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Abstract

The standard approach to dealing with OO polymorphism is to require subclasses to be behavioral subtypes
of the base class. This ensures that reasoning that has been done about any client code that operates on
base class objects will continue to be valid if instances of the subclasses are used in place of the base class
objects. But often we are interested in stronger properties of the client code, in particular that its behavior
will be appropriate to the specific subclass objects that are used, rather than just generic behavior that
ignores the differences between the different subclasses. We present some examples to illustrate the problem,
and propose a formal system that allows us to establish stronger properties of the client code on the basis
of the richer behavior provided by the appropriate derived classes.

1 Introduction and Motivation

One of the most important ideas underlying the Object Oriented approach is polymorphism.! Polymorphism
allows us to use an object that is an instance of a derived class in place of an object of the base class, with
the run-time dispatch system ensuring that the methods applied to this object are the ones defined in the
derived class. This enables us to write client code that can deal with objects that may be instances of any
of the derived classes of a given base class, but treat them uniformly as if they were all instances of the base
class. Indeed, it is even possible to define new derived classes of the same base class, and invoke the original
client code on instances of this new class since the run-time system will ensure that the functions that are
actually applied to these objects are the ones defined in the new derived class. Much has been written about
the power of OO polymorphism; see Meyer [12], for instance.

The goal of this paper is to address some questions in the specification and verification of systems that
use OO polymorphism. The standard approach to the problem is in terms of behavioral subtyping (see,
for instance, [1, 10]). In effect, given two classes C' and D, and given a specification of C, the class D is
considered a behavioral subtype of C if the behaviors exhibited by the methods of D are compatible with the
specification of C'; in other words, the methods of D should not exhibit any behaviors that are not allowed
by the specification of C'. The importance of behavioral subtyping in the context of OO polymorphism arises
because of the following consideration: Suppose we have a class C and some client code C'C' that operates
on objects of type C and that we have verified, using the given specification of C, that this code exhibits
a certain behavior B. Suppose next that we have a number of derived classes Dyq,..., D, of C. Then we

IThroughout this paper by ‘polymorphism’, or occasionally ‘OO polymorphism’, we mean the inclusion polymorphism of
Cardelli and Wegner [2].



can be sure that C'C will continue to exhibit the behavior B even if objects of type D;,i = 1,...,n are
used in place of the objects of type C' that CC' expects, provided each D; is a behavioral subtype of C.
While this is certainly correct, it overlooks an important point. The derived classes typically have a richer
conceptual model than does the base class, the methods defined in these derived classes being tailored to
provide behavior appropriate for these richer models; and often the main reason for using OO polymorphism
is to exploit this richer behavior. But the behavioral subtyping-based approach focuses on just ensuring that
the behavior B already established for CC using the base class specifications for the operations in question
will continue to be valid even though the operations actually invoked will be the ones defined in the derived
classes, rather than on establishing the richer behavior that will result from the use of these derived class
operations. Our goal in this paper is to set up a formalism that can be used to establish richer properties of
the client code by appealing to the behaviors provided by the relevant derived classes, instead of just basing
our reasoning about the client code on the base class behavior.

The problem has been noticed by other authors see, for instance, Dhara and Leavens [4]. They consider
an example consisting of a base class BankAccount and a derived class PlusAccount. Conceptually, the key
difference between these two classes is that BankAccount objects have a single balance called credit, while
PlusAccount objects have two, one corresponding to the balance in the checking portion of the account, the
other corresponding to the savings portion. The problem they note is that when reasoning about client code
that treats bank accounts polymorphically (as BankAccount objects), the behavioral subtyping approaches
do not allow us to say anything about what happens individually to the savings and checking balances.
Dhara and Leavens do not propose a solution to this problem and indeed they do not claim to, their interest
being in defining a somewhat weaker notion of behavioral subtyping rather than solving this problem. In
section 3 we will briefly show how our approach can deal with this example.

The main advantage of the behavioral subtyping approach is that client code that has been verified to
be correct once does not have to be reverified when it is invoked on objects that are instances of the derived
classes rather than of the base class. But this is reasonable only if the behavior that we want to verify
remains the same. As we have argued, the reason for using OO polymorphism is often to exploit the richer
behavior provided by the derived class(es). Hence it is likely that the behavior we want to verify for the client
code will also be similarly richer. Correspondingly, in the system proposed in this paper, when we invoke
some client code on newly defined derived class objects, we will have to do additional work in verifying this
richer behavior.

There are two important ideas in our system that allow us to reason about this richer behavior. First,
the conceptual model of the derived class will be an extension of the model of the base class; and the
specifications of the various methods of the derived class specify the effects of the methods on this extended
model. Second, we propose a set of axioms that allow us, when reasoning about client code, to arrive at
results that depend upon the effect that the methods invoked have upon the extended model, rather than
just upon the model of the base class. The combination of these two features enables us, as we demonstrate
with an example in section 3, to establish interesting results about client code that cannot be established
using the other approaches.

The rest of the paper is organized as follows: In the next section we describe our formalism. The first
part of the section explains how base classes and derived classes are specified, the second part of the section
explains how these specifications can be used to reason about client code. The third section applies our
approach to a fairly typical example of OO polymorphism consisting of a base class Figure that corresponds
to generic graphical objects that can be displayed on a screen, derived classes that correspond to specific
kinds of figures like circles, and a simple piece of polymorphic client code that uses these classes. We also
briefly discuss how our approach can be used for the example from [4]. In section 4 we summarize the
motivation behind our approach, and reiterate the underlying ideas. We also talk about possible extensions
to the system proposed in this paper.



2 Specializing Behavior

In section 2.1 we introduce our notation for specifying the behavior of base and derived classes. Our notation
is designed to make it easy to specify the richer behavior provided by the derived classes. Section 2.2 considers
how to use such specifications in establishing the behavior of client code, in particular the part that depends
upon polymorphically exploiting the richer model and behavior provided by the derived classes

Before presenting our formalism we should note that throughout much of this paper we assume that OO
polymorphism is implemented using the inheritance mechanism of languages such as Simula, Fiffel, C++2.
It is also possible, in these languages, to use inheritance to define new classes reusing part of the work that
has gone into defining existing classes, with the derived class not being conceptually closely related to the
base class. Such derived classes of course are not meant to be used polymorphically and will not obey the
restrictions imposed in this paper. We will not consider such use of inheritance in this paper; in [14] we show
how the designer of such derived classes can, in validating his® class, make use of much of the reasoning that
the base class designer went through in validating the behavior of the base class. Finally, OO polymorphism
does not require, for its implementation, a C++-like inheritance mechanism; for instance, Java’s interface
inheritance allows us to achieve OO polymorphism although the base class internals are not inherited into
the derived class. Our approach can also be used for dealing with such implementations, although we will
not address this directly in this paper.

2.1 Specifying base and derived classes

Suppose B is a base class and D is a derived class of B.* Let us first consider how to specify B. As usual,
each class will have a concrete specification and an abstract specification. The concrete specification of B is
needed not only when establishing the correctness of B’s implementation, but also, as we discuss in some
detail in [14], when establishing the correctness of D’s implementation. Since our focus in this paper is on
reasoning about the behavior of client code rather than on establishing that classes meet their specifications,
we will not worry about the concrete specifications of the classes, but instead concentrate on their abstract
specifications.

The abstract specification of B will consist of three components: a conceptual model of the class; an
invariant over this model; and the specification of each (public) method® of the class in the form of a pre-
and post-condition over the conceptual model. We will use B.M to denote the conceptual model of B, B.Inv
to denote its invariant, and B.pre.f, B.post.f for the pre- and post-conditions of the method f. The pre-
condition of f will be an assertion on the conceptual states of the object and the parameters of the method
that must be satisfied when f is invoked. The post-condition is an assertion on the states of the object
and the method parameters when f finishes execution and the corresponding states immediately before f
starts execution. Having a post-condition that refers to both the initial and final states when f starts and
finishes makes it easier to specify these methods. The pre- and post-conditions are written in terms of self,
the (conceptual) object on which the given function is being applied.

Next consider the abstract specification of the derived class D. This will be similar to that of B but we
will impose certain conditions on it. First we will require the conceptual model D.M of D to be an extension
of B.M; more precisely, D.M is a cartesian product of B.M and exty.M, the latter being the (conceptual
model corresponding to the) extension provided by the derived class. Thus an element of D.M will be of
the form (b, d) where b is an element of B.M, and d is the extension. The invariant D.Inv for D will, in
general, refer to both components of D.M. We will require this invariant to be stronger than B.Inv.

2Indeed we often use C++-like terminology, although the approach is applicable any language in this class.

3Following standard practice, we use ‘he’, ‘his’, etc. as abbreviations for ‘he or she’, ‘his or her’ etc.

4Tt would be more appropriate to say ‘B is not a derived class’ rather than to say ‘B is a base class’, because by looking
at the definition of B, at least in standard languages like C++, we can only tell whether or not B inherits from other classes,
not whether B itself will serve as a base class. It is also, of course, possible that a derived class serves as a base class for other
classes; we will briefly consider this question later in the paper.

5 Again since our interest in this paper is on establishing client code behavior, we will ignore protected and private methods
since they are only of concern to the base and derived class implementors.



The relation between the specifications in D and B of the individual methods is more complex. If we
want the client code to be able to exploit the richer behavior provided by D, then clearly the specifications
of the methods of D must provide information about how these methods use the extra component exts.M.
But at the same time, in order to ensure that behavior of client code that has been established on the
basis of the specification of the base class B is not violated when instances of D are used, we must be sure
that these methods also satisfy whatever the specification of B requires of them. Thus we will associate
two specifications with each method of D. The first specification will be identical to the corresponding
specification in the base class and can therefore be implicit, instead of being explicitly specified. Or rather,
the derived class designer will have to, as part of the task of validating his class, check that the methods, as
implemented in D, satisfy the corresponding specification in B.

The second specification of D’s method will provide information about how the method manipulates the
additional component of the conceptual model of D. It is this second specification that the client programmer
will have to rely upon in order to understand the richer behavior provided by D. A natural question would
be whether the two specifications can be combined into one; in general the answer is no since preserving
the behavior of client code that was established on the basis of the base class specification will require the
pre-conditions of the methods not to refer to new component of the conceptual model, whereas properly
specifying the effect of the function on the extended model will require us to impose conditions on the
extension as well. We will discuss this in more detail in section 4.

All of this applies only if the method in question is also in the base class. If the method is an entirely
new one that the derived class designer introduced, we will only have a single specification for it, one that
describes its complete effect on both components of the model of D. All methods including such new methods
must, of course, preserve the invariant of the class.

How do we verify that a class, base or derived, meets its (abstract) specification? Consider the base class.
First we need to introduce a concrete specification for the class. This specification will describe the effects
of the various methods in terms of how they affect the values of the various member variables of the class
rather than in terms of the conceptual model. We also need an abstraction function that maps the concrete
state of the class onto the conceptual state, and we will have to show that under this mapping, the concrete
specification in some precisely defined sense implies the abstract specification. All of this is fairly standard,
see for instance the text by Jones [6].

The derived class will similarly have a concrete specification. As discussed in [14], part of this specification
can be inherited from the concrete specification of the base class. Since our interest in this paper is in verifying
client code, we will omit these details, as well as the details of verifying that the client code does meet its
abstract specification, referring the interested reader to [14]. One important difference with the system in
[14] is that in the current situation, we have to deal with two abstract specifications for the derived class.
This will, in general, require us to come up with two concrete specifications for the class the difference
between the two being that one will describe the effects of the various methods on all the member variables
of the class including those inherited from the base class, while the other will only describe the effects on the
variables inherited from the base class.® While this means a bit more work for the derived class designer,
conceptually nothing new is required for this purpose.

2.2 Behavior of client code

Recall that our main goal is to be able, in reasoning about client code, to bring out the richer behavior
provided by the derived classes. Information about this richer behavior is, as we saw in 2.1, provided by the
(abstract) specification of the derived classes but we need some additional formal machinery to be able to
use this information. Specifically, when considering a call such as x.f() where x is a variable declared to be
of type B, we want to be able to use the specification of the method f in the derived class D if we know that

6This is not strictly correct; the abstraction function in the derived class will in general be different from that in the base
class, and this function may be such that it uses some of the new member variables of the class to map to the base class portion
of the conceptual model. In that case this second concrete specification will have to include information about these member
variables.



the object that x refers to” is, in fact, of type D.

For any variable x, let dtype.x refer to the declared type of x, and otype.x refer to the type of the object
that x currently refers to. dtype.x will be fixed when x is declared and does not change thereafter. otype.x can
potentially change whenever x is made to refer to a new object, since this new object may be of a different
type than the one x previously referred to. There are two possible ways in which x may be made to refer to
a new object, First, we may use the constructor function of a class D to create a new object; in C'++ this
would be written as,

x:=new D(...);
where the arguments expected by the constructor function are indicated by the ‘...’. Second, if we have
another variable y (whose declared type need not be the same as that of x) which refers to an object of type
D, then we can assign y to x with the result that x will refer to this object following the assignment:

X =Yy,

In both of these cases, otype.x will become D, since x now refers to an object of type D.

There is one more point to consider, the particular object that x refers to at any given point. The reason
this is important is that the effect of a method call like x.f(...) is to modify the state of the object that x
currently refers to. In other words, x continues to refer to the same object as before but the state of that
object is in general different from what it was before the method call. We will use obj.x to refer to the
object that x refers to at any given time; clearly obj.x will in general change only following the two types
of assignments to x considered in the last paragraph.® For simplicity, we will assume that all objects are
numbered 1, 2, .... Thus if at any given time x refers to the object numbered 25, the value of obj.x will be
25. Further, we will assume that Oblds is the set of numbers of all objects currently in existence. Finally, we
will use ObSts to denote the states of all the objects currently in existence; ObSts is essentially a mapping
from the numbers of the objects to their current (conceptual) state.

Let us now consider the assertions that we may use when reasoning about client code. As before, let x be
a variable declared to be of type B. Our assertions will be written in terms of dtype.x, otype.x, and obj.x, as
well as Oblds and ObSts. The effect of a declaration will be to assign a value to dtype.x; no value is assigned
to otype.x or obj.x since x does not currently refer to any object.” This may be formalized with the following
axiom:

{ true } B x; { dtypex = B } (1)
This says that following the declaration of x, its dtype has the appropriate value.

Next consider creating a new object of type D (a derived class of B as usual) and assigning it to x. Let
us assume, for simplicity, that there is only one constructor function in D and that the specification of D
contains the following, p being an assertion involving the argument y of the constructor function, cons.D
denoting the constructor function, and the post-condition ¢ being an assertion involving self and vy:

{p}cons.D(y) {q}

The effects of using this constructor function to create an object of type D and having x refer to it are the
following: the otype.x will become D; a new object, with its own identity ¢ (an integer not used to identify
any other object) is created, and the identity of this object is recorded by adding ¢ to Oblds; the state of
this object, as specified by the value of ObSts[i] as well as the states of any objects passed as parameters,
will satisfy the assertion ¢, the post-condition of the constructor function; all the other objects will have the
same state as before. We can capture all of this with the following axiom (# denotes the original value of
the entity in question before the statement began execution; since our post-conditions are assertions over
the initial and final states, # will appear frequently):

"In C++, we would be required to declare x to be of type pointer to B, but this is a language detail that we will ignore.

8Since in this paper we will not address problems of aliasing —two or more variables referring to the same object— we could
have avoided introducing obj.x and instead treated objects as values, with a new value being generated following a call like
x.f(...); but including it in the formalism will, we hope, allow us to deal in the future with aliasing; we will return to this briefly
in the final section.

9 Alternately, we could introduce a distinguished ‘unassigned’ value and assign this to otype.x and obj.x.



{dtypex = D Aphpsigionia }

x := newD(z)

{ dtype.x = #dtype.x A otypex = D

A Oblds = #Oblds U newobid(#0blds) A obj.x = newobid(#Oblds)

A selfy
qObSts[newobid(#ObIds)] ,ObSts[obj.z]

Ak € Oblds.[k # newobid(#0blds) = ObSts[k] = #0bSts[k]] } (2)
The first clause in the pre-condition uses the relation ‘=’ to check that the declared type of x is a base class
of D; this condition is not really required since it is the job of the compiler to check this. The second clause
in the pre-condition checks that the pre-condition of the constructor function being invoked is satisfied (with
the formal parameter y being replaced by the actual object to which the argument z refers). In turn, the
last but one clause in the post-condition asserts that the state of the newly created object satisfies the post-
condition of the constructor function (with the appropriate substitutions). We have assumed that there is a
function newobid that, given the current set of object identifiers, gives us the ‘next available’ object identity.
Thus the newly created object has the identity newobid(#0blds). The last clause in the post-condition above
says that the states of all the other objects are unchanged.

The effect of an assignment statement is similar but somewhat simpler since no new object is being
created:

{ dtype.x < dtype.v }

X =V

{ dtype.x = #dtype.x A otype.x = otype.v A obj.x = obj.v } (3)
We should note here that we have not explicitly stated that nothing other than x, for instance the value of
Oblds or ObSts, changes; that is implicit and we will feel free in the discussion of the examples in the next
sections to include those clauses.

Finally, and most important, let us consider the effect of a call to a method of a class. There are two
possible situations. The first, and more general one, is when we only know about the declared type B of a
variable; in this case, we can only make use of the specification of the class B. This means the result we can
establish will only talk about a portion of the (conceptual) state of the object that the variable refers to, the
portion that corresponds to the class Bj if, in fact, the object is an instance of a derived class D of B, then
we will not be able to say anything about the part of the state that corresponds to the derived class. The
second case is when we also know the type of the object D that the variable currently refers to, in which
case we can use the specification of the class D. Since D must be a derived class of B, the relation between
the specifications of B and D guarantee that the result we can establish in the latter case is stronger, which
is of course the whole point of the formalism. We have two axioms, one corresponding to each of these two
cases:

o ,self
{ dtypex = B A B‘pre'f(};bSts[obj.z],ObSts[obj.x](B) }
x.f(z)

. S . v, #y,self.#self
{ dtype.x = B A obj.x = #obj.x A B.post.foys b 2] 12 0bSts[obj.z],0bSts[obj.x] (B),#0bSts[obiax(B) 1 (4)

The second clause in the post-condition says that x continues to refer to the same object that it previously
did. The final clause says that final state of that object satisfies the post-condition of the function f as
given by the specification of the class B. The notation ObSts[obj.x](B) refers to the B component of the
state of this object; since the object may be of type D (a derived class of B), it may have additional
components; the pre-condition of f in the specification of B will not, naturally, impose any conditions on
these additional components, so we only need to refer to the B component of this state. And in turn, in the
post-condition we can provide no guarantees about such additional components of the state of this object
since the post-condition of f in the class B will say nothing about them.

This means that if at the time of the call to f we do not know the actual type of the object that x refers
to, we can only arrive at conclusions based on the declared type of x which is precisely what we would expect.
On the other hand, if we do know the type of the object that x refers to to be D, the following axiom allows
us to make assertions about the additional components of the state:



_ _ ,self
{ dtype.x = B Aotype.x = D A D.pre.féssets[obj'z]’ObSts[objlx] }

x.f(z)
. . Lo . #y,self,#self
{ dtype.x = B A otype.x = D A obj.x = #obj.x A D.post. ol il L otc b 21, 0bSts[obj x| #0bStsjobjs] § ()

We conclude this section with two points. The first is a fairly simple one. As we noted in connection
with axiom (3), but this really applies to all our axioms, the post-conditions in the axioms have left out
information about objects that are not affected by the statement under consideration. We could have written
stronger axioms to include this but did not do so mainly to ensure that the important effects of the statements
are easily seen. In the examples in the next section, we will assume that unaffected objects are unchanged.

The second point is more substantial. What about the case when we know that obj.x is either D or D’
(both of which are derived classes of B)? In this situation, we would have consider the two cases separately,
using (5) as necessary, and then combine the results using a standard disjunction axiom. In other words, if
we want to consider the behavior of polymorphic code for two possible types of objects that x might refer
to, and the behavior we are interested in depends upon the behavior provided by these two types and not
by the base class, then we have to analyze the code separately for each of the two types. Of course, if all
we care about is the behavior that depends on whatever the base class provides us, we can use (4) and that
would of course be independent of the type of object x refers to.

3 Case Study: Drawing, Erasing, and Moving Figures

In this section we will use our approach to reason about client code which manipulates different types of
graphical objects in a polymorphic manner using a hierarchy of figure classes. At the end of the section we
will also briefly consider the bank account problem from [4].

Consider an application which allows users to define, draw, and manipulate many different types of
graphical objects on the screen. These objects may include not only basic shapes such as circles, squares,
and rectangles, but also more complicated screen entities such as splines, character strings etc. The challenge
is that the program must manage many different types of objects, and do so in a uniform manner. After all,
all of the objects will need to be displayed, edited, erased, and moved around the screen. Furthermore, it is
unlikely that the program designers will be able to anticipate in advance all of the possible figures that the
users of the application will eventually want to be able to create. Thus it is crucial that the code for the
application be easily extensible. OO polymorphism is ideally suited for such an application.

The polymorphic approach for this application would be to first create an abstract (or deferred, we use
both terms) base class, let us call it Figure, containing the interface, state, and behavior that is common to
all graphical objects. Thus every Figure object must have an anchor point, methods for getting and moving
that point, a color, and methods for drawing the object on the screen and erasing it from the screen. But
while we can state in the Figure class that we have a method for drawing the figure, we cannot actually
implement such a method in this class since the method for drawing a figure object will, of course, depend
upon the type of the figure being drawn. In other words, Draw (as well as Erase) will be pure virtual functions
in the Figure class. We can then proceed to implement a variety of derived classes such as Circle, Rectangle,
etc. corresponding to different kinds of figures. Each of these classes would have to provide definitions
appropriate to those particular classes for Draw and Erase. The application code can declare references to
instances of the Figure class and manipulate them without regard to which derived classes of Figure are
actually present in the program. Further new classes can be added to the Figure hierarchy and instances of
these classes can used as they are needed without recompiling the existing application code. Our interest is
of course in the question, how do we specify and verify the behavior of such application code?

Since our focus in this paper is on dealing with client code, rather than in showing that implementations
of classes meet their specifications, we will only give the specifications of the classes; the interested reader
may refer to [5] for one possible implementation of the various classes we consider. Next we will specify
some client code that uses these classes polymorphically and use the approach of section 2 to reason about



the behavior of this code; along the way we will contrast the application of our method with that of other
approaches.

class Figure
is modeled by : (anchor: point, color : integer)
post.Figure(Point a, int c) = self= (a, c)

pre.MoveAnchor(int dx, dy) = (self.anchor.x + dx > 0) A (self.anchor.y + dy > 0)
post.MoveAnchor(int dx, dy) = ( self = ( (#self.anchor.x + dx , #self.anchor.y + dy) ,#self.color) )

post.GetAnchor() = (returns self.anchor) A (self = #self)

post.Draw(Screen s) = (self = #self) \ (s.sizey = #s.sizey) N\ (s.sizex = #s.sizex) N (s.bcolor = #s.bcolor)
(VaVy( (0 < z <s.sizex) A (0 < y <s.sizey) ) =
( s.pixels[z]ly]##s.pixels[x][y] = s.pixels[z]Jy] =self.color) )

post.Erase(Screen s) = (self = #self) N (s.sizey = #s.sizey) N (s.sizex = #s.sizex) N\ (s.bcolor = #s.bcolor)
(VaVy( (0 < x <s.sizex) A (0 < y <s.sizey) ) =
( s.pixelsfz]ly]##s.pixels[x]ly] = s.pixels[x][y] =s.bcolor) )

Figure 1: Specification of base class Figure

Our first task is to give a specification of the Figure class. This appears in Figure 1.1 An interesting
feature of this specification is what it does not say. Note the post-conditions of the Draw and Erase methods.
Presumably, the main purpose of these two methods is to cause a change to the state of the Screen object
which is passed to them as a parameter. However, the post-condition of Draw says only that if a pixel on
the screen is changed then it will be changed to the color of the figure which is being drawn. It does not
say which pixels on the screen will be changed by the draw method. Similarly the post-condition of Erase
ensures that pixels are only erased (set to the background color of the screen) and not drawn, but it does
not mention which pixels are erased. This is because in the Figure class we don’t really know how to draw or
erase the figure; that is why we decided to make these functions pure virtual in this class. In other words,
we do not know which pixels will be drawn (or erased); that is for the derived classes to worry about. What
the specification of Draw in the Figure class does express is the base class designers general expectations of
the Draw function (to be) defined in all derived classes, i.e., that Draw will not affect the anchor point, and
that any pixels that are drawn on the screen have the color appropriate to the figure being drawn. The
post-condition of Erase is motivated by similar considerations.

Our next task is to describe and specify some of the derived classes of Figure. Let us consider two
natural classes of this kind, Circle and Rectangle. Both of these classes enrich the conceptual state of the
base class: instances of Circle contain a radius along with the anchor point; instances of Rectangle contain
another point in addition to the anchor point representing the (coordinate of the) rectangle’s opposite corner
from the anchor. Each class also, of course, enriches the behavior of the base class by providing specific
implementations for the Draw and Erase functions. Again we will omit the implementations, and provide
only the specifications of the classes. The specification of Circle appears in Figure 2. The formal specification
for Rectangle would be structurally similar and we will leave it to the interested reader.

Recall that each derived class will have two specifications, one which is identical to the specification of

10Here and in the following specifications the class Screen is assumed to be modeled by an ordered 4-tuple containing the
horizontal size of the screen, the vertical size, the background color of the screen, and an array of integers representing the
current color of each screen pixel. Also the class Point is modeled by an ordered pair of integers, being the cartesian coordinates
of the point.



class Circle : Figure
is modeled by : (anchor: point, color : integer, radius : integer)
post.Circle(Point a, int c, int r) = self=(a, ¢, r)

pre.Draw(Screen s) = (self.anchor.x — self.radius > 0) A (self.anchor.x + self.radius < s.sizex) A
(self.anchor.y — self.radius > 0) A (self.anchor.y + self.radius < s.sizey)
post.Draw(Screen s) = (Figure.post.Draw) A
(VaVy( (0 < z <s.sizex) A (0 < y <s.sizey) ) =
(trunc(sqrt((x—self.anchor.x)? + (y—self.anchor.y)?)) # self.radius =
s.pixelsfx ][y ]=#s.pixels[x][y] )\
(trunc(sqrt((z—self.anchor.x)? + (y—self.anchor.y)?)) = self.radius =
s.pixels[x ][y ]=self.color) )

post.Erase()  similar to post.Draw

Figure 2: Specifications of derived classes Circle and Rectangle

Figure, and one which talks about the behavior of the derived class in terms of the new conceptual state which
is not present in the base class. For Circle we omit the first of these specifications and only include those
clauses of the second which differ from the first. For instance, the post-condition for the method GetAnchor
is the same as the post-condition for that method in the Figure class and is therefore omitted. Also, the
Circle class should probably include methods to allow clients to set and test the value of the radius etc. Such
methods, while easily specified, will not be necessary for our example —and cannot be used polymorphically
since they are not common to all types of figures— so in the interest of brevity we have omitted them. Finally,
we have left the specification of the Erase method, which closely follow that of Draw, for the interested reader
to complete.

The specification of Draw in the class Circle contains two new assertions: a pre-condition and an extra
clause in the post- condition. The pre-condition states that the Draw method cannot be invoked when the
circle is in a state that would cause part of the circle to extend off the edge of the screen. It is important to
note however, that this pre-condition is only part of the second specification of Circle. The class must also, of
course, respect its first specification (the one for the class Figure), in which there is no pre-condition for the
Draw method, otherwise we cannot be sure that results that have already been proven about existing client
code will remain valid. In short, an implementation of the Draw method for Circle must exhibit the behavior
defined by Figure.post.Draw so long as the circle object meets the condition expressed by Figure.pre.Draw,
regardless of whether or not it meets this new pre-condition. But whenever the initial state meets the
condition Circle.pre.Draw, the implementation must in addition exhibit the additional behavior defined by
Circle.post.Draw. This post-condition uses the new state of the derived class, the radius, to define precisely
which pixels on the screen are drawn by the Draw method. More specifically, the post condition states that
unless the pixel is on the circle of radius self.radius centered around the point self.anchor, the pixel does not
change. If the pixel is on that circle, then its final color matches that of the circle being drawn. As we have
argued previously, it is precisely this kind of information about the behavior of the new classes in terms of
the conceptual state not present in the base class that we are most interested in when we are reasoning about
polymorphic client code that use these classes, and we turn to that task next.

Let us consider the following client code which moves a figure from one part of the screen s to another
(we assume that fig has been declared as a reference to Figure and dx and dy are ints). The code functions by
first erasing the figure object referred to by fig, then moving it to a new location on the screen, and finally
redisplaying it:



cG
fig.Erase(s);
fig.MoveAnchor(dx, dy);
fig.Draw(s);

The code is independent of the particular type of figure referred to by fig, relying instead on polymorphism
to invoke the appropriate Erase and Draw functions.

Now we may ask the question: what results would we like to be able to establish about the behavior
of CC? Our answer depends on what we know about the object that fig is referencing when this code is
executed. It may be that we are reasoning about the behavior of CC without any knowledge of the various
subtypes of Figure. This type of reasoning might serve to assure us that our application does not violate
certain general properties. For instance, we may want to show that no red pixels are drawn on the screen,
no matter what subtypes of Figure are used in the program. So we need to establish the following result:

{ ObSts[obj.fig].color # red A ObSts[obj.s].bcolor # red

A (VaVy( (0 < 2 <ObSts[obj.s].sizex) A (0 < y < ObSts[obj.s].sizey) ) =
ObSts|obj.s].pixels[z][y] # red ) }

cc

{ (Va¥y( (0 < z <ObSts[obj.s].sizex) A (0 < y <ObSts[obj.s].sizey) ) =

ObSts[obj.s].pixels[z][y] # red ) } (pc)

We can in fact use the specification of Figure to see that the assertion (pc) holds after each statement of CC.
Since Figure.post.Erase assures us that the only pixels on the screen that are changed by Erase are changed to
the screen background color, and we have the assumption that the background color of the screen is not red,
(pc) holds after the first statement. Figure.post.MoveAnchor asserts that the screen is unaffected by calls to
MoveAnchor, so (pc) holds after the second statement. Finally, Figure.post.Draw tells us the the only pixels
changed by Draw are changed to the color of fig, which we know is not red. Thus (pc) holds at the end of
CC. To formally prove this result we would simply need three applications of axiom (4) from Section 2.2,
one for each method call. This result can also be established using other approaches such as those of [9, 10]
since it involves reasoning only about the base class conceptual state. Further, in our formalism as well as in
the others, once this result is established, the restrictions imposed on the specifications of acceptable derived
classes ensure that even if new derived classes are added to the system, the result will continue to hold.

What if we are aware of the different subtypes of Figure? Suppose we knew that when CC is executed,
that fig will only refer to a Circle object. What kind of properties of CC would we like to be able to prove in
this case? Obviously, we would be interested in results that talk about the state and behaviors that depend
upon the behavior provided by the particular derived class, Circle in this instance. After all, if we were not
interested in such properties, then why even design and implement these derived classes in the first place?
Here is an example of a result that depends upon knowing that the figure object that fig refers to is a circle:

{ (otype.fig = Circle) A (ObSts|obj.s].sizex - ObSts|obj.fig].anchor.x + dx > ObSts[obj.fig].radius)
A (ObSts[obj.s].sizey - ObSts[obj.fig].anchor.y + dy > ObSts[obj.fig].radius)
A (ObSts[obj.fig].anchor.x 4+ dx > ObSts[obj.fig].radius)
A (ObSts[obj.fig].anchor.y + dy > ObSts[obj.fig].radius) }
cc
{ ( VaVy (0 < z <ObSts[obj.s].sizex A 0 <y <ObSts[obj.s].sizey) =
( trunc(sqrt((x—ObSts|obj.fig].anchor.x)? + (y—ObSts[obj.fig.anchor.y)? ) ) =ObSts[obj.fig].radius
= ObSts[obj.s].pixels[z][y]= ObSts[obj.fig].color ) }

This result asserts that if fig refers to a Circle and if the anchor point of fig (after adding dx and dy) is
sufficiently far from the edge of the screen, then CC will draw a circle of the appropriate radius on the screen.
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Such a result cannot be established using other approaches because in these other approaches, we would be
forced to reason about the three method calls in CC using only the specifications for these calls in the base
class Figure. And, as we have already seen, those specifications say nothing about which pixels are erased
or drawn on the screen so there is no way to use them to conclude that a circle is drawn. Indeed, the base
class specifications are not even aware of the existence of the radius part of figure’s state.

Using our formalism, however, it is easy to establish the above result. Axiom (5) from Section 2.2 allows
us to use the method specifications found in the Circle class. Our assumption about the initial position of
fig will allow us to show that the pre-condition for the Draw call is satisfied, and the post-condition for Draw
will assert that a circle, not a rectangle or some other figure, is drawn on the screen. The formal proof of
the above result will require three applications of axiom (5), one for each method call. If, on the other hand,
we knew that CC was being applied to a Rectangle object, we would similarly be able to specify and verify
the behavior appropriate to that case.

Let us now briefly consider the bank account example from [4]. The example consists of a base class
BankAccount and a derived class PlusAccount. Conceptually BankAccount objects have a single balance called
credit, while PlusAccount objects have two, one corresponding to the balance in the checking portion of the
account, the other corresponding to the savings portion. Consider a fragment of client code that transfers
money from one BankAccount object to another using standard operations such as deposit and withdraw
provided by this class; this behavior can be expressed in terms of the credit in the two BankAccount objects.
Now consider what will happen if this code is applied to PlusAccount objects. Using our approach it would
be easy to establish how the checking and savings balances in the two accounts are affected, on the basis
of the specification provided by the PlusAccount class. Indeed this would be very similar to what we went
through above when considering the behavior of CC when applied to Circle objects (rather than arbitrary
Figure objects). Dhara and Leavens observe that this is not possible using just behavioral subtyping; as we
noted earlier though, this problem is not the focus of [4].

4 Discussion

Polymorphism is one of the most important ideas underlying the OO approach. The power of polymorphism
arises because when a method is invoked on an object, the run-time system chooses the appropriate code to
apply based on the class of the object, thus relieving the programmer of this burden. Indeed the programmer
does not even have to make changes, or even recompile, when new derived classes are defined and the same
code is applied on objects that are instances of these new derived classes. Meyer [13] calls this the ‘open-
closed’ principle since the compiled code can be used as such (hence ‘closed’), and can also be extended by
adding new derived classes (hence ‘open’).

Other approaches such as those [1], and [10], to reasoning about the behavior of OO code require us to
deal with polymorphism essentially by ignoring the differences between the different derived classes and using
only the information (about the methods in question) obtainable from the base class. But often the reason
for defining the derived classes is that these differences are important to the client; abstracting them away
when reasoning about the client code would defeat the purpose of defining the derived classes. The solution
we have proposed is to have the specification of each derived class provide information about the added
functionality provided by that particular class, in the form of the extension it provides to the conceptual
model (of the base class), and in the form of the effects the various methods will have on the extended
portion of the conceptual model. Our formalism also requires that the derived class not violate anything
that is contained in the base class specification, i.e., the effect of any method on the base class portion of
the conceptual model must be consistent with the base class specification of the method; in this sense our
work is an extension of the behavioral subtyping approach.!!

1 The formalisms of [10, 11], as well as that of [4], allow a slightly more general relation between the base class model and
the derived class model. They require a mapping from the model of the derived class to that of the base class such that under
this mapping the behavior of the various methods of the derived class match their specifications in the base class. We could
have similarly allowed the derived class model to be an extension not of the base class model but of a model that can in turn be
mapped to the base class model. More important, these other formalisms do not allow the reasoning about the client code to
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But it is not sufficient to enrich the specifications of the derived classes. The formalism should also allow
us, when reasoning about the client code, to make use of these richer specifications. Our axioms (4) and (5)
in section 2.2 were designed for this purpose. (4) allows us to use the base class specification if we have no
information about the specific derived class that the object in question is an instance of, and (5) allows us to
appeal to the specific derived class specification if we do have such information. The formalism in section 2.2,
in particular Oblds, the set of identities of all objects currently in existence, and ObSts, the states of these
objects, etc., has also been designed to mesh well with how OO programs function and how people think
about them intuitively; specifically with the fact that objects are long-lived entitites and have internal states
that change. The alternative would have been to treat objects as values and create a new value each time
the state of an object changes. While such an approach might have worked in simple examples such as the
ones considered in the current paper, we believe our approach is more appropriate for realisitic situations, in
particular when aliasing —two or more variables referring to the same object— is common. In such situations,
if we change an object by accessing it via one of the variables that refers to it, the change will be visible
when the object is accessed via another variable that also refers to it. This is exactly what will happen in
our approach since the change to the object state is recorded in ObSts, not by creating a new object and
associating it with the first variable.

Returning briefly to how derived classes are specified in our approach, it may seem that having two
abstract specifications for each derived class method would require additional work on the part of the derived
class designer but recall that one of these specifications is identical to the specification of the method in the
base class. Verifying that the implementation of the derived class is correct will indeed require extra work,
since the implementor has to show that both abstract specifications are satisfied. In general this will require
two concrete specifications for each method in the derived class. This can be seen in the example of the Circle
class. The problem is that a circle may be too big to fit in the given window. So the Circle class designer
has decided to impose a pre-condition that this not be so. But client code that contains a call to the Draw()
function that does not meet this pre-condition may already have been verified to satisfy some properties!
That is because the verification may have only used the base class specification, and that specification does
not impose conditions on the size of the circle, indeed the size is not part of the conceptual model of the base
class. That is why the derived class designer/implementor is not at liberty to, say, flag an error if the circle
is too big. Instead the derived class must in such a case take some default action (such as not making any
changes in the screen) if this condition is not satisfied. Correspondingly, we have two concrete specifications
for the Draw() function; one will will impose no pre-condition on the size of the circle and will guarantee that
either no pixels will be changed or a complete circle will be drawn; the other will require a pre-condition
that says the circle must not be too big, and will guarantee that the appropriate circle will be drawn on the
screen. An alternative version, let us call it altCircle, class may draw a clipped circle if it is too big to fit in
the screen. The abstract specification of altCircle would be different from that of Circle; it would impose no
pre-condition on the radius of the circle, and would guarantee in its post-condition that either a full circle
or a clipped one, as appropriate, will be drawn. Which of these derived classes is better is not particularly
important; what is important is that the formalism allow, as ours does, the derived class designers to specify
the added functionality provided by their classes.

One criticism that may be directed against our approach is that it forces us to do case analysis of the
client code on the basis of the particular type of the object on which the code is being applied, whereas
approaches like those of [10, 1] do not. But note that we have to do case analysis only to the extent that
we are interested in establishing additional properties beyond the ones that can be arrived at using the base
class specifications. These properties obviously depend upon the class of the object in question, indeed that
is the reason for defining various derived classes. If we want to show that a given piece of code will draw
a circle on the screen, we cannot expect to do that without appealing to the Circle class. An alternative
that may be worth exploring would be to include in the base class specification an assertion expressing the
‘expectations’ that the base class designer has, of the derived classes, and use such expectations to establish
stronger properties of the client code.'? We are unaware of any systems that do this, and in any case the

make any use of the effects of the methods on the part of the derived class model that is the extension; that is the key difference
with our approach.
12T a limited extent we can do this in our approach, and indeed did so in the Figure class; we required that the Draw function
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approach would seem to present more problems than it solves. What, for instance, does the Figure class
designer expect of the derived classes? The notion of ‘drawing’ seems intuitively well defined but codifying
such intuition formally would seem to hamstring the derived class designer and go against the idea of ‘open’
systems. It has been argued that derived class designers often come up with new classes that are quite
different from anything that the base class designer had in mind; if that is true, our approach is clearly
preferable.

It is worth reiterating that although our approach is influenced by the model of inheritance-based poly-
morphism in languages like Eiffel and C++, the approach (like those of [10, 4] etc.) is applicable also in
cases where polymorphism works on a different basis such as the interface inheritance of Java. Indeed most
of our discussion has been in terms of abstract specifications whereas inheritance is one specific concrete
mechanism for implementing polymorphism; since the details at the abstract level are independent of the
implementation level mechanisms, nearly everything in this paper applies without change to these alternate
mechanisms for implementing polymorphism. Of course, if the polymorphism is not class based but is instead
done on the basis of, say, delegation by the object and an object can at run-time change who it delegates
a particular method to, our approach will need considerable modifcation.'® It may also be appropriate to
mention here the work of Lamping and Abadi [8] in which they formalize polymorphism in a very general
manner allowing method selection to depend on a variety of criteria such as on the types of all the operands
(multi-methods as in Cecil [3] or CLOS [7]), or even real-time considerations (as in DROL [15]). But their
focus is on formalizing how the method is chosen (by the run-time system) rather than on reasoning about
behaviors. Nevertheless it would be interesting to see if some of their ideas can be used as a generaliza-
tion of our Oblds, ObSts, etc. to arrive at a reasoning system that can handle these general polymorphism
mechanisms.

We will conclude with a brief mention of two problems that may arise when dealing with class-based
polymorphism that we have not addressed, and possible ways to extend our approach to deal with them.
First, we have assumed that we have a base class B and a set of derived classes Dy, D, .... What about
derived classes of derived classes? Suppose B is a base class, D1 is a derived class of B and D2 is a derived
class of D1. First recall that an instance of class D2 may be used where an object of type D1 or an object
of type B is expected. Thus D2 is a derived class of both D1 and B. The conceptual model of D2 will, of
course, be an extension of that of D1 which itself is an extension of B. Since D2 is a derived class of D1,
we of course have to show that its methods satisfy D1’s (abstract) specification, in addition to satisfying
the specification we have provided in D2. But we must also show that D2’s methods satisfy the (abstract)
specification of B since D2 objects may be used in place of B objects. This seems an undesirable feature
of our approach. After all, if we show that D2 objects satisfy D1’s specifications, shouldn’t it follow that
they also satisfy B’s specifications (since we have already shown that D1 objects satisfy B’s specifications)?
That would indeed be true if we had explicitly included B’s specification as part of D1’s specification. Since
instead we took B’s specification as being implicit when dealing with D1, checking that D2 objects satisfy
D1’s (explicit) specification does not automatically guarantee that they also satisfy B’s specification. Apart
from this detail, there is no difficulty in using our approach to deal with derived classes of derived classes.

Second, what about multiple inheritance? Suppose By and Bs are two base classes and D inherits from
both. Our approach can be easily extended to deal with this situation. First, the conceptual model of D
would be an extension of the models of both By and Bs. Thus conceptually an instance d of D would consist
of three components: (by, by, e), the first two components being instances of the models of B; and By and
e is the extension provided by D. Next, the derived class designer would have to show that D satisfies
the abstract specifications of both B; and Bs. In addition, of course, D would have its own specification
that captures the behavior of the various methods in terms of all three components and the derived class

(of the derived classes) not change the color of any pixels unless the new color is the same as that of the Figure in question.
This is a restriction that the base class designer can forsee must be satisfied by every conceivable derived class of Figure, and
it is expressible in terms of the conceptual model of the base class. What we are talking about now is something much more;
the question now is, can the specification of the Figure class dictate what kinds of figures —such as circles, etc.— may be drawn
by the derived classes?

13 Smalltalk does not fall in this category; although variables in Smalltalk are not typed, polymorphism is still on a class basis;
hence our approach, with some changes given the lack of typing of variables, should apply here too. Indeed we expect Oblds
and ObSts to play an even more important role here than in languages where variables are typed.
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implementor would have to verify that this specification is also met. One notational extension that would
be needed is to deal with the following: when an object of type D is used in place of an object of type By,
both the e component as well as the by component are new to the programmer of this code. Thus when
understanding this code, as it functions on D objects, we need to worry not just about the new effects as
typically manifested by the e component but also the effects on the by component. Thus we will need to
introduce appropriate formal notations that allow us to use the specification from the By class, not just the
D class, when understanding such behavior, but conceptually no new ideas need to be introduced.
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