CONSISTENCY AND COMPLETENESS OF A PROOF SYSTEM FOR CSP

by

Neelam Soundararajan

Abstract:

In Soundararajan [6] a proof system for dealing with
partial correctness of Communicating Sequential Processes
(CSP) was presented. Here we prove the consistency and
(relative) completeness of this system, with respect to
a formal operational semantics for CSP.

»
Tyt

RESEARCH REPORT
INSTITUTE OF INFORMATICS, UNIVERSITY OF OSLO

RESEARCH REPORT IN INFORMATICS

"Research report in Informatics" is a series of publications
from University of Oslo, Norway, containing new results from
computer science, numerical mathematics, software egineering
and other parts of "informatics".

The series serves several objectives:

- to provide a faster way of publication than through
journals,

= to allow usage of more space than in normal journal
publications,

= to be used as study material in seminars, graduate
education etc.. '

All texts will be in english.

The papers will be exchanged with similar productions from
research groups elsewhere having corresponding interests.

Order for copies (duplication price) and other correspondence
should be sent to:

Institutt for informatikk,
Universitetet i Oslo,
Postboks 1080, Blindern,
OSLO 3

Norway.

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

10

[N

12

13

1k

15

RESEARCH REPORT IN INFORMATICS

Arne Wang:
Generalized Types in High-level
Programming Languages.

Tom Liyche:
Discrete Polynomial Spline
Approximation Methods.

Ole-Johan Dahl and Arne Jonassen:
Analysis of an Algorithm for
Priority Queue Administration.

Olav Dahl:

On the Problem of Solving Linear
Algebraic Equations Associated with
Matrices that are Polynomial Functions
of a Square Matrix.

Tom Lyche:
Discrete Cubic Spline Interpolation

Arne Wang:
An Axiomatic Basis for Proving Total
Correctness of Goto-programs.

Tom Lyche:
Computation of B-Spline Gram Matrices.

Arne Jonassen:
Additional Notes on the Normal P-tree
Forest.

Arne Wang:
Correctness of Transformations of Recursion
to Iteration in Programs.

Arne Wang:
The Semantics of Programs. Weakest
Preconditions Revisited.

Tom Lyche:
A Note on the Condition Numbers of the
B-spline Bases

Olav Dahl:

Numerical Solution of Partial Differential
Equations on Parallgl Computers.

A case study.

Ole-Johan Dahl:
An &pproach to Correctness Proof of

Semicoroutines.

Arne Jonassen:

Priority Queue Processes with Biased

Insertion of Exponentially Distributed
Input Keys.

Arne Jonassen:
A Formal Description of Data Table
Processes.

Jan. 1975
Jan. 1975

Jan. 1975

Jan. 1975

Feb. 1975

April 1975

June 1975
Sept. 1975
Oct. 1975
Nov. 1975

June 1976

Nov. 1976

dJan. 1977

May 1977

May 1977

No

No

No

No

No

No

No

No

No

No.

No

No

No

No

No

No

16

17

18

‘19
.20
21

22

23

2k

25

26

27

28

29

30

31

Ragnar Winther:

Iterative Methods for a Class of Linear
Equations with Application to Galerkin
Approximations of a Parabolic Control
Problem.

Stein Gjessing:
Compile Time Preparations for Run Time
Scheduling in Monitors.

T. Lyche og R. Winther:
A Stable Recurrence Relation for
Trigonometric B-splines.

Arne Jonassen:

A Study on the Reducibility of the
Polynomials.x™t x £2p.

Reiji Nakajima:
Proving Abstract Spesifications to be
Valid for their Program Implementations.

H. T. Faye-Schjgll, O. Hesjedal,
D. F. Langmyhr, O. Owe:
The Programming and Specification Language ABEL.

Reiji Nakajima:

Sype-Class of Types or Partial Types -

for Program Specification Structuring; and
their Formalization a First Order Logic.

Arne Jonassen:
Analysis of the "Dutch Flag Problem".

Arne Jonassen:
Special Priority Queues with General
Incident Sequences.

Ellen Hisdal:
Conditional Possibilities, Independence
and Noninteraction.

O0laf Owe:
Notes on Partial Correctness.

Arne Jonassen:
Alternative Solution to the "Duteh National
Flag" Problem,

Tom Lyche and L.L. Schumaker:
An ALGOL Package for Computing Smooting
and Interpolating Spline Functions.

Stein Gjessing:
Monitors with Associated Processors

Sven @ivind Wille:
Finite Element Formulations of Navier-

Stokes Equations.

Stein Gjessing:

The Structure of the MUMI Multi Microeomputer System.

May 1977

June

Sept.

Sept.

Nov.

Nov.

Nov.

Nov.

Nov.

Dec.

Dec.

“ Jan.

Jan.

Feb.

1977

1977

1977

1977
1977
1977
1977
1977

1977

1977
1978

1978

1978

March 1978

March 1978

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

32
33

3L

35

36

37

38

39

o)

b1

4o

L3

Ly

Ls

L6

Lt

Vesko Marinov:
Maximal Clause Lenth Problen.

Ole-Johan Dahl:
Can Program Proving be Made Practical ?

Arne Jonassen:
The Limiting Behaviour gf P-trees with
Incident Sequence o™ D

Arne Jonassen:
The "Chain Gang Schedule", Theoretical
Solution.

Arne Jonassen: _—
The Polynomials x x 2p, A new Approach to
the Question of Irreducibility.

Tom Lyche:
A Newton form for trigonometric Hermite
interpolation.

Dag F. Langmyhr and Olaf Owe:
Revised Report on the Programming and
Specification Language ABEL.

Ellen Hisdal:
Acquisition of Information in a Learning
Process.

T. Dokken and T. Lyche:
A Divided Difference Formula for the Error
in Numerical Differentiation.

Arne Jonassen, Per-Arne Rindalsholt,
Rolf Sgdahl and Gunnar Valsg:

A study on some Pseudo-Random Generators
for a 36-bit Computer.

Ellen Hisdal:
Conditional and Joint Possibilities of
Higher Order.

Ellen Hisdal:
Concrete and Mathematical Sets, Measures of
Second Order Possibilities.

Ellen Hisdal:
Particularization - The Theory of Fuzzy Sets
versus Classical Theories.

Stein Gjessing:
Monitors with arrays of condition variables
and proof rules handling local gquantities.

Stein Gjessing:
Microcomputer Interrupt Servicing in an

Environment of Processes and Monitors.

Stein Gjessing:

Microcomputer Software Design and Programming

using the Concepts of Processes and
Monitors - a Case Study.

April 1978

May 1978

August 1978

August 1978

August 1978

Sept. 1978

Oct. 1978

March 1977

Dec. 1978

Dec. 1978

July 1978

Aug. 1978

Nov. 1978

June 1979

June 1979

June 1979

No

No

No

No

No

No

No

No

No

No

No

L8

L9

50

51

52

53

54

55

56

>T

58

59

0le—-Johan Dahl:
Time Sequences as a tool for describing
program behaviour

0Olav Dahl:
On the choice of pivot elements in
Gaussian elimination

Olaf Owe:
A specification Technigue with Idealization

Ellen Hisdal:
The IF THEN ELSE Statement and Interval-Valued
Fuzzy Sets of Higher Type

Per M.A. Bothner:
High-level data types in programming languages

Neelam Soundararajan:
Semantics of communicating secquential processes

Rovert W. Gunderson:
Choosing the r-dimension for the FVC family of
clustering algorithms

Vesko Marinov:
Resolution theorem prover in a program
verification environment

Neelam Soundararajan:
Axiomatic semantics of communicating sequential
processes

Neelam Soundarsrajan:
A note on the Egli-Milner order and Smyth's
problem

Neelam Soundararajan:
Consistency and completeness of a proof system
for CSP

Neelam Soundararajan:
Proofs of correctness of CSP programs

Aug.

March

March

May

Oct.

Febr.

March

May

May

May

June

June

1979

1980

1980

1980

1980

1981

1981

1981

1981

1981

1981

1981

1. Introduction

One of the most elegant languages for parallel programming is
the language of Communicating Sequential Processes (CSP) introduced
by Hoare[4]. 1In [6] we presented an axiomatic semantics for CSP;
the sequences of communications exchanged by the processes play a
rather prominent role in the semantics specified in [6]. From a
formal point of view, the system of [6] has the important advantage
that the proofs of the individual processes can be given independent-
ly of each other; this may be contrasted with the proof system of
Apt et al [3] where the proofs of the individuel processes must be
verified to "cooperate" with each other before one can arrive at
any conclusion regarding the entire program. From a practical point
of view, the fact that proofs of the individual processes of a pro-
gram may be given independently of each other results in fairly
simple proofs of program properties. This.has been, we feel, amply
demonstrated by the proofs described in [7] of several CSP programs.

Our goal in this paper is a rather theoretical one: we wish to
demonstrate that the system of [6] is consistent and complete. The
paper is organised as follows: in section 2 we present our axiomatic
semantics for CSP. The semantics presented in section 2 is slightly
different from the one defined in [6]; in particular, the rule of
inference for I/0 guarded commands presented in section 2 is dif-
ferent from the corresponding rule in [6]; the reason for the chanve
is that, with the modified rule, the problem of "conspiracy among
proofs" of [6] is rather easily handled.

In section 3, we introduce an operational semantics of CSP, con-
sistent with the intuitive semantics given in Hoare[4]. We then
prove that the semantics of section 2 is consistent with respecth
this operational semantics. In section 4 we try to prove the cam~
pleteness of the axiomatic system; in order to do this, we first
introduce a simpler axiomatic system; we then show that any proof in
the new system can be converted into a proof in the earlier systen:

finally we show that the new system is complete with respect to th«

operational semantics, thus proving the completeness of the origirsal

system.

In this paper, no informal justification is given for the various

-2~

axioms and rules of inference of the axiomatic system; the interestec

reader may refer to [6] for the same.

2. Axiomatic semantics of CSP
Consider a CSP program P::[P1A/P2A/..”7Pn], P1""’Pn being the
communicating sequential processes. (We assume that P1,...,P do

n
not themselves contain the "//" construct; thus parallelism exists

only at the outermost level, the individual processes being strictly
sequential). hi will denote the communication sequence from Pi to
the remaining (n-1)processes. Thus hi will be a sequence of elements
of the form (i,j,p), which denotes the number p being sent by P, to
Pj (by an output statement of the form Pj!p in the processes Pi),

and elements of the form (j,i,m), denoting the number m being receive
by Pi from Pj (in response to an input statement of the form Pj?§cin
Pi); hi may also include another type of element, of the form (i,j,t)
whose purpose will become clear later.

In proving some property of Pi, the system allows us to make ag-
sumptions regarding the sequence from Pj to Pi. We shall use the
symbol h'ji to denote the sequence from Pj to Pi; as Pi is executa:r
it will "consume" portions of hgj_(one element per input or output

statement of the form Pj?)< or Pj! n); h will denote the portion

ji
of the sequence from Pj to Pi that Pi has "already" consumed, hai

denoting the portion that P is "yet" to consume. Thus, at the
"start" of Pi’ we shall have a predicate of the form IiA[hi=8] A
[_Ai hji= s]ACji
tﬂé local state of P,; [hi =¢] and [A hji=-a]indicate the facts
that, at the start, Py has neither pgééuced, nor consumed anythine.

Gﬂji), where Ii is a given predicate regarding Siv

. oy . _
We shall denote the set of objects si,hi,hij(j#l),h ji(j#l), col

lectively as the state o4 of P, .

We are now ready to state the axioms and rules of inference for
the various constructs that may appear in the individual processes .
We shall state these as applicable to Pi' (Note: We have assumed
that the processes are numbered 1 through n; if, instead, processan
can be given arbitrary names, we would have to make the obvious
changes in the system; thus the communication sequences will be made
up of elements of the form (X,Y,n) to denote the number n being e
from the process X to the process Y. Note also that we do not cor-
sider declarations in our system. Declarations may be treated in ihe

standard fashion).

A1. Input
{[D(h‘ji) =(j,1i)] A p'}Pj?x{p}

4
hy» hyi hlyy

X
where p'= p ' (s s ' - £ ' Y
» V(h ji)’hi! (j,l,V(hji)),hjil first(h ji),rest(h 31

first(h) is the leftmost element of the sequence h; rest(h) is the
sequence got by deleting the leftmost element of h.

"I- " denotes concatenation of an element to the right end of a se-
quence. Similarly, "-I" will denote concatenation of an element

to the left end of a sequence, and "|4" will denote concatenation

of two sequences.

D(h) = t' if h=c¢

t if first(h)=(k,1,t) for some k,l.

(k,1)if first(h)=(k,1,m) for some integer m.
V(h) =0 4if h=¢, or if D(h) = ¢,

m if first(h)=(k,1l,m).

(Note: We assume that only integers are being exchanged between +-
processes).

The above axiom alone is not sufficient for input; we also need
the following rule of inference:

R1. Rule of inference for input
i G ?] =4 3
p=3h ji.[p AlD(h ji) =(j,1)]
. — (% 4
{pAalD(h ji) (],J.)]}Pj?x{q}

{p} Pj? x {q}

h',. 3
where p' = pE.Jl

ji

A2. Output

{[D(h'ji) =(i,j)]AfV(h'ji)=iy] A p'}le v {p}

where
R ht,.
Ji Jj1

hy, ok .
= (i,3,y) By - first(h'y;) s rest(nl,)

p'=p
hy

o

-

R2. Rule of inference for output

p =>3l—1'ji ‘[p'a {D(E'ji)=(i,j)] Alv(h

ji) =y]

{palD(hYy;) =(i,3)alv(hYy;) =y} Pty {q)

{p} Pj! v {gq}

h'..
where p' EpE,:}l

ji
A3. Assignment
{Pz} x:=e {p}
A4, Skip

{p} skip {p}

Note: In the rules R3,R4,R5 and R6 below, g' will denote the fol-

lowing predicate:
o,
[— P 1 i
q' =30, [qﬁi"[hif h. 1]

where h h is true if h is an initial subsequence of h .

R3. Boolean guarded selection
p=q'
{p Abr}sr{q}, r=1,..,m

{pllo(r=1,.. m)b_->s 1{q}

R4. Boolean repetition
p=q'

[pAbl=g
{p Abr}Sr{p}, r=1,..,m

{p}*[m(r==1,..,m)br-+Sr]{q}
m

where b= V b

r=1 ¥

R5. I/O guarded selection

p=q'

. {p /\br}ar{‘qr} ’ {qr}Sr{q}, r=1,..,m

tpHla(r=,..,mb ;a_ ->s J{q}

where a. are I/0 statements.

5

R6. I/0 quarded repetition

p=q’
. [pA1b]l =g h.
y =(h' = a[q_ * . . > . 1
[p A b"[gm &) (hc(az)i el hil—(1,{JI3r_<_m.[brAC(ar)=J]},t)
{pAbrA(h'c(a)ife)}ar{qr},{qr}sr{p},r=1,..,m

I

{pH*[o(r=1,.. ,m)br;(xr ->Sr] {q}

where

= g 1 i ' e -
c(ar) j if a. 1is Pj. y or Pj‘ X ;

The second line of R6 corresponds to the situation where the loop
terminates because the boolean portions of the guards are all false.
The third line corresponds to the case when the loop has to terminate
despite some of the beoeleans being true, on account of the fact that
the sequences from the other processes are all €. In this case, we
extend the sequence hi by the term (i,T,t) where T is the set of indi-
ces of those processes with which Pi was willing to continue communi-
cating; the "t" is a special symbol which indicates thatPi's loop ter-
minated because the processes mentioned in T had terminated. This
element needs to be added to hi in order to avoid the problem of con-
spiring proofs of [6]. The first lines of R3 through" R6 are needed
to ensure consistency of the system.

R7. Sequential composition

{p}s1{q1}.{q1}82{q} -

{p}S1;Sz{q}
R8. Consequence

p=’P1 I{P1 }S{q1}» q1’°q

{p} s {q}

R9. Conjunction

{p}S{q1},{p}S{q2}

{p}S{q1/\q2}

R10. Disjunction

{p1}S{q},{p2}S{q}

{p1 v pz}S{q}

R11. Parallel composition
ah'ji‘cji r Jsi=1,..,n, JFi
- h'. . !
= _ij . " .
[[Fi/\ [hlj hl/{ (irj)l(jri)}]gcij[hij]v 1__<_:|_Q_'11 34"‘111 i=1,..,n

{I,Ath,=¢) A (A h..=¢) A (A C.
. i It 4

m
{121 LR oo/ Pn]{

i)}Pi{Fi}', i=1,..,n

n
A F, .A[Reduce(h1,..,hn)=(s,..,8)]}
i=1

The first line is needed to ensure consistency of the system. The
second line says that the assumption Cij made in the proof of Pj, re-
garding the sequence from Pi to Pj must be justified by the post-

condition of P,; h indicates that Eij is obtained

13~ By
J {(i,3),(3,1)}
from hi by retaining elements of the form (i,j,m) or (j,i,m), changing
elements of the form (i,T,t) into (i,3j,t) if j €T, and omitting all

other elements.

The predicate [Reduce(h1,..,hn)=(e,..,s)] expresses a consistency
condition on the communication sequences of the various processes.
Reduce is a function of n sequences whose value is also n sequences.
Reduce(h1,..,hn) is defined as follows: if two of the sequences hi’hj
are such that first(hi)= first(hj) then,

Reduce(h1,..,hn) = Reduce(h% ,..,h}ﬁ ’

1 = - '|=’
where h.i rest(hi), h 3 rest(hj), hk hk

If there is no such pair of sequences, and if first(hi) is (i,T,t) and
for all jerT, h.j =¢ then,

for all k#%1i,j.

Reduce(h1,..,hn) = Reduce(ha ,..,h}g ’

where h}_= rest(hi) and h' =h for all k#+1i.

k k
If there are no sequences satisfying either of the above con-

ditions then

Reduce(h1,..,h) =(h1,..,hn).

n

(Note: If there is more than one pair of sequences satifying the fir:t

condition or more than one sequence satisfying the second, the reduc-

~7-

tion may be performed in any order, since the final result will be

the same).

We could have added another clause to the final post-condition:

n
A [A h =h, /{(1

J, to express the fact that the sequence
3#1

v3) o (3,1) 3

from Pi that Pj has consumed is, in fact, the sequence sent byv P, to
Pj; we did not do this, allowing this fact to follow from the notation;

thus in any predicate in which both hi and hij occur, we may assume tha

hiy=hi/1

ij $3), (3,001

Before concluding this section, we introduce som concepts which
will be useful in the next section. These concepts have been modelled

on the analogous concepts for parallel programs introduced by Owicki[5]

Suppose Pi is a communicating sequential process. The primary
components of Pi are

l) none if pi is a skip, an assignment, or an I/O statement.
2) S1""'Sr if Pi is 81;82,..,Sr

3) 81""Sm if Pi is [D(2=1,..,m)b248]l,or *fu(2=1,..,m)b »SQ].
4) G sSqee 0 iS if‘Pi is [m(2=1,..,n0b ;0 asl] or *[o(2= 1,..,n0b2,a 2].

The proper components of Pi are the primary components of Pi’ and their
proper components. The components of Pi are Pi itself and its proper

components.

Suppose pre and post are two functions which map components of
Pi to assertions. Then pre and post are assertion functions for

{p}Pi{q} if the following conditions are satified:
1) p=¢pre(Pi) and:post(Pi)=»q. e -

Conditions (2) through (10) must be satisfied for every componc: b
S of Pi‘

2) If S is skip then pre(S) = post(S).

3) If S is x:=e then pre(S)=¢post(S)xb.
4) If S is Pj.y then pre(s)aah' [pre(S)—,‘ A[Ddﬁa. (1,3)]A[V(h') v, and
i
[pre(s) a [D(h' =@ 1Alvin -)=y]]=>
hi hi h}i
post(S) . e . .
hi F(4,3,y) ,h.ji F first (h ji),rest (h ji)

-8~

5) If s is Pj?x: similar to (4).
o,

6) IfSis [a(2=1,..,mby~E,] then pre(s) =35, [post(S)al A (b, £ B, and
i
pre(S) A b_=pre(S_), post(S.) = post(S), r=1,...,m.
r r r g.
7 I£S is *[a(i=1,..,mb S,] then pre(S)»BEi-[post(S)-&;:A (h;cB,)1, and
pre(S) ab_=pre(sS_),post(s)=>pre(s), r=1,..,m, and
m
[pre(s) A (7(V b)) 1= post(s).
2=1 5.
8) IfS is [o(2=1,..,mbg;a, » S,] then pre(s) »351-[post(s)-c-lz\ (h;ch)]1, and

i
pre(S) Abr»pre(ar) P post(ar) »pre(sr) ' post(sr) =»post(S), r=1,..,m.
o}

9) IfS is *[a(4=1,..,mb,;x,~S,] then pre(s) aBEi‘{post(S)Ei Alh;chy)], and

2
m
[pre(S) A (0 (V bz))}-»post(s),
2=1

[pre(s) a b, A (h! f¢)l=pre (@) ,post(a.) =pre(S) ,post(S)=pre(s),

r=1,..,m

c(a)l

m
and, [pre(S) A (V o) Alvy b, = (h' =¢g)] =

2=1 24m clog)i

h .
[POSt(S)h p-(l {j|3r<a. b JNC(G)=3}, t)]

10) If S is 81;"';sz:' then

pre(s)epre(s1),post(SZ)epre(Sl+1) for 2=1,..,r-1, and post(sr)agost(s).

Suppose now that;{p}Pi{q} is provable using the axioms and rules
of inference specified earlier in this section. It should then be
clear (and can be formally shown) that there exist assertion functions
pre and post for {p}Pi{q};and, conversely, if pre and post are assertion func-
tions for {p}Pi{q},v then {p}Pi{q} is provable.

Next suppose P::[P1/7...A/Pn] is a CSP program, and that using
the axioms and rules of inforence we are able to prove {I}P A/ ,VP {Fh
Then (R11 being the rule for parallel composition), we may assume that

I can be written in the form K Ii' I. being predicates regarding
i=1 n
the local state s; of P,, F can be written as [A F,]A[Reduce(h1,.,g%}
: 121 3

= (g,..,€)], F, being a predicate on s, 1rhy ,h ;(3#1) and h'j , and that
there exist predlcates C (1.#3) satlsfjlng the requirements stated in

the first two lines of R11, and that {Ii A(hi=e)A(jiicji)}Pi{FiL1=1,

are provable using our system. Thus there exist (h pairs of) asser-~
tion functions pre,; ,post, (i=1,..,n), pre, ,posti being assertion furnc-

tions for {I A (h, —e) AlARBh,,=¢)a(A C,)}P.{F.}. In the next section
j¥i i j=1i i ol

we shall assume that any proof of the program P is specified by giving

-9-

the assertion functions prei,posti,i.=1,..,n.

We conclude this section with one further remark: suppose pre, .,
post, are assertion functions for {p}Pi{q}; suppose also that S is a

component of Pi' Then the following facts are easily proved:
o, 0.
- i = - i
pre(S)saci- [qai A (hi L hi) , and post(s)aacri- [q-(si A (hi c hi)] .
These two results will be of importance in proving the consistency of

the system.

3. Consistency of the system

We must first introduce an operational model for the execution of
CSP programs. The model we use is based on the model of Apt [1]. The
model is defines by specifying the relation "-»" between pairs consist-
ing of a program and a state; essentially "-" denotes the execution
of one step of the program.(If this step is a communication between
Pi and Pj’ this will be the execution of an input statement Pj?x in Py
and an output statement Pi!y in Pj).

For conVenience, we shall allow the empty process E. (Thus
after executing the final step of a process, we shall denote the pro-
cess by E). We shall use the symbol Tt (as well as t',t",T etc.) to
denote the current state; thus 1T will be an n-tuple (T1,..,Tn) where
T is the state of the ith process. T, will have two components:

Sy the local state, specifying the values of the variables of the ith

process, and hi, the communication sequence of the ith process. Thus
(P,7) »(P',7') specifies that executing P one step in the state T can
lead to the state T' with P' being the program yet to be executed.

" n

(of course, "-»" does not specify a function; thus there may be more
than one (P',1'), which may arise by execution of one step of P).-Wiih

these preliminaries taken care of, we can now define "-".

Definition: (S4/4..// S, ,t) > (8" //..//8' ,1") if any one of the fol-

lowing seventeen clauses is satisfied:

i

(In the various clauses, we ought to have included quantifiers of he

i

kind 3i.1<i<n, but these have been omitted; this omission should v:uce
no confusion. Note also that more than one clause cannot be simultane-

ously satisfied).

1) Sy

= e = = : ;. = =1, for a1l
2) §; =x:=e, and S';=E, S'j..Sj for all j #i;T, Ti[x*e],Tj 3

1]

skip, and S'isE, S'js Sj for all j#+i; and 7' =T.

kY]

where Tt'. =7, [K*+€] indicates that T', is the same state as T,

-10-

except that the value of the variable x has been changed to be

equal to the value of the expression e, evaluated in the state Ty

In the following, we shall omit clauses of the kind S'.=S. for

all j#1i; thus SB{E Sk unless otherwise specified; similarly we shall

omit T‘j=Tj for all j #i,the understanding being that those components

of t' that are not mentioned are identical to the corresponding com-

ponents of T.

3)

4)

5)

6)

7)

8)

9)

2
Sis [D(2=1,...,m)b2»T 1, and
- F 1t =ml I
l-br(ti), S i-T , and T T.

(I=br(ri) inducates that the boolean br has the value true in
state Ti).

Sis *[D(l=1,..,m)b2*T£], and

m
l=(A9b
=1

(all the guards are false, and hence the loop terminates).

2)(Ti)’ S'isE, and ' =T.

I=br(rl), 'i;Tr;Si, and T'=rT.

= 2 = 1
Si"Pj‘X’ Sj Pi.y, and

S'i =E, S'j =E, 1 'j-‘- Tj [hj"h'jl'(j'rip"l.'j N1, T'i =T [X+Tj () rhj_*"hi}.' (j,i,’fj (vl

(The effect of performing the communication is to assign to x,
the current value of y, and extend the sequences hi’hj by the
term (j,i,m), m being the value of y in the state Tj).

iE[D(QI=1:' . lm)bi;a .’TQI] ’ and

L

|=br("l.'i), Of'r=Pj?-X: Sj EPi:TY‘r and
' r 1

S L E O ;T r and T =T
1 r

SiE[D(QI=1I‘-Im)b2;a "’TQI]I and

L

I=br(Ti), a_ = P.!x, S. Pi?y, and

r J J

r
S'isar;T , and 1' =71.

1
S.= [n(2=1,..,nubl;al->T2], Sjs[n(l‘= ree,m')b! ,;oc',-—»T'2], and

i 2

L—-br(ri) ’ocr=Pj?x, i=b'r, (Tj), oc'r,= Pi!y, and

- - r' -
H=ar;Tx, SB=G}ﬁ'F yand T'=T.

-11-

10) s;= *[a(%=1,..,mb,;a >7%], and

2

- = > = 1
I-br(Ti), o Pj.x, Sj P,!y, and

i
r
S'isar;T ; Si’ and ' ="T.
2
11) Sis ¥*[o(2=1,..,m) bl;cxz-)T 1, and
= = ' -
l-—br(ri), o Pj' X, Sj P.?2y, and
r
S’isar;’l‘ ;Si, and ' =7T.
.)
12) s;=*[o(2=1,..,m) bl;al-»'l'g‘], Sj-:-[n(ﬂzf"=1,..,m')b'2,:ot'z,—wl"z], and
!=br(Ti), I=b'r,(rj),cx = ’x,oc'r, = P.?y, and

P..
r J

R T "o

Si=ar,T 'Si' and Sj=ocr. ;T r@and T'=7T.

13) Same as (12) except that a,.= Pj?x, and a'r, =P.iy.

14) Sis *[o(2=1,..,m) bz;ocg-»'l’g], Sjs*[u(2'=1,..,m)b'g’,;a'g.aT'g‘}, and

l#br(Ti), I=b'I, (Tj), ar=Pj! X, oc'r,= Pi? y, and

§'=a_;S;, and S'jsa'r,;T'r';Sj, and ' = T.
15) Sis*[01§2=1,..V,m)bl;al—ﬂ.’g], and

= ﬁjbg) ("l.'i), and S'isE,T' =T,

=1

16) s.=*[a(t=1,..,mb,;a, »T"], and

|= (;Z:bl) (Ti), and for all r such that l‘=br(Ti)’ Sc(ar)E E, and

S'i =E, and T'i='r'i[hi<—hi|- (i,T,t)], where T =1{k|3 r.[1<r<m &
|=br(Ti)A k=c(<x:{,}.%},

= 3 i = ? !
where c(ocr) j if o Pj‘ X Oor Pj’ X .

This case corresponds to the termination of an I/0 guarded loop
in Si on account of the fact that all processes with which S. is¢

willing to communicate, have terminated.

17) S.=8. ;S, and §iéE, and (81//“//51//"// Sn,T)—e(éa//.,.//é;//..// §'n,r'), and

In other words, this clause says that if
(Sy/fel) Sy/fe/) S vT) » (83//.8' 4")y 8y #E, then
(Sq /e /) 8438/ /) S0 T) > (S3/fe) Sy 38/ //S' ')

-12-

The restriction §i¢13 is needed to ensure the validity of clause
(16). Moreover, we may also assume, without loss of generalitvy,
that §i is of the form skip, or x:=e, or P.? x,0r P,!y, or

2
[nbz > T

We are using E:;fS =S tohandle the situation when §i =E in the above

aTz]; or *[DbleTgl, or [cbﬁ;az-aTz],or *[Dbz;u

clause. Clause 17 takes care of sequential composition.

Suppose now that we have a CSP program P:: P AA.A/Pn . Suppose

sI==(sf,..,siQ is some given initial state of P. Thus s? is the

initial local state of P,. We shall, in fact, take TI=(fﬁf..,TIn),
where Tﬂ_=(s§,e) to be the initial state of P. Recall that the second
component of Ti is the communication sequence hi of Pi; at the state
of P, the communication sequences of all the processes are e, justi-

fying our definition of TI.

Suppose there is some execution of P, starting in the above
initial state TI and terminating in some final state TF, all processes
having terminated. Then it should be clear from the definition of "-"
that there exists a sequence of pairs (S1,T1),...,(Su,ru) such that
815 P1AA..A/Pn, T1= TI,SuEEEAA..A/E, Tu==TF,_and (SW,TW)-+(SW+1,TW+Q}
for all w, 1<w<u. The sequence (S1,T1),...,(Su,Tu) will be called

the computation sequence.

Next suppose, we have proved, using the system of the last section

the following: { X I;1P4/4.//B {[§ F 1alReduce(hy,.. h)=(c,..,e)1].

Let prei,posti(i.=1,..,n) be assertion functions for

{1 A(hi=e)A(;A,h'i=8)A(.A.Cji)}Pi{Fi}’
Jj#i J#¥i

Cji(j,i.=1,..,n,j ¥ i) satisfying the conditions of the first two lincs
of R11. We shall define certain assertion functions for SV(V==1p:b§w}.
Recall that SV is of the form vay..uﬁsil. Thus the assertion func-
tions associated with1sV will be a set of n pair? of ;unctions preii
postvi, j_=1,_._,n_ S is of 11:he form 51//..¢//Snr SiEPi . Hence
we define, pre}_zprei and posti==posti. Thus pre;., postl are assertio

functions for {I. a (h,=e)Aa(A h..=e)a(A C..)} s} {F.} .
i i g1 I3 g1 31 i i

foote !

Next consider the assertion functions for‘SV, v>1. prez, postﬁ
will be defined in terms of pre?{"1 ,postzu1 . Before defining pr@Y
postz, we need to take care of a minor point: in our original defini-
tion of assertion functions we did not allow for the possibility that
the process may be of the form E. We allow for this by adding the foli=
lowing clause to the definition of assertion functions: if Pi ig B

then pre(PiF=post(Pik and if Pi is E, the only component of Pi is ®.

1)

2)
3)

4)

5)

"

6)

->

-13~-

Now we are ready to define pre?,postv .

v-1

For every component T of SV i’ which is also a component of S ;
prei(T) = prei (T), posti(T) post 1(T).
- , -1 -1
If SZ 1#E and SgaaE, then preg(si),post.(s.)=?postz (SZ) .
If s‘i"’1s* [o(2=1,..,mb;»T 1, and S=T_; S, ', then
preY(SY)==preY—1(T) . postY(SY)sspostz 1(S‘i"q).
If SZ 1—[0(2 1,..,m)b2,al-»T 1, and sV =ar,Tr, then
prei(Si)==pre (a), post (s,)--postV 1(Tr).
If 82_12*[o(l=1,..,m)bl;a2»T£], and Sisagjar;sgu1, then
VoV, _ v-1 V,aVy _ - - V=1
prei(si) = pre; (ar), posti(Si) = post, (Si).

(1) through (5) take care of all clauses in the definition of

"

except for the last one. Now we consider the last clause

Suppose sV~ 1—[Sv 1[&..A/SV 1], SX 12 1,’I‘2 where T, £ E. Suppose

also that [s //..//T //sl+1//..//s] [SV//..//T1//..//S]. Then
[s¥” 1/..//'1'1, 2//..//sV" 108}/« // 33T/ . // SU] ,asSUMing T 4E.

Denote [s)~ //..//T,]//..//SX 1]by 5V 1ana [SY /e /) T/ 1) ST by 5V .

Given assertion functions preY~1,postY_1 for V71, define assertion
functions p?eg_1,post§ T £0r3V1 as follows:

5?5?“1= pre§—1,postj 1. post;f.“1 for all j+i; also every componer
of T is a component of Sv 1 . Thus define,

pr i (T)-—pre (T), postz_1(T)==postz—1(T) for every component .

T of T1.

Define functions preg,postg for §V in terms of the functions

pre§—1,post§ Tog 571 using clauses (1) through (5) just specificc.

Then define preg,postg as follows:

V4 —
prey = pre,

5 postg = postg, for all j #1i;

for every component T of T1, pre (T)—pre (T),post (T) postz
for every component T of TZ' pre (T)—pre (T),post (T)—postz
pre (T ;T)-—pre (T), post (T1,T)-—post 1(T2).

Finally, we have to consider the case when T{EE, so that

VE[SXAA.A/TzAA.A/SX]. In this case we simply omit the clause

"for every component T of Ti ... above; also T,i;T2 should be v+

placed by T,.

-14-

This completes the definition of pre post The following
results can be shown more or less directly (if somewhat tediously)
from the definitions:

v—1

i- 1() for all i=1,..,n v=2,..,u.

a) post (s)-—post
b) pre’ ,post are assertion functions for {prez(SZ)}SX{postz(Sz)}.

What we shall try to show next is that TV, the state of the
program after v-1 steps satisfies the predicate,

(a) [Apre 7)1 A [Reduce (h,,..,h) = (g,...,8)].
i=1
This will prove that Tu, the final state satisfies
- n
A preg(E)]A[Reduce(h1,..,h) =(g,ec.,8)] , i.e.
L= T n

n
A post?(E)}AReduce(h1,..,hn)==(e,...,s)],(since pre (E)= post(E))

i.e. A post (P,)}A[Reduce(h1,...,h) =(&,...,¢)], thus proving the
-l 1
consistency of the system.

Before we can prove (A), we need to face another problem: Tz

has two components, SZ' the (current) local state of P and hY i the
communication sequence of P. i whereas pre, (S) is a predlcate on o,
which has the following components' the local state of P.,s.; the com-
munication sequence hi;h.i(=1;+...,0,3%1); and h' (j 1,..,n,3 £i}.
Thus we need to add to Ty appropriate values for hJl and h'Jl, before
we can hope to prove (A). Recall that hji is the sequence from Pj that
Pi has consumed, which, as pointed out in the discussion in section 2
following the rule of inference R11 for parallel composition, is iden-
tical to h. /{(J 1), (1,9} the sequesce that PJ has sent to P 5%”
hj is just the second component of TJ On the other hand h'Jl lS an

entirely mythical variable, introduced by the proof system. Thus what

we shall show is that there exists some h'Y, (3#1) such that T hgi and
h'gi together satisfy the predicate (A). Thls will prove that there
exists some hsu, such that t° and h%? together satisfy

n

[A post (P,)}A[Reduce(h1,..,hn) =(g,4..,8)]

i=1

showing that ™ is consistentwith the final post-condition proved

using the axiomatic system.

Next, we formalize the notation we have been using so far. =1~
is the state of the program after execution of v-1 steps of the o
putation sequence. TZ, the ith component of tV, is the state of = -

ith process after execution of v-1 steps of the computation sequence.

-15-

Tz consists of two components - sz and hz. We shall take hgi(j#i) to

be equal to hg/{(j We then need to show that there existc
r

,E,3)
h'gi(j#i) such that
n ;
VoV v
(B) I=ii1prei(si)[oi-+ci] A [Reduce (h

v

1,...,hX)==(a,...,s)].

v v .V

h o, =(s.,h,

where i, (jrhy
. by oY

i %Y 9 -

v P Vo v "
,hji(j—l), hji(j—l)), and oy 0, denotes "replace

First suppose v =1. Then prel(Sl)==pre(Pi); and pre(Pi) is
I.Aa(h,=¢)A (A hi.=¢)A(ACL.) (3)
* + j4i I1 j#i It
Also Tj-TI, Ti being (si,s), and si is such that I=Ii[Sf'Si].

Thus the first two clauses of (3) are satisfied by 71, and hence by
01. The third clause is also satisfied since h; = ¢, and hence h;i =
1, _ \ Y e . .
hj/{(j,i,),(i,j)}'_s . Moreover, since Cji satisfies the first line

of rule R11, there clearly exists some h‘;i such that |=C .[hﬂ+~hﬂ 1.

Jit7J1 Tid
~This proves the required result in the case of v=1. (The clause

Reduce(h?,....,hz)==(e,...,e) is trivially true since hz==s,i=1,..@5w}.

Next, suppose v>1. We shall denote v -1 by w. Then we must

show that if there exist hé?(j,i=1,..,n,j#i) such that

n)

'A1preY(SY)[ci+ OY]A[Reduce(hY ,..,hz)==(s,..,e)]... (4)
l:

is true, then there exist hgg(j,i=1,..,n,j#i) such that

n
V, oV v v v, _
iﬁ1prei(si)[ci*-oi]A[Reduce(h1,.,,hn) =(€,00e,8)]...(5)

is true. Moreover, we have (SYAZ..A/SX,TW)»(SYAA..A’Si,rv). Thus

seventeen clauses defining the relation "-". ~

We shall write (SW,Tw)ao(SV,TV) to indicate that (SW,TW) and (Sv,rv}
are related according to the clause mumbered "d" in the definition '
"»", Thus (Sw»Tw)fr(Sv,TV) indicates that

w_ . v_ W_ oV s vV _ W
Si= skip, Si=E,Sj =Sj for all j#i, and ' =1".
We first consider the clause [Reduce(hv1,..,hX) = (€ 000,68} 1.

A look at the different clauses defining "-", shows that (SW,TW)-a
(S?,TV) implies that (h:,...,hX)=(h¥,...,hX), unless d is either
16. Thus, if d is not 6 or 16, the second clause of (4) gives us
Reduce(h?,...,hX)=(e,...,e) i.e. Reduce(hz,...,hX)=(s,...,e).If da is

6, then there exist i,j such that

V_ W . . .
hk=hk for all k#i,3; hz=hYL—(j,l,mLh¥=h¥L-(j,1,m) for some m.

Hence Reduce(hX,...,hX)==Reduce(h¥,..,h?

= Reduce(¢,.. l<(jlilm)>l'- I<(jlilm)>l"£)

l_ (jlifm) !"Ih;']" (j,i’m) 7 ..,hz}

=(Ereey €).

(Note: The above proof is valid only if forall k(#i,3j), (k,T,t) is an element of
hy implies i,j €T; this is, indeed, true since sl,..,s‘i’ and s1.,..,s‘3.’ are all dif-
ferent from E). '

3
The analogous proof in the case d =16 is left to the reader.
This verifies that [Reduce(h? ,...,hg)=(s,...,a)] implies

{Reduce(hg,...,hX)=(z,...,e) . Next we must consider the clause

n _
[A prez(sz)[ci+ GZ]] of (5).
i=1

1. Suppose (SW,TW)T(SV,TV) . Then S;’Eskip, Szz E, ng— ST’j’ for all j i,
v _ W v vy _ W, W . W_ s
and T = T , Moreover, pre; (Si)-—posti(si), and since Si- kip,

preZ(Sg)» pcstg(SZ); and preg(sg)= pre?(sg) for all j #i.

WV W
Lethjk hjk

for all j,k#+1,..,n j=k. Then, clearly
n n
W, oW Wyl VoV v
[ji1prej(sj)[oi+ ci}J==[ji1prej(Sj)[oi+ ai]].
2.‘The proofs ‘in the cases (Sw,rw)-a»(sv,rvl, in the cases
d=2,3,4,5,7,8,9,15 are equally straightforward and are left to
the reader.

3. The remaining cases involve communication between processes, and
are more difficult to deal with. Let us first consider the case

- . W_n » W_ v V. Vo
When d "'6 l.€. Si—Pjo X, Sj—Pi‘ y' Si" E' Sj E,

T, =T, [x «—r;.’(y) s hy +hy b (5,4,75))J,T‘j’=r‘§’[hj “hyh fj,i,r"j’(ym

It is trivial to see that prey (S,) [0, <0, "1=pre/(s) [0, + o] for all k+i,3,

. V_ W v_.W
since Sk"sk and Ty = Tie
Next, we shall show preg(sg)[oj-#c¥]=apre§(sg)[cj-ec§]:

Since S?séPiijy,preg(Sg) must satisfy the requirement

W oW T W oW 'Rt A! Y=(3.3 h!.) = .
prej(Sj) ahij [prej(Sj)[hij hij]/\[D(hij) (J;l)]A[VKhiJ) yll

Hence, we have,

Y . pre¥ (8¥) [0, « V1= 3"V, - [pre¥ (8 [0, « IADGY.)=(3,4) IAlVET) =y T ..
i3 prej(J)[GJ*-GJ]=>3h i3 [pre](SJ)[OJ*-OJ]A[D(h 13) (],l)]A[V(hJJ) v1..
where o is essentially (T?,h'?j) and 5? is essentially (T?,E';SL

(In fact, of course, cg and 5? contain other components such as
hkj, k=1’|-’n'k#j).

-17-

Also T§=T§[hj+ hjl— (j,i,T;’(y))]; and, since S;.J‘E Pi! v,

[

Lpre (S) A[D(h 13) =(1,3)1A [V(h') —y]]apost (S)[h <—h FG,i,y), hl]<-hljk- (3.

hfﬁiEStﬂﬁ.}E?
13 1]
and postj(s)-prej(s }; thus, if we take oj (Tj,rest(h'ﬁﬂ) ’
h”; being from line (6), then, we have shown that there exists hﬂ;;
such that pre (S)[0 +G]

Flnally, we must show that preZ(Sz)[oi*-GZ] also holds, for
an appropriate Gz. In order to do this, we need to make use of two

results: a) There esists a sequence Ej such that

v o= - = =, =
[hjf:hj} A [as.,h..,hij. post(Pj)[cj+cj]]

J° 13
where _J-—(gj hJ hlj hil). This follows from the fact that we have
shown that there exists h'J such that
V,.V v -7 _ .V WV
prej(sj)[gj*'cj]' where oj-—(rj, 13 hlj)

and the remarks at the end of the last section.

b) if E.. is such that C..[h!.« h..], and h.. =hW.L4E!.,'and there

Ji jitji ii Jji
exists h'Y. such that pre.(S.)[0.+ G.],'where o (T h'w), then
ji i'Yi _ i’ jl
W, W -t 7 =W _ W .
prei(Si)[ci*-oi], where ol (Ti]1 hjl)

We shall prove this result towards the end of this section.

Using results (a) and (b), we may assume that there exists hé?
such that first(h!?) (3,1, T (y)), and

W_ , W W W
pre (S)[o + 0,], where ci--('ri,hjl hjl)

This implies, by the axiom for P ? x, that the following predicate

. _ (VL V W i
is true postl(S)[014—6 1, where o, (Ti,hji,rest(hji)), and

pre (sV)-post.(s.).

Thus we have shown that there exists an h5 (= rest(h%?)), such that
nY v
hi.)).

pre. (SV)[O 104 V1, oV = (¥ Phiy

i i’ ji

4) Next, consider the case d =10. Thus,

W:* - - ’Q' w= 1 — W =]
S, = [u(2-1,..,m)bz,aZ»T 1, Sj ‘Pif y,l-br(ri),ar Pj' %X, and
sV =a_;Tt;sv.
i r i
We have, 3h'V .pre” (s¥ . w 0W== W h'W
' 5i P J()[034-031, 3 (TJ 3)

Since gsﬁi!y,wermw,assmme first(hig) (j,i,Tj(y)).

-18-

Then, from the conditions satisfied by pre?, we have

W(s") [0, «T9] = (s7, w
postj(sj) 5957 3 (s 3 h]F-(j,l T ¥)), h L—(j,l T (y)),h", i3),

Faw _ W
where hij rest (h ij)'

Hence, by the remark at the end of the last section, we may assume
that there exists Eéi such that

=, W . . W =, -] \ ,
E B G Y H Ry = By | oA oy e Ryl

Then, by the result (b) above, we have,
pre (S)[o 4—cw], where U (TW hjl,(j,lﬁ (y)) IE').
This, in conjunctlon with !*b (T) gives us pre (rt)[o « o Y1,

which gives us pre (S)[0 0y Y.

The remaining cases may be dealt with in essentially similar fashion.

Thus we have shown that for all v, 1<v<u, there ex1st h!Y (3, —1,..,r,

j #k), such that the following predicate is true.{ A1pre (S){o “oy 71
, : : ti=

[Reduce (h}{,. . ,hX) =(&,...,¢)], where O'Z = (T‘{,h:;’i,h',;f) , Where

V o pY i . . Thus, in particular, taking v =u, we have
hji;-hj/{(i,]),(j,i)} ' p ’ g ’ $

shown that there existsAhég such that

n
A pre (S)[o + 05 Y1 A EReduce(h1,..,h) =(&,...,€)]
i=1

is true; and since, SgssE for all i=1,..,n, and hence pre?(sg) =
u,.u v,V . .
posti(si), and posti(si)==post(Pi) =F& for all i=1,..,n, and v=1,.

we have shown that the following predicate is true:

n .
[A F [0 “«0;]] A [Reduce(hl,..) =(e,..)],
i=1

thus proving the consistency of the axiomatic system.

Two further remarks are in order:1) In the above discussion; we
have not considered the case d =17. The reason for this is the fol-
lowing: we may consider clause 17 in the definition of "»" as an
abbreviation of several other clauses, each of which will be guite
similar to one of the other sixteen clauses. An example of such -

clause would be:

= . .— . '=—o ' = 1 i e ' = p4 ' =
§; =[x:=e;5,1; S; =85;37 Sj -Sj for all J+i; T ri[x*-e],Tj Fifor
Another example would be: all j#i.
5[D(£=1,..,m)b2;d2—9T2];§. ; and
I=br(ri),ar_=Pj? X, . 1v; S j and

3
; r o= .
Si Ear;T ;Si and Sé ssk for all k#+i, and 1'=rT.

i

& gru

-19-

Each of these cases may be handled in exactly the same fashion as the
corresponding case among the first sixteen clauses. Note also that

we do not need to consider the case where

= [Ti;TJ!.];gi’ since this may be rewritten as Ti;[TJ?_;Si}.

2) Finally, we still need to verify the result (b) stated earlier in
the section and used extensively in the proof of consistency. Recall
that the result states the following: if for some i,j, there exists

E‘.i such that C [h' 3 .] is true, and thHh‘ —h:'J , Where

[l
hji /{(1,3),(3 i)}’ and there exist h SL(k =1,..,n,k%¥2) such that
n nV v
— L}

ﬁ prem(Sm)[o “ o V] is true,where- Um ('r km hk), then A pre (S)
m=1 m=1

V. . - _ v . =V _ 'V !
[om<- om] is also true, where =% for all m#%1i,and g, =0 [hJl 'hji]

The result will be proved by induction on v. The result is tri-

1,.1
vially true if v=1, since pre (S_) =1 A (b —S)A(A h, =) (AC_)
! m "m m k+m km k#m km
~1 1 - A
so that any 0; = (Ti’hki =s=,~h}';i), where Cy [h' k], satisfies pre (5 t)
Next suppose the result is true for v—1,v>1 (Again, we shall denoz,.»e

v-1 by w), and (SW,TW)_—-» (SV,TV) . If SYESZ, i.e. the progress in
the computation took place in some process other than i, the result

is again trivial, since pre (S)= pre (S), and - TZ=TY, and h]\‘:’i =h‘}§2
for all k1.
W e v o v._.W ' vV _. W
Next, suppose Si- : e,Si-E, T, Ti[x<—e]. Then hi—hi,.,
th. hk for all k+i. Then, since the result is true for w, we may
assume that pre (S)[o EV;] is true, where EY (‘L’ kJ. h}'cw), where
|W_ ' VoV -V - V W
hJ:L hj__L This 1mplles prei(Si)[oi+oi], where o (‘1' kJ. hki -

which is the required result. All other cases not 1nvolv1ng commurni -

tion between Pi and Pj may be treated similarly. R

Finally, suppose SWEPJ. X, S‘; P, .y, SZ-E S;.’sE
Ti=TviV[x+T¥(y),h. <h; - (3,1, TS Yiynl, TS’—T [h +h - (3,1, 5 Wiy l.

v
We also have E:‘.‘ —h HH' = J.I— (3,1, j(y)) Hh;";i' Thus, by the indvr=
tive hypothesis the follow1ng predicate is true:

pre;’(sviv)[oi+6?], where Evl" (T kJ. h‘w), hsw— (3,1, T (y))-l hj‘
This gives, postv.v(sv.q)[o. «—EY], 5;’ ('r kJ. hIV), hﬁz—hil- which,

post (S) being identical to pre (s?), is the required result. The

other cases involving communlcatlon are dealt with similarly.

Thus we have proved result (b), and hence the consistency of

axiomatic system.

-20-

4. Completeness of the axiomatic system.

This section is divied into three subsections: in 4.1 we intro-
duce a new axiomatic system, and show that any proof in the new system
can be converted into an equivalent proof in the system of section 2.
In 4.2 we define a new operational semantics for CSP and show that it
is equivalent to the operational semantics defined in section 3. 1In
4.3 we prove that the new axiomatic system is complete with respect to
the operational semantics of section 4.2, thus proving the completeness

of the system of section 2.

4.1. A new axiomatic semantics for CS8P

Again, consider a CSP program P::[P1AZ..AVPn 1, P1"’Pn being
the communicating sequential processes. hi will denote, as before,
the communication sequence of process Pi' h1"“hn will be the only
sequences we shall deal with in the new axiomatic semantics. For
gase of reference, we shall refer to the system of section 2 by the
name SYS1, the system to be introduced in this section being named
SYs2.

As in section 2, the axioms and rules of inference for construcis
appearing in the individual processes will be stated in a form appli-
cable to Pi'

A1. Input
{p'}Pj? x {p}

X,h,
vl i
wherg P LVz. Pz,hil~(j,i,z)J

The universal quantification is over the set of all integers, since
we assume that only integers are being communicated. The reason for
the universal quantification is that we have no information on what

Pj will send to Pi, and hence must consider all possible values.

AZ2. Output
hi
-)
{phil‘ (ileY)} Pj. y {p}.
A3. Assignment

{pz}x:=e{p}

A4, Skip

{plskip{p}

-21~
R1. Boolean guarded selection

{pijr} S, {q}, r=1,..,m

'{p}[u(2=1,..,m)b£*82]{q}
R2. Boolean guarded repetition

(pab.} S {p}, r=1,..,m

m
{p}*[ﬂ(£=1,..,m)bza81]{p‘A[2211b2]}

R3. I/O0 guarded selection

{p,\br}ar;sr{q}, r=1,..,m

{p}[u(£:1,..,m)br;ar»Sr]{q}

R4. I/0 guarded repetition

(pAa1b)=g

b B4

(pab) = T, - (1,3]3rem. (b ac(a)= 31},¢)
{p/\br}ar;sr{p}, r=1,..,m

{p}*[D(£=1,..,m)bz;azesg]{q}
‘ m
. = = 3 :) '
where b 221 bm, and c(ar) j if a. is Pj.>< or P.ly.
R5. Sequential composition

{p} S1{q'},{Q'}SZ{q}

{p} $,38,(q}
R6. Consequence

p=p',{p'}s{g'}, q'=qg
{p} s {q}

R7. Conjunction

{p} s {q1},{p} S {qz}

{p} s {q1 A qz}

R8. Disjunction

{p1}S{q},{p2}S{q}

{p1 vp2} s {gq}

-22-

RY9. Parallel composition

{Ii /\(hi =e)}Pi{Fi}, i=1,..,n

n n
{ A I.}[P1//'.;.//P]{ A F. A[Reduce(h ,..,h) = (a,...,e)]}
3=1 JJj--nr n 3=1 J n

where Ii is a predicate on the local state S5 -

Next, we must show that, given a proof of

n n
{.ﬁ Ij}[P1A4..A/Pn]{‘§ Fj.A[Reduce(h1,..,hn) =(a,..,s)]}...(?)

3=1 j=1
in the above system, we can find an equivalent proof in the system
SYS1 of section 2. We may assume that the proof of (7) is given by

giving the proofs of

'(ID{Ii A(hi=8)}Pi{Fi}, i=1,..,n ces. (8)

(The (II) denotes that the proof is based on SYS2. 1In general, we
shall write (II) {p}S{gl to denote that {p}S{g} can be proved using
SYS2. A similar notation will be used for SYS1). If we can show that
(Im) {p}siqg} = (i){p}S{Q} + then our problem would be trivially solve: :
however, the above implication is not true for arbitrary constructs &
that may appear in,Pi,,and we have to modify our approach. What we
shall show is the following:

(I)Xpls{qg} = (I){pV‘Rf S {q VR, } «eve (9)

1]

where Ri A [£f(h., ==g(hi,i,j)+1],

j¥i Jt
where f(hji)==0, if hji =g
f(rest(hji)), if first(hji) =(j,i,t)

f(rest(hji))+1, if first(hji) =(j,i,m) or first(hji;«%

(1,j,m) for some .

and,
g(hirirj)=0, if hiP—:s'
g(rest(hi))+1,if first(hi)=(j,i,m) or (i,j,m) for=zems n
g(rest(hi)) otherwise.
We shall prove (9) by induction on the structure of S. Suppose, o = sk

Then, (I) {plS{g}=I[p=gl=(I){p}s{g}. Also, we have R, =R, and hence
(II) {Ri}S{Ri}; using the rules of disjunction and consequence, this

gives, (II) {p}skig{q}=:(I){p\/Ri}skiE {q‘vRi}. If S=x:=e, the recu.:
follows in similar fashion, using the fact R?(esRi. Next, suppose

_23...

S stéy . Then, from the axiom for output, we have, (II) {p}Pj! vy {g} =
i ' : n 1
Lp =»qy I—(i,j,y)]' In order to be able to prove(I){p vRi}Pj. yigv BT,

we must have the following:
1

) g !
[pv R;] =>3hji. [[p VR,

i E.ji A [D(E‘-i) =(1i,3)1 A [V(E'ji) =vy]l ...(10}

ji J
)= (L)AL P By i
and, [[pVRi]/\{D(hji)=(lrj)]/\[V(hjl)—y:ﬂ’-’?[qVRi]hil_(i’j,y),hjil__(iljly)’rest(hljl)“(f}
(10) is trivially true, since p and Ri do not impose any restrictions on
h'.. . We may rewrite [gvR,] i’*** of (11) as follows:
ji hi hi' i“... h‘i
v R, J

9 |- (1,3,y) ih, - (i,5,¥) shs, I- (1,5,y), Since g has no refer
i i ji

ences to h..,h'.. , and R. has no references to h'... From the defini-
. Ji Ji 1 hil Ji

tion of Ri’ we have RigRihi!— (i’j’y)’hji" (1,3,9) " Also, we havev

h,

p=>qh3.' since (II) {p}Pj! y {gq} 1is true. From these results, it
i .

- (i,3,¥)'
is easy to see that (11) is true, and hence we have (I){p}Pj! Y {gq}.

The case S st? y may be handled in similar fashion. The proof in
case S =T;T' is straightforward. Next, consider the case
S=[a(2=1,..,mb,»>r"]. <) {p}s{q} implies (m) {p Ab_}T {q}, r=1, .=
Hence, we have, (I){(p Apr)v Ri}Tr{q vRi}. Then, we can conclude

(I {p vR,1S{qv R.}, provided we can show the following:

(O
[PVvR,] = agi-[[qvai]gz alhchill ... (12)

The above implication isOeasily seen to be true, since any Bi will
satisfy the predicate Ri-g-l if f(ﬁiji)=g(ﬁi’i’j)+1 for all j#i.

i -
This proves (I){p vRi}[u(2=1,..,m)b£->T2’]{q vRi}. The other cases can
be handled in exactly the same fashion.

Thus, we have shown, (II) {pJS{gl= (I){pvRi}S{qui}, for ail

constructs S which may appear in Pi’ Hence, we have,
(I) {I; A (hy =€) P {F J= (D) {[I; A (h; =¢)] V R, }P, {F, vR,} =

(I) {IiA[hi=e]A[hji=s]}Pi{FivRi}. eee (13)

n n
Also, we have, (II){ A I.}P{ A F. A [Reduce(h1,..,h) =(€,00.,8)} ==
i=1 t i=1* n

(1) {Ii A (h,

i 8)}Pi{Fi}l i=1,..,n =

(1) {IiA[hi=8]A[hji=‘£]}Ri{FiVRi}’ i=1,..,n =

n n
I) : , - - i ‘9
(){ii1li}P{i-ﬁ1[Fiv Ri]A[Re@uqe(h1,..,hn) (E€re0e,8) . 714

From the definition of Reduce and Ri’ it is see to see the followiiu:

-24~

n
[Reduce (h,,...,h)=(e,..,e)]=[A f(hji)=g(hi,i,j)]=¢[_ﬁ IR .

J#i i=1
Thus (14) gives us,
n n
(II) {ii1Ii}P{i£1Fi A[Reduce(h1,..,hn)==(s,..,a)]} =
n n
(I){ii1Ii}P{ii1Fi A[Reduce(h1,..,hn)=(s,...,£)]} ve. (1

which proves that given a proof of a program P in SYS2, we can give

an equivalent proof in S¥S2.

4.2. An alternative operational semantics for CSP

In this subsection, we shall define a new operational semantics
for CSP. To distinguish this semantics from the semantics defined in
section 3, we shall refer to the semantics to be introduced now as
SEM2, and the semantics of section 3 as SEM1. SEM2 will be defined
by specifying a relation corresponding to the various CSP constructs.
The relation corresponding to a construct S, which will be also denoted
by S will be a set of pairs of the kind (t,t'), indicating that if
we execute S starting in the initial state 1, then one of the possible

final states is T'.

Suppose S =skip Then, clearly the relation corresponding to S
is {(1,7)}. We shall write this as,

SkiE ={'(T,T)}-
Next, consider the assignment statement:

x:=e = {(1,1")|1t'=tlx«e]}
where T[x +e] is the state obtained from T by replacing the value of
the variable x by the value of the expression e.

T;T' ' ={(t,t") 31" [(t,T")ET A (T',T")ET"']}.
where T[hi-ehil—(i,j,y)] is the state got by extending the sequence
hi by (i,j,m),m being the value of y in the state T. (We are, of cours
defining the relations corresponding to constructs appearing the JERATN RS
cess P.).

i

Pj?><={(T,T')laz.r'=r[x-+z,hi-+hil—(j,i,z)]}

[2(2=1,..,mb, >T"] = {(,7") [3r<m.[b_(1) A (t,T)€T 1)

where b (1) indicates that the boolean expression b has the value

"true” in the state T.

25.

[n(2=1,..,m)bg;u2‘+T2]={(T,T')Iarim.[br(r) A(T,T')G[&r;Tr]]}.

In order to define boolean guarded loops, we introduce a preliminarv

definition:

**[U(2=1,.5,m)b2-9T2]={(T,T')[Ek.ETO,...,Tk.[Pt=TO]A[T =1 1 A

[Vk'<k.[(Ty 00Ty 0, q) €00 (2=1, .., m)b, »T*111]}

*[D(2=1,..,m)bg-*T£)={(T,T‘)[[(T,T')€**[D(2=1,..,m)bz-+T2]]A

-ra

m
[AﬁbJ(ﬂ)L

Similarly, to define I/O guarded loops, we first introduce an auxili-

ary definition:

**[D(£=1,..,m)b2;a2-»T2]={(T,T')Iak.aro,..,Tk.[[r=TO]A[T'=Tk] A

[vk'<k.[(t J€la(e=1,..,mb s0, »T1117)

A
and

*[D(2=1l-~lm)bg;a —’TJL]={(TIT") IBT"o[[(T,T')€**[D(2=1:--rm)b,q,io‘ "*"ﬁﬁ)-ﬂ

L 2
m

A *b](T')] v
r=1 r

[HT'=T#]A[

T

r
I

n<sg

, 1br](T')A[;T.[[T"=TThi; hiLJ(i,T,t)]]A[T‘={jI3r5m.br(T')A

j=(a 31111 |1,
Finaily,
[P,]//- .//Pn] ={ ((T,] oo ,Tn) ' (T'; ree ’T'n))!VkSn[[hk’_‘ elal (,Fk',tvk)EPk]] A
[Reduce(hi,..,h}g =(Er0eec,t)i 1}

where hk is the sequence component of Tt and h' that of t'

k'’ k k*

Next, we must show the equivalence of the o¢perational semantics
SEM2 just introduced, and the semantics SEM1 defined in section 3. ‘s
reader who is not interested in the proof of equivalence of SEM1 and

SEM2 may skip the rest of this section and proceed to section 4.3.

We first introduce a relation "-" which will be analogous to
relation defined in section 3; the difference between the two is tha+
the relation to be defined next corresponds to the execution of one
step of a process considered in isolation, whereas the relation de/
earlier deals with all the processes.

Definition: (Si,Ti)'*(S'i,TE) if any of the following clauses is sat iz~
fied:

= i ' o= L
1) Si- skip , S ;= E, T 5 Tl.
= o= LR T =
2) Si_ x:=e, § i E, T i Ti[x‘ee].

-26-

= = L - i 3

i
4) Sis Pj?.x,S' = E, T}_=Ti[x+xn,hi+ hil-(j,i,m) , for some m.

5) §;= [8(2=1,..,mb, »7"],1=b_(1,), S =T ,7" =1,.

6) S;=*[a(L=1,..,mb -»T’Z],|=b§l(ri), nE TS, =T,

7) ls*[m(ﬁ 1,..,m)b ~»T],l_zA?b (T Y, S'ieE, T‘i=ri .

8) s, E[u(z=1,..,m)b2;%->qr2], =b,(t;), S =aT%, T =T, .

9) ;= [B(2=1,..,m)b g30, > T]'I-bﬁ(T), S'isar;Tr;Si ’ T'i= T, .
10) i= [m(e= 1,..,m)b2,o¢2—>T 1, 1= A1'1b (’L')y S'iEE, T'i= T

11y S;=*[o(2=1,..,m)b,;a, 7 1/ 1= V b, (15),

2=1
s'.=E, ', =1, [h;« hil—(i,T,t)],T‘={j[3r5m.[l=br(ri) A =c(a)]}

2) SfET;T', and (T,Ti)+ZT",TE), T"=E and S'iET' or T"#E and.S'isT";Tg.

Next, we state a useful lemma:

Lemma: If (1£,1§)€ Pi' then there exists a sequence of pairs

1 .1 k¥ .k 1_ 1 1_ -k _F k _
(Ti,Si),...,(Ti,S.) such that T;=T 1»,SJ._:PJ._, T i—r i,S f=E' and
for all r<k: (t% ,8%)~ (1 r”,s‘if“).

The proof is by a simple induction on the structure of Pi' and
we omit the details. A sequence of the kind introduced in the above
lemma will be called a "local computation sequence for Pi“ to distin~
guish it from the computation sequence to be called a "global computa-
tion sequence"”, for the entire program introduced in section 3.
Also, in what follows we use "-»" to denote the relation defined above,
as well as the relation defined in section 3; the context will make
clear which relation is intended; thus in (Si,ri)»(S'i,Ti) , the intende
relation is the one defined above; and, in (S1AA.A/SH,T)9(SiAK.A/S}fﬁ?)
the intended relation is the one of section 3. And, (Si,ri)a(s‘fT‘i)
will indicate that (Si,Ti) and (S',T'i) are related according to clause
(d) in the definition of "»". The next lemma states the equivalence f

SEM1 and SEM2.
u u

RS 1 M 1 4
Lemma: If (81,1'1),..,(81 rTy) P (Sn,r

)reer (S ?Tnna are locai com
?_Pl h1-a, s,’=E, and
[Reduce(h 1,..,h)=(g,...,e)], then there exists a global computa don

sequence [(81,1),.ﬁ,(S ,Tu)], such that ST-S AA.A/S , T —(T ’."Tf
,..,rnn), and for all v:iu, there ex1st v

1

putation sequenc%s for P1""Pn’ so that S

RS- VAN/2- B SE N Y 1

such that v, Sug, i=1,..,n, and

17

-27-

u vi v V1 Vn v v
SiESl ’ T = (T1 '--'Tn), [Reduce h1IOOIhn)=(sl"ls)] r and
there exists h1,..,hX such that,
u. - _
hil=h.Hh. for all i=1,..,n, and [Reduce(h\,lf,..,hV)=(a,..,e)}5

Proof We shall prove the result by constructlng the sequence
[(S ' T),..,(S . T)] First, define S1 -S AA.A/S ’ T1=(T1,..,T).
Thus the result stated in the lemma clearly holds for v=1.

Next, suppose we have constructed (SV,TV), and that
v v
1

v v
SZE s ™ =ty 1™, Reduce(h), .. ,hY)=(e,.. 5] 1,
i, v =V =V =V _
hi = hi Flhi,‘and [Reduce(h1,..,hn)—(s,..,s)].
Then, we have the following possibilities:
V. ; v, u,
l) v, =u, for all i=1,..,n. Then SflsE, T?@=T.l = T.l, and the con-
i i i i i i

struction of the global computation sequence with the required pyg_
perties is complete.

2) If (1) does not apply and there exists some j such that

V. vi+l v+
(S.J,T 3)—-,(5 357,23y for d=1,2,5,6,7 or 10, then define

] v+1 9 J VJ+1 vy w1 vy ,vj+1 vy

S = //..//S //..//Sn)’ T =(T1 ,o-,Tj’ ,c-an)1

and i:+1 Ei' If there is‘more than one j satisfying the stated
condition, we choose any one of them, and define (SV+1 V+1), and
EZ+1 as above. It is then easy to see that the lemma holds for
v+1.

3) If neither (1) nor (2) holds, then note fﬁrst that for all j such
that hj-—e, we have SJJ-E-SJJand TJ-TJJ. Also, the facts that
uj -
h_:
i

il4hi, i=1,..,n, and [Reduce(h1,;.,EX):(E,.‘,e)]' in cone

junction imply that at least one of the following clauses is true:

V. m v,
a) There exists j such that s.J = *[o(8= 1,..,m)b2,a2-eT I,1=Vv b (Ta}f;
J 0=1 J
v . +1 —v V.
S; =E, first(hj)=(j,T,t),T={k|3ro[r§m A hbr(fjJ)A(k==c(ar))}?
v
and h§==e for all k €T and hence Skks E for all k €T.
Y v
In this case, define SV+1E(S11AZ./7EAA.A/SHH),(i.e. all compone:is
of SV+1except the jth one is the same as the corresponding compomne
5fVSVf the J th comgonent of Sv 1 being E)}; -and TV+? =
;) +1 + = . . =v+1_ . LTV
(T1 ,..,TJJ reer T), and hv 1-—hz for all i+ j, and hj = ¥ ;fgj

Again, if this clause applies, it should be clear that the lemmsa

satisfied for v+1.
v, V. V.
b) There exists i,j such that S 1o J?;(, Sj3= Pi! ' Tjj(y)=m,

flrst(hi)=(j,i,m), first(hj)=(j,i,m).

. +1_ V+1_ v+l _ .V _ Yk .
In this case, define S =E, S. =E, Sk =Sk =Sk for all k+1i,73;
v+1 Vit v+1 Vj+1 ’ ~v+1 =v+1_ =V
and TS = Ti R Tj =Tj ; and hi = rest(h), h] = rest(hj)f
v+1_ =V .
hk = hk for all k+4i,3.

Once again, it is straightforward to check that the lemma is satic-

fied for v+1, if this clause applies.

c) There are several other possible cases corresponding to I/0 guarded
selections, and I/O guarded loops; we consider a typical case,
leaving the remaining ones, which may be dealth with similarly,

to the interested reader:
v,

There exist i,3 such that S. l-*[D(SL 1,..,m)b2,a£-+T] ’
v, V.
J _ ' P J _
S.”=*[o(p= ,--,m)b’ ;a'-T'Y], |=b (T Y, .(T), a =P,
j J PP vl+1 rr vi VJ£1 r 3
oc'r,= % (y)=m, Si = a i T ;Si ’ Sj Ear,;T' ;S:| and
flrst(hjj)—(j,l m) and flrst(h 1y=(j,i,m). 1In this case, define,
v, v, v
v+1_ P v+1_ S o | v+l_. 'k -
Si = ar,T S. Sj = a',,T' 'Sj , and Sk -Sk for all k#%1i,j
and Tv+1=TV; E;+1— Ek for all k.

Again, it is routine to verify that the lemma is satisfied for
v+1, if this clause applies.

Note also that irrespective of whether SV+1 is defined accordiny
to clause (2), or according to one of the clauses in (3), the fol-
lowing is tgue:

v v! !
if gV

1AA.A/S1n), and SV+1E(S1 1,..,Sn.n), then jfzvi for all

1]

i=1,..,n; and there exists j <n such that V3:>Vj'

Hence, u1,..,un each being finite, and A being less than or equal io

u;, we may conclude that ultimately clause (1) of the above constructio

will apply, giving us the global computation sequence

1 1 . ,
(S1AA.A/Sl,T),..,(S?AC.A/SE,Tu) such that S;EPi for i=1,..,n;

1

u . I I .
S;=E for i =1,..,n;7 =(T1,..,Tn),-ru =(Tf,..,r§). This concludew

the proof of the lemma.

The lemma along with the earlier one shows that if ((TIy.cgfigk
(T?,..,Ti)) belongs to the relation corresponding to the program
P1AA./7Pn as defined by SEM2, then there exists a (global) computii -
sequence of P1AA.A/Pn, as defines by SEM1, such that starting in the
initial state (T1,..,Ti), and following the computation sequence leads

to the final state (T?,..,Ti).

-29-

In order to complete the proof of equivalence of SEM1 and SEM2,
we ought to prove the converse of the above result. This converse ia—~
sult is not, however, needed for the purposes of this paper, as the
following argument shows: given a program P1AA.A/Pn, and a predicate
p on the initial state of P1AA.A/pn, we shall define (in secteion 4.3}
a predicate sp(p,P1AA.A/Pn) such that for every state 1' satisfying
sp(p,P1AA.A/Pn), there exists a tsatisfying p, and(t,t') belongs to the
relation corresponding to P1AA./7Pn as defined by SEM2; and show that
{p}P1A%.A/Pn{sp(p,P1/%.A/Pn)} is provable using the axiomatic system
SYS2. This will prove the (relative) completeness of SYS2 with respect
to SEM2, and hence, by the result stated in the last paragraph, with
respect to SEM1.

4.3 Completeness of the axiomatic system

In this section we prove the (relative) ‘completeness of SYS2 with
respect to SEM2. First we define the notion of the "strongest post-
condition" sp(p,S), given a predicate (the precondition) pand a con-
struct S that may appear in the process P
Definition: Given a predicate p and a construct S which may appear i:n

Pi' sp(p,S) is defined as follows:
1) sp(p,skip) = p;A
2) sp(p,x:=e)= {T laT [t€p A A [x«ell};

(Note:We treat predicates as characterising sets of states; thus p
above characterises theset: {Tilriep }, and we define sp(p,x:=e) by

specifying the set that it characterises).
3) SP(p,le y) ={Ti‘ Iari.[rie pA '= 1 0lh - (i,3,y)11);
4) sp(p,P.? %) ={T.' IET. [t €p A Im.t'= T, [x+m,hy <h, - (3,i,m)]1};-

5) sp(p,[o(4= 1,..,m)b N 1) —{T I3t [r,€pal3ram.[b (1, FRRINEH j€sp(Ty ST T)
where, in Sp(T Tr) P Ty denotes a set consisting of the SJ.ngle state Ty

6) sp(p,**[m(£=1,..,m)b2—>T])={T'ilari.3r.[3 T1,..,Tr.[T1=Ti AT =TY A

vr'< r.[3r"<m. [b ..(T AT ,+1€sp(1' ,,Tr I
7) SP(P:*[D(2=1,..,m)b£»TQ])={Ti ia"r L EpAT €sp(t, , **[(2= T,..mb, N 1)~

A‘zb(’t'.)}]};
{SL=1 FANME |

8) sp(p,[D(5L=1,..,m)bz;ocg-»‘l‘g])={Ti' IETi.[TiEP A [3rem.| br(”ci) ATi'€ sp(ﬂ:i;m_

-30-

L ')
9) sp(p,**[a(4=1,..,mb ;a, >T])={E_[ari.ar.[ar1,..,rr.[r1 JATL =T
vri<r.[3r"<m. [br..(’[’r.) ATr'+‘I€ Sp(T L ..;Tr)1}
10) sp(p,*[o(2= 1,..,m)b2,a2-aT 1= {T‘IBT [T €pAT' €sp(t,, **[o(2=1 ree)by o=)
A b, (g 1) U
[z L Pl
{Ti'IEiTi,Ti".[TiGpA L' € sp(ri,**[n(2=1,..,m)b oa—»T 1) A

m
[V bﬂgﬂ}[aT ['—r"m <h, Hi,T,t)]Ja T= {3]3r<m. b_ (")

- —_—

1 1 1] 1 "
11) sp(p,T1;T2) = {Ti' |3Ti,Ti' .[ri EPATi Esp(ri,'l‘) Ari' €sp(Ti ,Tz) 1} .

Next, we extend the definition of sp to handle a set of parallel pro-
cesses.

Definition: Suppose I1,..,In are given predicates characterising the

initial states (not including the communication sequences) of the prov
cesses P1 ,...,Pn of CSP program P1//...// Pn' then

sp(I1 Ao -AIn,P1//..//Pn)={ (t]',..,rr'l) lEh:1,..,Tn.[[Viin.(siEIiAhi=)] A
[Vif_n.ri' €sp(ty,P,;)]A{Reduce(hi,..,hr'l) =(€,..,8) 11}

where Sy is the state component of Ti’hi is the sequence component of

iy and hi‘ the sequence component of Ti' .

The following two theorems are the key results of this section.
Theorem: If S is a CSP program or a construct appearing in one of the
processes of such a program, and T'€ sp(p,S), p being a given predicate
then there exists a T € p such that (t,T')€ S (i.e.(Tt,7') is a member

of the relation corresponding to S.

The proof is by a straightforward induction on the structure of
S. First we consider the case when S is a construct appearing in a pro-

cess. Then we have the following possibilities:

1) S =skip. Suppose Ti' €sp(p,S). Then, since sp(p,ski9)=p,1:i' Ep. Also
by definition (of SEM2), sk'p={(ci,ci)}. Hence, (Ti',Ti')E skip.

2) S =x:=e. Suppose Ti' € sp(p,S). Then there exists Ty such that

[ty € pl A [=Ti[x*'e]];and[X==e]={(UifGi')|Gi'=0‘i[x+e~]}, thus oo

ving the required result.

-31-

3) S EPj?><. Then, ;{ €sp(p,S) implies there exists Ty and m such that
[ri Epl A [TI =ri[x‘em,hi-ehil-(j,i,m)]]; hence (Ti,jf) €Pj?><, sinc

P2 x= {(Ti,pf)laln.jf =tylx<m,h;« h, - (3,1,m)]}.

4) 8 E[D(2=1,..,m)b2»tP2L Then ;{ €sp(p,S) implies that there exists

T, and r such that [br(ri)] AITi €pl A[;{ Esp(ri,Tr)}; hence

(Ti,TI) €S, since S ={(Ti,jf)l3 r.[br(ri) A(Ti,jf) €Tr]}.

1.m2

- : " 1] 1
5) S=T ;T Then, .Ti‘ €sp(p,S) = ETi.[TiEPA ag [Tiﬁsp(ri,T) A

j{E sp(%r,Tz)]].
1 2.
1 4 - " n 1] ¥
Hence (t,,7') €8, since S-—{Tiiari,g_.[(ri,ﬁ_)e T A ("7') €T 1h.
The remaining cases are equally simple and are left to the reader.
Finally, cgnsider the case S EP1A4..A/Pn. We shall assume that p is of
the form A I;, where I, characterises the initial state (not includir

1=
the communication sequence) of Pi‘

Then, T'= tg',..,ré) € sp(p,S) implies that there eXiStS’T=(T1,..,Tﬁ)
such that [Vi_gn.[si EIiA hi =g A F{E sp(ri{Pi)]}A[Reduce(hf,..,h¥?} =
(e,..,€) 1.

And Po//.//B L= {((0g,0000), (0%, mpo)) | Vicn.thy =¢ A (0;,00€ 1] A

[Reduce(hi,..,hé)=(e,..,8)]}.
Hence ((T1,..,Tn), (T%,...,Tﬁ)) €P1AA.A/Pn, thus proving the theorem.

Corollary. If I|={pl}S{g} is true (in SEM2) for given predicates p,q
and CSP program (or CSP construct appearing in a process) S, then
sp(p,8S)= g.

The corollary follows directly from the above theoreém, and the

intended meaning of "|={p}S{g} is true".

The name sp(for strongest post-condition) was, of course, chosen
in anticipation of the above eorollary. The next theorem proves the
completeness of SYS2 (with respect to SEM2, and hence, by the resuli+t
of section 4.2, with respect to SEM1). By the corollary, what we neod
to show, in order to establish completeness, is the following:

I- {p}s{sp(p,S)}. Note also that since, by the results of section 4 1.
any proof in SYS2 can be converted into an equivalent proof in SYS1.
we are in fact proving completeness of SYS2 as well as of SYS1 .
Theorem: for any given predicate p, and CSP construct S, {p}S{sp(p.¢
is provable in SYS2.

...32.-

Proof: The proof is again by induction the structure of S.
1) S =skip: sp(p,S)=p; hence, by axiom A1 of section 4.1,F{pl}S{sp(p.S)}

2) S =x:=e: sp(p,S)={rJ.‘_IETi.[Ti €Ep A 7 =T13lx+ell}. In order to show
X
I- {p}S{sp(p,S)}, we need to show p= sp(p,S)J . is do this, we must
e
first define, given the predicate of, the set corresponding to qiz

q}e(={clc[x<-e} €ql

X
Then {sp(p,x:=e)]e ={cilci[x+e] € sp(p,x:=e)}.

Suppose T, €p; suppose also that ri=ri[x<—e]; (Note: we assume that
ri is a well-defined statej;i.e. the expression e has a proper value
in state ri) . Then by definition gfxsp(p,x:=e) ’ 1:5_ €sp(p,x:=e).

X
Hence, by definition of [sp(p,x:=e) P Ty € |sp(p,x:=e) . Thus we
< . .
have (1, €p)= ('r. € [sp(p,x:=e)]
i i e

I- {p} x:=e {sp(p,x:=e)} by axiom A2.

) i.e. p»‘.sp(p,x:=e)J . Hence,
e

3) S st?x: sp(p,S) ={r£|‘:‘lri,m.{ri '€ PATi-”-‘Ti[X +m,hi<-hil- (F,i,m)1] }

X .
/By

{SP(PIS)]

={t, |71, [x +m,h, «h |- (j,i,m)] €sp(p,P.2x)}

mlh-‘—(jlilm) 1 1 i l]
+ x,h

%08

We need to show, that p»Vm.[sp(p,Pj? X)j ,
. : m,h, - (j,i,m)
+ X,h,
Suppose Ty €p. We must show that Vm.TiE{sp(p,P.? X)] 1
] m,hy - (3,1,m)

Let tv{ =71.[x*m ,h; «h;I«{j,i,m)]. Then, by definition of sp(p,P.? x),
i i i i X,h. j
] i

mlhi I- (jlilm)

14

'r]!_ € sp(p,Pj? X). Hence, by definition of [sp(p,Pj? X))
: X,hy o
T, € {sp(p,P.? x)} 7 and this argument is independent of the
1 } :] . N
mrhi - (3,1i,m)
X,hy N

value of m. Hence, Vm.[ri € [sp(p,Pj? x)} Hence,

m,hi [<3,41i,m)

m,hi (j,i,m)]

p = Vm.[sp(p,P.? X) . Therefore, by axioms A3, we have

J
- {p}Pj? X {sp(p,Pj? x)}.

4) S st! y : this case is similar to (3) and we omit the details.
5) s = [n(2=1,..,m)b2 —»Tl]. The inference rule of SYS2 for this cas~
is,

{PAbr} ™ {q}, r=1,..,m

tp}la(e=1,..,mb, »7*1{q)

-33-

Also sp(p,S)={TJ!_[3Ti,r.[Ti €Ep A br(ri) A Ti' € sp(ri,Tr)]}

sp(p Ab1(T1)U~'U sp(p Abm,Tm)

o)
= Vv sp(pAbz,T).
2=1
By the inductive hypothesis we have, for 2=1,..,m, I-{p Abg,} ’Iﬂ{ sp(p/\bﬁf’l‘g
: m
and, hence, by the rule of consequence |- {pAbz}TSL{V sp(pAbr,Tr) }oe=1,.,
r==1

Hence, by the rule of inference above, we have,

m
|- {p}[m(2,=1,..,m)b2—>Tg']{ V sp(p bQ,Tz)} i.e.{p}S{sp(p,S)}.

2=1

6) S E*[m(£=1,..,m)b2»T2]. The rule of inference is,

{q/\br} Tr {q} , r=1,..,m

{q)*[o(2=1,..,m)b, >1¥1{q Avb}

m
where ¥b £ A 1b2. g is usually called the "loop invariant”.
=1

On account of the rule of consequence, we may rewrite the above rule -s

Pp=q
qr»q’ r=1,..,m

{g Abr}Tr {qr}, r=1,..,m

{p}*[n(£=1,..,m)b2—>T2]{q A<b}
= - m? Sy
Now sp(p,S) —{Tilari.[ri €p ATy €sp(t, ,**[o(2=1,..,m)b > T DaAb(ry)
='{Ti|“fi€ sp(p, **[G(2=1,--,m)b2—>T£]) ATb(ti)}.

Define g = sp(p,**[D(£=1,..,m)bleTl]).

Suppose T; €P. Then, it is easy to see, from the definition of
Sp(p,**[m(£=‘l:-.,m)bfTQ’]), that T; €9. Thus p=q. Next, define,

d,. =sp(q Abr,Tr) . Hence, by the inductive hypothesis, |- {g a br}Tr{?{f .
Moreover, it is easy to see from the definition of.- g, that

[Ti € qp=1; € ql i.e. ’[qr = g]. Finally, from the definition of
Sp(p’*[m(’F"r‘wm)bfTQ])E g Anb. Hence, we have |- {p}S{sp(p,S) .

" Hi 1 " 2
7) SET1 ;TZ. Then, sp(p,S)={TJ!_!Eri,ri.{riep,\ Ti€ sp (Ti,T YA T:.'LL-' Sp(Ti,T)13

= sp(sp (p,T1) ,Tz) .

Then, by the rule for sequential composition, we have }-r{p}T1;T2{sp(p,T1;ié“"}’j;-}
The cases for I/0 guarded selection and repetition are handle:

as i:h. (5) and (6) respectively, and we omit the details.

-34-~

n
8) Finally, consider the case S sP1AA.A/Pn, p=s A Ii .
i=1

n
Then Sp(p,S)={Ta,..,T$)13T1,..,Tn.['A

= '
l=1[SiEIiA (hi €) Ariesp(ri,Pi)]] A

[Reduce(h%,..,hé)==(e,...,e)]}
n
= {(T{,..,Tﬁ)[121[T£jssp((li;«hi=e),Pi)]A[Reduce(h%,..,h$)=(a,..,8)]}.

By the inductive hypothesis, we may assume,
I—{Ii A“H_=€)}Pi{sp((IiA1H_=E),Pi}

Hence, by the rule for parallel composition, we have

n n

I—{.A1Ii}P1AA.A/Pn .A1[sp((IiAixi=e),Pi}MRahmeGH,.”hnﬁﬂe,.”8)}}

i= 1=
i.e. I={p} Py/f.//P {sp(p,Py/f.//P)},
That completes the proof of the theorem.

Before concluding, some remarks are in order: the reader familiar
with Apt et all2] would not have failed to notice how closely our
proof of completeness resembles their proof of completeness (of a simpl
sequential language); our proof was, in fact, inspired by the proof in
Apt et al[2]. Note also that, as in Apt et al[2],we may restrict ou:
assertions to be recursively enumerable; the system would still be
¢omplete, since the intermadiate assertions are all r.e., if the given
pre and post conditions are r.e. Also. the system is complete if we
restrict our assertions to be first order, since all intermediate as-
sertions can be converted to first order predicates; the only difficult
case is the loop invariants and they may be handled by using an appro-
priate godelization of tuples of states such as <T1,..,T§> . It should
be noted that if we restrict our assertions to be recursive then, as fol-
lows from the arguments in Apt et al[2], our system is not complete,
since no auxiliary variables, which can serve as loop counters, are

allowed in our system.

Finally we would like to consider the following question: why
have we introduced SYS1, when SYS2 is simpler, complete, and can he
easily proved to be consistent (independently of the consistency of
SYS1)? The answer is that, in our experience with actual examples,
SYS1 has, occasionally, proved to be easier to use than SYS2. Surpris-
ingly, however, in the case of programs where each of the processes
receives, as well as sends numbers to the same set of processes, the

proofs in the two systems are quite similar to each other. It is only

[

in the case of programs where each (or,at least,most) of the procesia

receive numbers from one set of processes, and send out numbers o

"

~35-

another set of processes, that proofs in SYS1 are usually simpler than
in SYS2. The set partitioning and gcd programs of [7] are examplec:

of the former kind, and the matrix multiplication and prime number gen-
eration programs of [7] are examples of the latter kind, and the reade:
may wish to look at the proofs given in [7] of these programs to see the
validity of our remarks.

Acknowledgements
The author is highly obliged to Prof.0.-J.Dahl for a number of

discussions and suggestions; in particular, the axioms A1, and A2,

of SYS2 were suggested by Prof. Dahl. A number of other members of
the Informatics group at the University of Oslo also participated in
some of these discussions. The author sincerely thanks Mrs.Madsen for
her usual efficient typing of the manuscript. The research reported ir
this paper was performed while the author was supported by a post-doctor
ate fellowship of the Royal Norwegian Council for Scientific and In-
dustrial Research (NTNF).

References

1. Apt,K.R., Formal justification of a proof‘System for Communicating
Sequential Processes, draft,Eramus University, Rotteram, The
Netherlands, 1981.

2. Apt.K.R.,Bergstra,J.A.,and Meertens,L.G.K.T., Recursive assertions
are not enough - or are they ?, Theoratical Computer SC.,8(1979),73-7

3. Apt.K.R.,Francey,N.,and de Roever,W.P., A proof system for communi-
cating sequential processes, ACM TOPLAS,2(1980),359-385.

4. Hoare,C.A.R., Communicating Sequential Processes, CACM,21(1978),666-677

5. Owicki,S., Axiomatic proof techniques for parallel programs, .
Computer Science Dept. Cornell University,Ph.D.thesis(1975).

6. Soundararajan,N., Axiomatic Semantics of communicating Sequential
processes, research report,Institute for Informatics, University i
Oslo (1981).

7. Soundararajan,N., Proofs of correctness of CSP programs,

research report, Institute for Informatics, University of Oslo (1981

