h- and
ht- methods during one particular execution; thus, 7 is like a local variable of (), initialized, as
specified in (3), to € at the start of this execution. Its purpose is not so much to help reason about
the behavior of the base class B as to provide more information in the e-specification of #() than
can be provided using just the member variables of B. And the purpose of providing this extra
information is to enable us to arrive at the richer behavior of ¢() that results from redefinitions, in a
derived class of B, of one or more of the methods that ¢() invokes, without having to reanalyze the
body of #(). Thus while Owicki-Gries type auxiliary variables are introduced to help in reasoning
about the behavior of the piece of code under consideration, we have introduced 7 to help the
derived class designer to reason incrementally about the behavior of her derived class.

4 Incremental Reasoning About the Derived Class

Let D be a derived class of B. In our skeletal language, as in most standard OO languages,
the designer of D may introduce new member variables in D, define entirely new methods, or
redefine hook methods inherited from the base class; nht-methods and t-methods must be inherited
unchanged. For methods that are newly defined in D, we use the same approach as in B. From the
point of view of incremental reasoning, the key question is how to arrive at the richer behavior of
inherited template methods without reanalyzing the body of the template method. This question
will be the main focus of this section but we start our discussion with the relation between the
invariants for B and D and then consider ways to reason about each type of method.

Let I, I; be the invariants for B, D. Since some of the methods will be inherited unchanged
from B, and since these methods require I, to be satisfied before they start execution, we will
require the following:

Id = Ib (6)
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And in order to ensure that each method in D, including the inherited ones, leave I; satisfied
when they finish execution, we will have to impose further conditions on the specifications for the
individual methods as we will see below. (6) will be part of the behavioral subclassing relation to
be defined shortly.

Suppose n() is an nht-method inherited from B. The (concrete) specification of n(), as a method
of D, will be in terms of the overall state, i.e., the values of the member variables defined in D as
well as those inherited from B. For convenience, in our discussion below, we will use ¢ to denote the
overall state, o | b to denote the portion of the state inherited from B, and o | d the portion defined
in D. Let (pre.B.n(), post.B.n()) be the specification of n() in the base class B. Since the method
is inherited unchanged by D, execution of n() cannot change the value of any variable introduced
in D, i.e., the value of o | d when n() finishes execution will be the same as when it started. Hence,
(pre.D.n(), post.D.n()), the specification of n() in D, follows from its base class specification if the
following conditions are satisfied:

(pre.D.n() A Iz) = pre.B.n()
(post.B.n() A Iy A (pre.D.n() A Ig)[o < o@pre] A (o] d = o | d@pre)) = (post.D.n() A 1) (7)

If pre.D.n() is satisfied when n() is invoked, the relation between the pre-conditions ensures that
pre.B.n() will be satisfied at that point. Hence, given that we have checked (when reasoning about
the base class) that the body of n() satisfies its base class specification, the assertion post. B.n() (and
I) will be satisfied when n() finishes execution. In addition, the clause (o | d = o | d@pre) which
is essentially an abbreviation for a set of clauses that assert, for each member variable introduced
in D, that its value is unchanged from its value at the start of n(), will also be satisfied since these
variables are unaffected by n(). The clause (pre.D.n() A Iz)[oc < oc@Qpre] asserts that the state,
including the values of the variables introduced in D, at the time n() started execution satisfies
the (new) pre-condition and invariant. Note that pre.D.n() may include conditions on the values
of the variables introduced in D. In that case, the assertion (¢ | d = o | d@pre) will allow us to
carry these conditions forward to post.D.n(). This may be of help in showing, as required by (7),
that I; will hold at that point.

Next consider h(), an h-method. If h() is inherited unchanged, we treat it in the same way as
an nht-method. If A() is redefined in D, the derived class designer will have to come up with a
new specification, (pre.D.h(), post.D.h()), and check (or formally verify) that the redefined method
satisfies this specification (as well as I, as required by (5)). In either case, we also need to impose
a requirement of behavioral consistency with the base class specification (pre.B.h(), post.B.h()) of
h() since otherwise any reasoning that we have done (concerning the behavior template methods
that invoke h()) on the basis of that specification may no longer be valid.

Definition: The derived class D is a behavioral subclass of its base class B if the following conditions
are satisfied:

Ig=1
If h() is an h-method or an ht-method, then
(pre.B.h() A\ I) = (pre.D.h() A I4)

(post.D.h() A 1) = post.B.h() (8)

We require, as part of our reasoning system, that D be a behavioral subclass® of B.

5(8) is very similar to behavioral subtyping [LW93, LW94]; nevertheless we use a different term since behavioral
subtyping is a relation that involves the abstract specifications of two classes while ours is a relation between the
concrete specifications of a base class and its derived class.
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Consider a call to h() in a t-method, ¢(). In D, this call will be dispatched to the h() defined in
D; so when the call returns, (post.D.h() A I5) will be satisfied and hence, by the relation between
post-conditions and invariants required by (8), so will (post.B.h() A I) which is what we must have
assumed when reasoning about ¢() in the base class. Thus behavioral subclassing ensures that the
reasoning we have performed in the base class about a method that calls h() continues to be valid
although h() has been redefined in the derived class. Note also that in order for post.D.h() to be
satisfied when D.h() finishes execution, (pre.D.h() A I;) must have been satisfied at the time of the
call to h(); the relation required by (8) between the pre-conditions and invariants, given that when
reasoning in the base class about the calls in ¢() to k() we must have checked that (pre.B.h() A I}) is
satisfied immediately prior to each of these calls, ensures this. It is worth noting that (8) imposes
severe constraints on the derived class. In particular, the relation that (8) requires between the
base class pre-condition & invariant and the derived class pre-condition & invariant means that
the derived-class pre-condition of h() cannot impose any requirements on the values of member
variables that may be introduced in D. Nevertheless, by using the @pre notation to refer to the
values of variables at the start of h(), we will be able, in post.D.h(), to specify how D.h() changes
the values of variables introduced in D; and the rule R2 will allow us to appeal to this information
to arrive at the effect that ¢() has on these variables. In more detail, we will look at each element
in the trace 7 of ¢(), and add, to the base-class specification of ¢(), the assertion that the states and
argument values recorded in this particular element of 7 satisfies the derived class post-condition
of the h-method invoked. Suppose the k" element of 7 is (h, o1, @al, 02, @a2), then:

a. We can assert post.D.h() with o1 and 02 playing the roles respectively of the state immediately
before the call and the state immediately after the call, and @al and @a2 being the argument
values before and after the call.

b. We can assert that the D-portion of the state can change only due to calls to h/ht-methods
since t() was defined as part of the base class so its code cannot refer to this portion of the
state. Thus if op is the ‘final state’ of the previous element of 7, i.e., is the fourth component
of the (k — 1) element of 7, then we must have (op|d = 1] d); similarly if on is the ‘initial
state’ of the next element of 7, i.e., is the second component of the (k + 1)*! element of T,
then (02 |d =on|d).

Rule R2 below formalizes these ideas. The following functions and predicates on traces, trace
elements and their components, etc., will be useful in expressing this formalization:

|7]: Length of 7, i.e., number of elements in 7.

Tlk]: The k** element of 7.

7[k].hm: The identity of the hook method called in the k' element of 7.

7lk].is:  The initial state, i.e., the state just before this call.

T[k].fs:  The final state, i.e., the state just after the method returns.

Tlk].ia:  The values of the arguments passed in this call.

Tlk].fa:  The values of the arguments when the method returns.

Tlb: Same as 7 except that in each ‘state’ component of each element of 7, we only retain the

base-class portion of the state; similarly 7 | d is obtained from 7 by retaining, in each ‘state’
component of each element of 7, only the portion of the state introduced in the derived class.
Naturally, | b and | d operations are applicable only to traces at the derived class level.
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nebe(oi, T,0f): nebe() denotes “no change between calls”; i.e., the D-portion of the state does not
change between calls to hook methods. oi is the initial state, i.e., the state at the start of ¢(),
and of the final state, i.e., the state at the end of ¢(). More formally:

nebe(oi, T,0f ) =

((I7] = 0) = (oild = of Ld))

A((T] >0) = ((oild=T[1].is|d) A (of | d = T[|T|].fs] d) A

(Vi (L <j<I|r]) = (rll-fsld =75+ 1].isLd))))

Since o1 is the state that ¢() starts in, the | d portion of the state just before the first call
recorded in 7 will be same as the oi | d since the portion of ¢() that precedes this call cannot
have modified it. Similarly, the | d portion of the state when #() finishes execution will be
same as the | d portion of the state immediately after the last call recorded in 7. This explains
the first two clauses in the case that (|7| > 0). The third clause states that the | d portion
of the ‘initial state’ recorded in the (j + 1) call is the same as the | d of the ‘final state’
recorded in the j call. If (|7| = 0), the | d portion of the final state when ¢() finishes is the
same as | d of the state at the start of ¢() since no hook methods are invoked.

ceds(T,k): ceds() denotes “change (in state) recorded in the k" element of 7 is consistent with
derived-class specification (of the hook method)”; i.e., the states and argument values recorded
in the k' element of 7 is consistent with the f-specification, in the derived class, of the hook
method invoked in this element. More formally:

ceds(t, k) = (post.D.1[k].hm()[Zz@pre < T[k].ia, o @pre — Tk].1s,
Tz — 7(k].fa, 0 «— T[k].fs]
A Iglo — T[k].fs])

ceds() asserts that the initial and final values of the arguments and initial and final states
recorded in 7[k] satisfy the conditions that the derived class f-post-condition imposes on the
initial and final values of its parameters and the initial and final states when the method be-
gins and ends. This is what will allow us to arrive at the richer behavior of ¢() by appealing to
the richer behavior of the redefined 7[k].hm as expressed in its derived class f-post-condition.

With these preliminaries out of the way, we can present the main rule R2 that makes it possible
to reason incrementally in our system. The rule requires us to establish the specified antecedents
R2. Enrichment Rule
(epre.D.t() A 15) = epre.B.t()
[epost. B.t()[T < T]b, 0 < o | b, 0 @pre «+ o @pre| b
A (pre.D.t() A Ig)[o < o @pre]
A ncbe(o @pre,7,0) A (Vk = (1 < k <|7|) :: ceds(T,k))] = (Ig A epost.D.t())

(epre.D.t(), epost.D.t())

in order to conclude the derived-class e-specification for #(). The first antecedent requires us to
show that if a state satisfies the derived-class pre-condition of ¢(), it also satisfies the base-class
pre-condition. This is needed because when reasoning, in the base class, about what () does when
it starts, we had assumed that the state satisfies the base-class pre-condition; so unless this is true,
that reasoning may no longer be valid. In the base class reasoning, we also assumed that the initial
state satisfies Ip; this will still be the case because in the derived class we may assume that the
state will satisfy I; at the start of ¢(), and hence, given the requirement of behavioral subclassing,
the state will also satisfy I.
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In the second antecedent, o @pre and o denote the complete (i.e., both base- and derived-class
portions) initial and final states when ¢() begins and ends execution. Since epost.B.t() refers only
to the base class portion of the state, we replace o and o@pre in epost.B.t() by the | b portion of
these states. Similarly, we replace 7 in epost.B.t() by 7] b. In practice, these substitutions tend to
require no real effort. Thus, for example, suppose z is a member variable of B and that epost.B.t()
contains a clause (x = x@pre + 10); since x is a component of both ¢ and o | b (and z@pre a
component of o @pre and o @pre | b), nothing needs to be done, as far as this clause is concerned,
to effect the substitutions. We will see this in practice in the case study later in the paper.

Thus this antecedent requires us, given the base class e-post-condition of ¢(), given that the
derived class portion of the state doesn’t change between calls to hook methods, and given that
following each call recorded on 7, the state and argument values satisfy the derived class post-
condition of the method called, to show that the derived-class invariant and the derived class
e-post-condition of t() are satisfied. As explained earlier, it is the assumption that the state and
argument values following calls to the h/ht-methods satisfy the richer derived class specification of
these methods, that allows us to arrive at a correspondingly richer post-condition epost.D.t() for
t() without having to re-analyze its body.

It maybe useful to summarize our approach for reasoning about the derived class D: We first
come up with the invariant I; for the class, the e-specification and f-specification for each t-method
and each ht-method of the class, and the specification for each h-method and each nht-method. Next
we check that D is a behavioral subclass of B, i.e., the requirements specified in (8) are satisfied.
Next, we have to verify that each method satisfies its specification(s). For each method that is
newly defined or is redefined in D, we use the same approach as in the base class; for the redefined
methods, we also check (or have checked) that the relation, imposed by the behavioral subclassing
requirement, between the method’s derived class specification and its base class specification. For
non-template methods inherited from the base class, as we saw in (7), the specification is the same
as in the base class with the addition, in the post-condition of the method, that the method does not
change the values of member variables newly introduced in D. For template methods, and this is
the focus of our paper, we use the rule R2 to (arrive at and) justify the richer e-specification for the
method, and in turn use this richer e-specification to justify a correspondingly richer f-specification
(as required by (3)).

One point is worth stressing: if h() is an ht-method that is redefined in D, the behavioral
subclassing requirement has to do with its f-specification, not its e-specification. This is because, so
long as the (functional) behavior of the redefined h() is consistent with its base class f-specification,
the reasoning that we have done in the base class about the behavior of any (template) methods
that invoke A() will remain valid. The point is that the e-specification for i() in the base class would
have allowed us to arrive (using rule R2) at its richer behavior if we had inherited h() unchanged
but had redefined some of the hook methods it invokes; if instead we redefine h() in D, then its
base class e-specification is of no particular relevance in the derived class.

One important question that any axiomatic system has to address is that of soundness and
(relative) completeness with respect to the operational model of the programming language/system.
Because of space limitations, we will consider this question only briefly. The main question concerns
the behavior of template methods since our approach to the other methods is standard. And here,
one problem in establishing soundness and completeness of our system is that the trace 7 that plays
a central role in our axiomatic system is not part of standard operational models of OO languages;
as a result, we cannot talk about the validity of our e-specifications with respect to our model.
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This may seem an advantage since we would then have to worry only about the f-specifications.
But the problem is that in our approach, we first establish the e-specification (with rules R1, R2
being the key ones for dealing with the trace information), and then establish the f-specification by
showing that the conditions specified in (3) are satisfied. Hence we cannot establish the validity of
an f-specification without first showing the validity of the e-specification that the f-specification is
based on. The solution is to introduce traces also into the operational model”. As in the axiomatic
system, the trace in the model would record calls to and returns from hook methods; each such
call-return would record the name of the method called, the argument values and state at the time
of the call, and the argument values and state at the time of the return. With this change, it is
straightforward to show that results established using our reasoning system in particular using rule
R1, about a base class are valid in the model.

Results about a derived class, in particular those established using R2, are more difficult. One
possible approach would be as follows: Consider the proof outline (in the base class) that established
the original e-specification of the template method in question. Treat the method as a member of
the derived class and develop a new proof outline; this new outline is obtained by adding, to each
assertion in the original proof outline, the clauses ncbe() and ceds() (for all & < |7]). These clauses
must hold at all points in this method (considered as a member of the derived class) for the same
reason as before, that is, the member variables introduced in the derived class can change only due
to the calls to the hook methods. Thus this new proof outline justifies the enriched e-post-condition
that appears in R2, and hence shows that any result derived by using that rule® must be valid in
the model.

So much for soundness. Now consider (relative) completeness. To show completeness, we have
to show that the strongest post-condition for any method, i.e., the assertion that is satisfied only
by states that can operationally arise when method finishes execution, can be established. Here
again the argument is best presented in terms of proof outlines. Consider the base class. For
each statement in the method, we simply use the strongest post-condition corresponding to the
statement and its pre-condition. Then we can inductively argue that the resulting post-condition
is indeed the strongest possible one for the entire method. Consider now a template method and
its proof outline in the base class. From this, derive a new proof outline for the method in the
derived class by adding the ncbe() and ceds() (for all k& < |7]) clauses as before to each assertion
in the base-class proof outline. Again we can argue inductively that the assertion specified in this
proof outline at each point in the method is indeed the strongest possible assertion at that point;
and hence that, using R2, we will be able to establish the strongest possible post-condition that
applies, in the derived class, to this method.

5 Case Study

The base class for our case study is the Account class defined in Section 2, and we will consider two
derived classes of Account. We start with, in Figure 3, the specifications for the constructor and
the hook methods of Account. The specification of the constructor states that the balance in the
constructed account is initialized to the given value. The specifications for deposit() and withdraw()

"This is not to suggest that anything is to be gained by introducing traces into actual implementations of OO
languages. Our only purpose in introducing traces into the operational model is to bring the model closer to the
reasoning system so that soundness and completeness arguments can be more easily developed. When defining a new
model in this manner, we must of course ensure that as far as possible values that variables that already exist in the
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pre.Account(b) = (b > 0)
post.Account(b) = (balance = b)

pre.Account.deposit(x) = (x > 0)
post.Account.deposit(x) = ((x = x@pre) A (balance = balance@pre + x))

pre.Account.withdraw(x) = (x > 0)
post.Account.withdraw(x) = ((x = x@pre) A (balance = balance@pre — x))

pre.Account.getInfo() = (true)
post.Account.getInfo() = ((balance = balance@pre) A (string(balance) < result)) 9)

Figure 3: Specification of Account class

tell us that these methods do not change the value of the parameter x, and that they update balance
appropriately.

The specification of getInfo() is more interesting. Note first that in this post-condition we use
result to refer to the value returned by this function [Mey97]. Also we assume that the string(x)
represents the string version of x; and “=<” is the prefiz relation over strings. Thus this specification
tells us that getInfo() leaves balance unchanged, and that the string representation of the balance
is a prefix of the result returned. The result returned by Account.getinfo() is in fact equal to
this string, but the specification allows the derived class designer to redefine getlnfo() to return
additional information beyond the balance in the account (while still satisfying the behavioral
subclassing requirement). If our specification instead stated that the result returned by getlnfo()
was equal to balance, the derived class designer would be prevented, by behavioral subclassing, from
implementing such enrichments. By the same token, the specifications of deposit() and withdraw()
forbid the redefinition of these methods to, say, impose a transaction fee by deducting an additional
amount from the balance. It is straightforward to show that the bodies of the hook methods of the
Account class, as defined in Fig. 2, do satisfy the specifications in (9).

Next consider the template method processTransSeq(). It may be useful to briefly summarize
the operational behavior of the code, which appears in Figure 2, of this method: The method
receives a sequence of transaction requests in its first parameter transs; it extracts each transaction
from transs, and invokes the corresponding method; if the transaction is printinfo, it appends to its
second parameter results (whose initial value is the empty string) the result returned by the call to
getInfo; and terminates after processing all the transactions in transs.

In the e-specification of this method in Fig. 4, we use a number of auxiliary functions and
predicates; we start by defining these and then will discuss the specification. In the definitions
below, we use tr to denote a transaction request and trs a sequence of such requests; ai will denote
a string consisting of account information in the format used by processTrans() for outputting, and
ais will denote a sequence of such strings. 7, as usual, will denote the trace of hook-method calls:

IsTransReq(tr): This predicate is true if ¢r is a ‘legitimate’ transaction request, i.e., specifies a
transaction (deposit, withdraw, or printinfo), and if the transaction is deposit or withdraw,
specifies a positive amount.

IsTransReqSeq(trs): true if trs is a sequence of legitimate transaction requests.

original model are concerned, the new model agrees with the original model.
8We have ignored invariants in this argument but they can be added in a straightforward manner.
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|trs|: The length of, i.e. the number of, requests in trs.
trs[j]: The j*" request in trs.
trs[i: j]: The subsequence of trs from the it" request to the ;.

Trans(tr): The operation (deposit, withdraw, or getInfo) involved in this request; note that if the
request is for printlnfo, the corresponding operation is getlnfo().

trs\{deposit}: The subsequence of trs that includes only those transaction requests for which the
transaction involved in the request is deposit; similarly for other transactions.

Amits(trs): The sequence consisting of just the amounts involved in the transactions in trs (the
amount in the case of a printInfo request being taken to be 0). We will find it useful to refer
to the sequence of amounts involved in, say, just the deposit transactions; this may be written
as Amts(trs\{deposit}).

IRNo(trs, k): This value is k' if Trans(trs[k']) is getlnfo, and |¢rs[1 : k']\{getInfo}| is k; in other
words, trs[k’] is a printInfo request and is the kth such request.

Acclnfo(ai): This predicate is true if ai is a legitimate account-information string; i.e., it consists of
the character “<”, followed by the balance in the account, additional information (this will
depend on how getinfo() is redefined in the derived class), and finally “>”.

AccInfoSeq(ais): This predicate is true if ais is a sequence of legitimate account-information strings.
ais[k]: The k*" account-information string in ais.
Balance(ai): The balance information in the account-info string a.

Info(ai): The entire information, including balance, in the account-info string ai. In the case of the
base class, this will be identical to Balance(asi).

We should also note that when discussing our reasoning system in the preceding sections, we did
not consider the case of a hook method such as getInfo() returning an explicit result. The record,
in the trace, of a call to such a method will have to include the result returned by the method.
If the k*" element of 7 records such a call/return, we will use the notation 7[k].7e to refer to the
result returned by this call.

In the specification (10), we have numbered some of the lines individually as (10.1), (10.2),
etc., for easy reference in the discussion. The pre-condition asserts that the hook method call
trace is empty, as is results, and that transs is a legitimate sequence of transaction requests. Let
us now consider the e-post-condition. (10.1) asserts that the value of transs is empty, i.e., when
process TransSeq() finishes, all the transaction requests have been processed. (10.2) asserts that the
final balance in the account is equal to the starting balance, plus the amounts deposited into the
account, less the sum of the amounts withdrawn, in the various transactions. This follows from the
fact that the starting balance in the account is balance@pre, and from the fact that when process-
ing a deposit/ withdraw/ printinfo transaction, processTransSeq() invokes the deposit()/ withdraw()/
getInfo() method which means, given the specification (9) that the deposit() and withdraw() meth-
ods update the balance by the amount deposited or withdrawn and getInfo() leaves the balance
unchanged, that the final balance will be as specified in (10.2).
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epre.Account.process TransSeq(transs, results) = (10)
[(T =€) A (results = €) A (IsTransReqSeq(transs))]

epost.Account.process TransSeq(transs, results) =

[(transs =€) A (10.1)
(balance = (balance @pre + >~ Amts(transs@pre\{deposit}) —
>~ Amits(transs @pre\{withdraw}))) A (10.2)
(|| = |[transs@pre|) A
(VE: (1 <k <|7]) :: (r[k].hm = Trans(transs@prelk]))) A (10.3)
(|results| = |transs@pre\{printinfo}|) A AccInfoSeq(results) A (10.4)
(Vk : (1 <k < |results|) : (' = IRNo(transs@pre, k)) ::
(Info(results[k]) = T[k'].Te) A (10.5)
(Balance(results[k]) = (balance@pre + > Amts(transs@pre[l: k" — 1]\{deposit}) —
>~ Amits(transs@pre[1: k' — 1]\{withdraw})))) (10.6)

Figure 4: Specification of Account.processTransSeq()

The next few clauses concern the trace; they assert that the length of 7, i.e., the number of hook-
method-calls is equal to the number of transactions requested; and that the particular hook method
called (7[k].hm) is the one appropriate for the transaction. Note, however, that no information is
provided about the value of the argument passed in the hook method calls (in the calls to deposit()
and withdraw()). This information could have been provided by including the clause:

((T[k].hm = deposit) V (T[k].hm = withdraw)) = (7[k].ia = Amts(transs@pre)[k])

This simply asserts that if the hook method whose call is recorded in the k™" element of 7 is
deposit() or withdraw(), the value of the argument passed to the method is the same as the value
supplied in the corresponding element of the (initial) sequence of transaction requests. In addition,
information about the state (the value of balance) at the time of these calls is also not provided in
(10); again, this information could have been provided with a similar clause. The fact that these
items of information about these hook method calls are not included means that the base class
designer does not expect enrichments that would depend on the values of the arguments passed to
the hook methods or on the (base class) state at the time of the calls to the hook methods.

The remaining clauses of (10) give us information about the output that processTransSeq() will
produce. (10.4) says that there will be as many elements in the final value of results as the number of
printInfo transaction requests, and that each of these elements will be an account-information string.
The remaining clauses are concerned with the individual elements of results; since the k' element of
results depends upon the portion of transs@pre that precedes the k" printlnfo request in transs @pre,
i.e., on transs@pre[l : (IRNo(transs@pre, k) — 1)], we have introduced k' as an abbreviation for
IRNo(transs@pre, k). (10.5) asserts that the information in this element of results is equal to the
result returned by the corresponding call to getInfo() recorded in 7; this clause is important since
it will allow the derived class designer to establish the enriched behavior of processTransSeq() in
the derived class, in particular the enriched output that will result from a redefinition of getlnfo().
The final clause (10.6) asserts that the balance information in the elements of results correspond to
the actual balance in the account at the time that the information was added to results.

Showing that the body of processTransSeq() satisfies this specification is, of course, more involved
than showing that methods like deposit() satisfy their specifications. This is partly due to the fact
that we have to reason about the trace and partly due to the complexity of processTransSeq(). Thus,
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for example, dealing with the loop in processTransSeq() would require us to introduce a suitable
invariant (which would be very similar to the e-post-condition). We leave the formal statement of
the loop invariant and the derivation of the e-post-condition to the interested reader.

The f-specification of processTransSeq() is easily stated:

pre.Account.process TransSeq(transs, results) = (11)
[(results = ) A (IsTransReqSeq(transs))]

post.Account.process TransSeq(transs, results) =
[(transs = &) A (11.1)
(|results| = |transs@pre\{printinfo}|) A AccInfoSeq(results) A (11.2)
(VEk : (1 < k < |results|) : (K" = IRNo(transs@pre, k)) ::
(Balance(results[k]) = (balance@pre + > Amts(transs@pre[l: k" — 1]\{deposit}) —

> Amits(transs@pre[l: k' — 1]\{withdraw}))) A (11.3)
(balance = (balance @pre 4+ >~ Amts(transs @pre\{deposit}) —
> Amts(transs@pre\{withdraw})))] (11.4)

This states that the balance is appropriately updated corresponding to the transactions specified
in transs@pre and the balance values in the results recorded in results represent the balance in the
account following the completion of all earlier transactions. It is straightforward to check that the
required relation, (2), between the e- and f-specifications is satisfied.

Now consider a derived class. TCAccount in Figure 5 enriches the behavior of the Account
class by maintaining a count of the transactions, i.e., the number of deposits and withdrawals
made on the account; the count is maintained in the variable tCount. tCount is initialized to 0 in

class TCAccount extends Account {
protected int tCount;
// current transaction count
TCAccount(int b) { tCount :=0; }
public void deposit(int amt)
{ balance := balance + amt; tCount++;}
public void withdraw(int amt)
{ balance := balance — amt; tCount++;}
public string getInfo()
{res := string(balance); res += “trans count: "; res += string(tCount); return(res);}

Figure 5: Derived class TCAccount

the constructor. deposit() and withdraw() have been redefined to increment tCount in addition to
updating balance appropriately. getinfo() has been redefined so that the result it returns contains
not only the balance in the account, but also the tCount.

The specifications for these redefined methods appear in Figure 6. These are similar to those in
Figure 3; the only changes are that in the post-conditions of deposit() and withdraw(), we specify how
they increment tCount, and in the post-condition of getlnfo(), we specify that the result returned
consists of the (string representation of the) balance in the account, followed by the string “trans
count: ", followed by (the string representation of the) transaction count; note that “°” in the
last line of (12) denotes string concatenation. It is easy to check that the methods defined in
Figure 5 satisfy these specifications and to check that the specifications in (12) and (9) meet the
behavioral subclassing requirements since the pre-conditions in (12) are identical to those in (9)
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pre.TCAccount(b) = (b > 0)
post. TCAccount(b) = ((balance = b) A (tCount = 0))

pre.TCAccount.deposit(x) = (x > 0)
post. TCAccount.deposit(x) = ((x = x@pre) A (balance = balance @pre 4 x) A
(tCount = tCount@pre + 1))

pre.TCAccount.withdraw(x) = (x > 0)
post. TCAccount.withdraw(x) = ((x = x@pre) A (balance = balance @pre — x) A
(tCount = tCount@pre + 1))

pre.TCAccount.getInfo() = (true)
post. TCAccount.getInfo() = ((balance = balance@pre) A (tCount = tCount@pre) A
(result = (string(balance) ~ “trans count: " ~ string(tCount)))) (12)

Figure 6: Specification of TCAccount class

and the post-conditions in (12) imply the corresponding post-conditions in (9)?.

Let us now turn to the essential point of our reasoning task, that of incrementally arriving at
the richer behavior of TCAccount.processTransSeq() due to the richer behavior of the methods it
invokes. The key clause in the base class (e-)specification of processTransSeq() that allows such
enrichment is (10.5):

(Info(results[k]) = T[k'].re)

First recall, according to the relation between k and k' in (10), that 7[k’] records the K call to
getinfo(). Now, post. TCAccount.getInfo() specified in (12) gives us more information about the result
returned by this call, in other words about the value of 7[k].re, than does post.Account.getInfo()
specified in (9). Specifically, whereas (9) states that the result returned by getlnfo() will include
the string representation of the balance in the account as a prefix, (12) states what the rest of the
result returned by (TCAccount.)getInfo() consists of: the string "trans count:” followed by the string
representation of the value of tCount in the account.

What will this value be? According to the specification (12), TCAccount.deposit() and TCAc-
count.withdraw() both increment tCount by 1. So the value that (TCAccount.)getInfo() reports for
tCount in the result it returns will depend on the number of calls made so far to these methods. And
since these are all hook methods, calls to these methods are all recorded on 7. We first introduce
a couple of additional auxiliary functions and predicates which will be of use in stating the richer
behavior of processTransSeq():

TCAccInfo(ai): This predicate is true if ai is a legitimate TCAccount-information string; i.e., it
consists of “<”, the balance in the account, the string “trans count: ", an integer (being the
value of the transaction count in the account), and finally, “>".

TCAccInfoSeq(ais): This is true if ais is a sequence of legitimate TCAccount-information strings.

TransCount(tcai): The trans count value recorded in the TCAccount-information string ai.

The specification of TCAccount.processTransSeq() appears in Figure 7. The pre-condition is the
same as in the base class-specification. (13.1) is simply the post-condition from the base class-
specification; (13.2) and (13.3) specify the enrichment. (13.2) should be compared with the (second

9The invariants for both Account and TCAccount are true.

21



epre. TCAccount.process TransSeq(transs, results) =

[(T =€) A (results = €) A (IsTransReqSeq(transs))] (13)

epost. TCAccount.process TransSeq(transs, results) =
[ post.Account.process TransSeq(transs, results) A (13.1)
TCAccInfoSeq(results) A (13.2)

(Vk : (1 < k < |results|) : (' = IRNo(transs@pre, k)) ::
(TransCount(results[k]) =
(tCount@pre + |transs@pre[1: k' — 1]\{deposit, withdraw}|)) ) (13.3)

Figure 7: Specification of TCAccount.processTransSeq()

conjunct of) (10.4); whereas the latter tells us that results is a sequence of strings each of which
consists of “<”, followed by the balance in the account, followed (possibly) by some additional
information, followed by “>”, (13.2) also tells us that this additional information will be the string
“trans count:” followed by (the string representation of) the value of tCount in the account at the
time this was added to results. And (13.3) tells us that this value will be equal to the value of tCount
at the start of TCAccount.processTransSeq(), plus the number of deposit and withdraw transaction
requests preceding the printInfo request that led to this TCAccount-information string being added
to results.

Let us now see how we can, by using our Enrichment Rule R2, establish (13), given the base
class e-specification (10) and the derived class behaviors of the hook methods specified in (12). The
first antecedent of R2 is immediate since the e-pre-conditions for the base and derived classes are
identical. Now consider the second antecedent. Note first that the various clauses ((10.1) through
(10.6)) in epost.Account.process TransSeq(transs, results) are such that the substitutions —7 by 7| b,
etc.— specified in the first clause of the left side of this antecedent have no effect since balance is a
member of the base class (hence also of the derived class), transs and results are arguments of the
method (hence are the same in the base and derived classes), and 7[k].hm (the identity of the hook
method invoked in the k' element of 7) and 7[k].re (the result returned by this call) are the same
in the base and derived classes. Therefore, (13.1) will be satisfied (given the first clause of the left
side of the second antecedent of R2). (13.2) may be established as follows: From the second clause
of (10.4) we know that each element of results is an account-information string; and from (10.5) we
know that the information in the k** element of results is the same as the result returned by k"
call to getInfo(); (13.2) then follows from what post. TCAccount.getinfo() (defined in (12)) tells us
about the result returned by TCAccount.getInfo().

Next consider (13.3). Appealing again to (10.5), we can conclude that TransCount(results[k])
is equal to TransCount(T[k'].re) where k' is IRNo(transs@pre, k). The specification (12) of TCAc-
count.getInfo() tells us that the transaction count in the result returned by this method is the
same as the value of tCount at the time the method was called; i.e., equal to the value of tCount
in the state 7[k'].is. The clause ncbe() in the left side of the second antecedent of R2 tells us,
given that tCount is introduced in the derived class TCAccount, that the value of this variable as
recorded in the “initial state” (the .is component) of each element of 7 is the same as its value
in the “final state” (the .fs component) of the previous element; the clause ceds() in the same
antecedent tells us that the states as recorded in the .is and .fs components of each element of 7
satisfy the post-condition, specified in (12), of the corresponding hook method. Since, according

o (12), TCAccount.deposit() and TCAccount.withdraw() each increment tCount by 1, and TCAc-
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count.getInfo() leaves it unchanged, we can then conclude that the transaction count in the result
returned by the call to getlnfo() recorded in the k' element of 7 is equal to the value of tCount at
the start of processTransSeq() plus the number of calls to deposit()/withdraw() recorded in the first
(k'—1) elements of 7. This, combined with (10.3), lets us conclude that (13.3) must be satisfied.

And finally, consider the f-specification of TCAccount.process TransSeq(); we express this in terms
of the pre- and post-conditions of the f-specification of Account.processTransSeq(), spelling out only
the additional clauses:

pre.TCAccount.process TransSeq(transs, results) = (14)
pre.Account.process TransSeq(transs, results)

post. TCAccount.process TransSeq(transs, results) =
[post.Account.processTransSeq(transs, results) A (14.1)
TCAccInfoSeq(results) A (14.2)
(VEk : (1 < k < |results|) : (k' = IRNo(transs@pre, k)) ::
(TransCount(results[k]) =
(tCount@pre + |transs@pre[l: k" — 1]\ {deposit, withdraw}|)) ) | (14.3)

Again it is straightforward to check that the relation (2) holds between the e-specification (13) and
the f-specification.

Note that the clause (14.1) follows from behavioral subclassing considerations, given that (12)
is consistent with (9) If all we were interested in was to show that TCAccount.processTransSeq()
behaves in a way consistent with the (f-)specification of Account.processTransSeq(), we would not
need the formalism developed in this paper. But, of course, the whole point of defining the derived
class, in particular of redefining the hook methods in the TCAccount class, was to enrich the
behavior of the template method processTransSeq() as specified in (14.2) and (14.3). And it is
this enriched behavior that our formalism allows us to establish. And in establishing this enriched
behavior, we did not have to reanalyze the behavior of the code of this method; instead, we plugged
in the richer behavior of the derived class hook methods into the e-specification, established during
the base-class analysis, of the template method.

We will conclude this section with two remarks. First, suppose we defined a variation of TCAc-
count in which only large transactions, i.e., those in which the amount involved is greater than 5000
are counted. Then we cannot reason about the resulting richer behavior of processTransSeq() on
the basis of the specification (10) since that specification does not tell us what argument values
process TransSeq() passes to the hook methods it calls. It would have been easy enough to include
this information in (10); it is upto the base class designer to anticipate what kinds of enrichments
might be implemented in the derived classes and include the appropriate information in the e-
specifications. Being too liberal here, that is allowing for all kinds of enrichments, would lead to
very complex e-specifications; being too conservative will make it impossible to reason incremen-
tally about enrichments that were not anticipated. This is a trade-off between flexibility of design
versus complexity of specs.

Our second remark has to do with the nature of our e-specifications. E-specifications are
most conveniently expressed, as in the case of Account.processTransSeq(), by first defining some
useful functions on traces that, in a sense, mimic the behavioral pattern exhibited by the template
method, and then writing down the e-specification of the method in terms of these functions. For
more complex situations, we believe it would be useful to introduce specialized notation for use
in writing such specifications, perhaps using constructs similar to those of regular expressions; we
plan to investigate such notations in future work.
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6 Related Work

A number of authors have addressed questions relating to reasoning about behavioral issues in OO
systems. Lamping [Lam93] proposes specifying, for each polymorphic function of a class, the set of
virtual functions that it invokes. This will allow a derived class designer to know whether a given
polymorphic function might be affected —enriched in our terminology— by redefinitions of specific
virtual functions. The idea seems to be that the designer can then go back and study the code of
the polymorphic function in the base class to see how it is affected; our goal of course is to try to
avoid such reanalysis. Kiczales and Lamping [KL92| propose providing information not just about
which virtual functions the polymorphic function will call but also the order in which it will call
them. But they don’t talk about establishing behavioral specifications or about arriving at the
enriched behavior of the polymorphic method in the derived class by plugging in, into the base
class specification, information about the behavior of the redefined virtual methods.

Behavioral problems arising from careless use of inheritance have been discussed by a number
of authors, see for example [Sak89]. It is, as we noted earlier, to address this problem that the
notion of behavioral subtyping [LW93, LW94] was developed; our work extends this since our goal
is not just to guarantee that the base-class-level analysis of the template method remains valid in
the derived class but also to reason about the richer behavior of the template method in the derived
class. We should also note that a class A may be a behavioral subtype of a class B independently
of whether or not A is defined as a derived class of B. Dhara and Leavens [DL96] focus on the
conditions that will ensure that a derived class will be a behavioral subtype of its base class so there
is a natural connection to our work since the primary focus of this paper is the relation between the
behaviors of derived and base class. But note that Dhara and Leavens, like other authors who deal
with behavioral subtyping, do not address the question of the enriched behavior resulting from the
redefinition of methods in the derived class which is our main concern. Stata and Guttag’s [SG95]
interest is somewhat similar to that of [DL96]. They extend the notion of behavioral subtyping to
deal with redefinitions of groups of virtual methods in the derived class, but again the question of
reasoning about the richer behavior in the derived class is not addressed. Edwards [Edw97] considers
the reasoning reuse that may be achieved if the derived class is not necessarily a behavioral subtype
of the base class but certain other conditions, such as the invariant for the derived class being the
same as that for the base class, are satisfied. But as we just saw, if we want to be able to reason
incrementally about the behavior of template methods, behavioral subtyping (or rather behavioral
subclassing) is essential.

Abadi and Leino [AL97] propose a logic for reasoning about OO programs expressed in a simple
language that they define. They do not have classes in their language; each object, in the logic,
‘carries’ with it the specifications of its various methods. In addition, the logic takes explicit account
of object creation via the alloc() function; this allows them to deal with aliasing between objects.
But [AL97] does not address the question of reasoning about polymorphic methods; in particular it
is not clear that we would be able to reason incrementally about the behavior of the polymorphic
method from its specification in the base class (or object); instead, it seems likely that one would
have to re-reason about the (body of the) polymorphic method in the context of the new class to
arrive at its derived-class behavior.

Buchi and Weck’s [BW99] work is closer to our approach. They note that pre- and post-
conditions on just the values of member variables are inadequate when dealing with template
methods and that one must also make use of traces. They introduce a formalism and a programming
language-like notation using which some information about the trace of hook method calls can be
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specified. Although their use of traces is similar to ours, Buchi and Weck focus only on specifying
conditions that the trace must satisfy, not the question of how to use such specifications to arrive
at the richer behavior that results from the redefinitions of the hook methods in the application.
It is also worth noting that traces have been used extensively [Dah92, Hoa85, MC81] for reasoning
about communicating processes. The soundness and completeness arguments we sketched are quite
similar to the proofs of soundness and completeness of a trace-based CSP proof system in [SD82].

Keidar et al. [KKLS00] present a formal system for arriving at specifications and proofs incre-
mentally. But the kind of inheritance they use is not related to inheritance (of code) from base to
derived classes in standard OO languages; rather, their ‘inheritance’ has to do with starting with
the specification for an automaton and arriving at the specification for another automaton that
exhibits additional behavior. In particular, [KKLS00] does not deal with incremental reasoning
about the behavior of template methods.

Garlan et al. [GIND9S8] develop a temporal-logic based approach to reasoning about implicit
invocation. Calls to hook methods from template methods can be considered implicit invocations
since the actual method invoked cannot be determined from just the body of the template method
but also depends on the derived class under consideration. While there are some similarities with
our work, a key difference is that whereas we first reason about the base class and then arrive
incrementally at the behavior of the derived class, [GJND9S8| takes a very different approach:
Given a system S (consisting of all the methods defined in all the classes) and a specification for
S, partition S into a number of groups, arrive at a suitable specification for each group, show that
each group satisfies its specification, and show that together the specifications of the individual
groups imply the original specification of S.

7 Discussion

One of the most important ideas introduced by Simula was the notion of polymorphism. Polymor-
phism allows a derived class designer to enrich the behavior of the template methods of the base
class by redefining one or more of the hook methods that the template methods invoke. If the base
class has been designed carefully and includes the right hooks and the template methods invoke
these at the right points, different derived class designers can achieve different enrichments, appro-
priate to their particular applications, with relatively little effort; much has been written about the
central role that polymorphism plays in building flexible, extensible OO systems see, for example,
[Mey97]. The work reported in this paper has been motivated by the belief that the techniques
that we use to reason about the behaviors exhibited by such systems must similarly be incremental,
in other words, that we must provide suitable characterizations of the behaviors of the base class
template methods so that we can arrive at the richer behaviors they exhibit in the derived class
by simply plugging-in appropriate information about the redefined hook methods. Although much
work has been done in the past few years in developing reasoning systems for dealing with OO
systems, most of this work, in particular the work on behavioral subtyping (and subclassing), has
focused on ensuring that base class specifications of template methods continue to be satisfied even
with the derived class redefinitions of the hook methods. Our main contribution has been to extend
this to allow us to reason also about the richer behavior that the template methods exhibit as a
result of these redefinitions of the hook methods.

The key component of our approach that makes it possible to reason about this richer behavior
without having to reanalyze the code of the template method is what we called the e-specification
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of a template method. The e-specification gives us information about the trace of hook method
calls that the template method in question makes and its relation to the behavior the template
method exhibits. Although the e-specification is more complex than the standard (f-)specification
that only specifies information about the values of the member variables of the class, it is clear that
an incremental reasoning system must include information about the trace of hook method calls
since that is the source of the power of polymorphism.

In this paper, we have considered only a single base class and the derived classes that might be
defined from it. In a complex OO system, there will of course be many objects that are instances of
a variety of classes. Indeed, this corresponds naturally to a distributed system with the individual
objects corresponding to the processes of the distributed system. There are of course additional
issues to be considered in such a system such as synchronization. It has been observed that this can
introduce additional new problems such as the inheritance anomaly [MY93]. In future work, we
hope to extend our reasoning system to deal with behavioral issues in such systems. The fact that
traces which play such a key role in our system also occur naturally when dealing with the behavior
of distributed systems [Hoa85, MC81] suggests that such an approach is indeed reasonable.
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