
Behavioral Specification of Android Apps
Neelam Soundarajan, Swaroop Joshi, Yan Xu
Computer Sc. & Eng., Ohio State University
{neelam, joshis, xuyan}@cse.ohio-state.edu

ABSTRACT
The importance of software running on mobile platforms
has been increasing rapidly. Given the critical tasks that
many of these “apps” are designed for, the importance of
developing methods for precisely specifying their expected
behaviors and testing against these specifications, is clear.
In this paper, we report on our on-going work to address
these problems for applications on the Android platform.
We propose an approach to specifying the behavior of An-
droid apps in which such information as the detailed layout
on the display are abstracted away but the behavior that
results when the app user presses specific buttons on the
display or provides other input, are specified. The approach
also allows us to specify the behavior that results when the
system invokes various lifecycle methods. We also briefly
consider how suitable test cases may be generated, based
on these specifications, so that the app may be tested to
identify potential problems.

1. INTRODUCTION
The number and importance of applications running on

mobile platforms has exploded in just a few short years.
From banking to e-commerce, from location-based targeted
advertising to even enabling social revolutions, “there is [in-
deed] an app for that”. Unfortunately, the quality of the
software varies a lot from one app to another. An impor-
tant reason for this, we believe, is the lack of techniques
to precisely specify the expected behaviors of these applica-
tions and methods to test that the apps do behave in the
expected ways. In this paper, we report on our on-going
work to specifying the behavior of Android apps [1] in which
such details as the layout on the display are abstracted away
but the behavior that results when specific buttons (on the
display) are pressed or the app user provides other input, as
well as the behavior that results when the system invokes
various lifecycle methods, are specified. We then consider
how suitable test cases may be generated based on the spec-
ifications.

The Java Modeling Language (JML) [3] has been widely
used to define suitable models of Java classes and to provide
specifications, in terms of the model, of the behaviors of the
class’s methods. Although Android uses a version of Java,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

there are important differences that JML does not account
for; hence JML cannot be directly used to specify Android
apps. First, control in an Android app flows among various
listener methods corresponding to specific inputs that the
app user provides by interacting via the widgets on the dis-
play rather than method calls that appear in the code of a
typical Java program. The listener methods that are exe-
cuted may, in turn, display appropriate information through
particular widgets on the display or modify the internal state
or both. Thus, our approach has to enable us to relate the
sequence of user inputs via the display widgets with the se-
quence of outputs produced and the changes in the internal
state. Further, the action of a listener method executed in
response to a particular input may also result in the current
activity being moved to the back-stack and another activity
becoming the current one that then receives the subsequent
user inputs, and our approach has to account for this as well.

Second, lifecycle methods play a critical role in the be-
havior of Android apps. The Android system, rather than
specific lines of code in the app, is responsible for invoking
the correct lifecycle methods at the correct times. Indeed,
some user actions such as rotating the device, that the user
may not even think of as inputs, can result in the system
invoking one or more of these methods. These methods can
have a substantial impact on the behavior exhibited by the
app and our approach has to account for them and the rela-
tion to the sequence of user actions, in specifying the app’s
behavior. Third, the association between particular lis-
tener methods and specific widgets on the display is itself
defined by the code in onCreate(), one of the lifecycle meth-
ods. Moreover, some of the information defined in the re-
source files also affect the behavior of the app. Therefore,
our approach to formalizing app behavior must account also
for these factors.

In spite of these differences, some important ideas of JML
turn out to be quite useful for our work. For example, allow-
ing the model of a class to have multiple components that
can be separately modified rather than, as is the case with
techniques based on the idea of data abstraction, makes it
possible to define appropriate models for apps. Similarly, the
idea of ghost fields, as distinct from model fields, makes it
possible to include the sequences of input and output events
as ghost fields and to include, in the specifications, their re-
lation to the way that the (model) state evolves. Hence in
the next section, we briefly summarize some of these features
of JML.

In the next section, we also summarize the main aspects
of Android1. In general, an Android app is made up of four

1The name “Android” is generally used to describe both the
underlying system as well as the language notation of the
apps. We follow this practice; the context should make clear
which is intended.

different types of components. Most apps, however, define
only one type of component, that being activity (although
these apps generally make use of other types of components
that are defined as a standard part of Android). In the cur-
rent version of our formalism, we only deal with such apps.
Moreover, in our formalism, we currently ignore the notion
of fragments which are used especially in apps designed to
run on devices, such as tablets, with larger screens; hence
in the summary in the next section, we do not consider the
fragment mechanism. Further, although Android allows an
activity to be defined by inheritance from another activity
defined in the same app (or, possibly, a different app), most
apps define their activities by inheriting from the standard
Activity of Android and we only deal with such apps in our
formalism2. We illustrate the main aspects of Android with
GeoQuiz, a simple app borrowed from a standard textbook
[7] on Android.

In Section 3, we present the details of our approach. We
first consider how the model of an activity may be defined.
Next we consider the form of specifications we use to ex-
press the behavior of the activity in terms of the model. As
we will see, our approach allows us to deal with apps that
have multiple activities with the effect of the various lifecy-
cle methods being accounted for suitably. We illustrate the
approach by applying it to the GeoQuiz app. In Section 4,
we summarize our approach, consider the numerous addi-
tional aspects of Android that need to be accounted for. We
also consider how an app may be tested against our specifi-
cations.

2. BACKGROUND

2.1 Java Modeling Language
A key idea underlying JML is that the specifications

should be written in a notation that is consistent with Java
and that it should be possible to interleave JML specifica-
tions with Java code in a natural manner, enabling program-
mers to work comfortably with such specifications. This also
makes it possible to extend Java tools to handle code that
includes specifications. Thus, for example, jmlc is an exten-
sion of the standard compiler that, given such code, produces
byte code that checks that various specified assertions, such
as pre- and post-conditions as well as class invariants, are
satisfied at various points during execution [3]. We plan to
retain this idea in our work although the current version of
our specification notation, described in Section 3, may need
to be revised in order to help the building of useful tools.

JML is a model-based specification technique. Thus, in
specifying a Java class, we define a model that is appropriate
from the point of view of the class’s client. A set of rep
clauses specifies how the actual member fields of the class
map to the model fields. The model of a class may consist
of a number of more or less independent components that
disjoint sets of members fields of the class map to. In
addition to the model, JML also allows for ghost fields. The
distinction with model fields is that ghost fields allow one
to capture additional information beyond what is available

2Dealing with activities defined as derived classes in this
manner would, as in the case of dealing with inheritance in
Java, require us to deal with problems related to the intro-
duction of new member variables in the derived class and its
impact on behavioral subtyping. The approach of using data-
groups [6] as in JML can be applied to address this problem.

in the member variables, i.e., in the state, of the class. This
may include, e.g., the history of prior method calls.

Method specifications as well as class invariants in JML
may be written using calls to pure methods, i.e., methods
that do not change the class state. These pure methods pro-
vide convenient access to specific components of the model
or useful information about them. In addition, JML allows
us to update the ghost fields by introducing set statements in
the code of the class. These are needed because these fields,
as noted above, contain information that is not in the state
variables of the class. Hence unlike regular model fields they
will not have their values suitably updated by the actions of
the original code in the class. In the next section, we will
consider a possible alternative to this approach to updating
ghost fields, at least the ones that we use in our model.

2.2 Android System (Simplified)
Android is a powerful system consisting of the under-

lying operating system, a large framework with a num-
ber of libraries useful for building apps, the Dalvik vir-
tual machine that executes the compiled apps, etc. We
will not consider those details, focusing instead on the
structure of the apps. An app may consist of four dif-
ferent types of components, these being activities, ser-
vices, broadcast receivers, and content providers. Most apps

Figure 1: GeoQuiz: QuizActivity

consist only of ac-
tivities although,
as we noted ear-
lier, apps typically
use other types of
components that are
provided by the
Android system (or
other standard apps).
In this paper, we
will focus on ac-
tivities. In order
to keep the dis-
cussion simple, we
will use, as our
motivating exam-
ple, the GeoQuiz
app, borrowed from
[7]. This app con-
sists of two activi-
ties, the main one
called QuizActivity
and a second one
called CheatActiv-
ity. Fig. 1 shows
the screen corre-
sponding to QuizActivity, the main activity of this app. The
user interface (UI) for this activity includes five widgets;
the first is a text-box that poses a simple geography-related
true/false question. The next two widgets, labeled True/-
False, are buttons that can be clicked by the user to an-
swer the question, after which the activity will display an
appropriate response in the form of a toast (“Correct!” or
“Incorrect!”) message3. If the user clicks the button labeled
Next, respectively Prev, QuizActivity displays the next, re-

3A toast is a message that is displayed briefly and then dis-
appears.

spectively previous, question. The Android system is event-
driven with much of the action taking place in the listener
methods that the system executes when particular events,
such as the user pressing the True button, take place. The
mapping of the listener method corresponding to each possi-
ble event is typically specified in onCreate(), one of the main
lifecycle methods. In more detail, such items as the appear-
ance of the various widgets and the overall appearance of
the UI, are specified in layout.xml, one of the resource
files of the app; the onCreate() method attaches, using the
id’s of the widgets defined in the resource files, the specific
listener method for the event corresponding to each widget
to the particular widget 4.

The button labeled Cheat! in Fig. 1, if clicked, (fires its

Figure 2: GeoQuiz: CheatActivity

listener method
which) invokes the
the second activ-
ity, the screen for
which is shown in
Fig. 2. This ac-
tivity allows the
user, by pressing
the button shown,
to take a peek
at the answer be-
fore going back to
the original activ-
ity, by pressing
the standard Back
button, and an-
swering the ques-
tion! But this ac-
tivity, when it re-
turns to the orig-
inal activity, re-
turns information
about this so that
it can adjust its re-
sponse to the True
/False buttons be-

ing clicked. When the user originally pressed the Cheat!
button, the triggering of the second activity takes place
because of a startActivity() command in the button’s lis-
tener method. Or, more accurately, there is a startActiv-
ityWithResult() command that triggers CheatActivity since,
as just noted, this second activity will return information
to QuizActivity. When this command is executed, the An-
droid system prepares to pause the current activity by ex-
ecuting its onSaveInstanceState() and its onPause() lifecycle
method. When the activity resumes, the system executes its
onResume() lifecycle method. The default definitons of these
methods ensure that information about the views, etc., of

4Two points should be noted. First, Android does not re-
quire this. It is possible to define the listener methods as-
sociated with the events in other ways. But almost all apps
follow this approach and it is considered a best practice; our
formalism is based on the assumption that it, as well as other
standard best practices, are followed. Second, some widgets
may have multiple events associated with them; e.g., a but-
ton widget may be able to handle a regular press as well as
a long-click with the resulting behavior being different for
these two events. Our approach, as we will see in the next
section is capable of handling this although, in much of our
discussion, we will not explicitly consider it.

the activity are saved and restored. When the Back button
is pressed when the CheatActivity is running, its onPause(),
onStop(), and onDestroy() lifecycle methods are executed be-
fore the system resumes QuizActivity by executing its onRe-
sume() method.

Suppose the user peeks at the answer and then, before
pressing the device’s Back button to return to the original
activity, rotates the device. In that case, Android destroys
the activity and re-creates it. Moreover, it cannot simply re-
sume QuizActivity by executing its onResume() method since
the layout has changed (in general, this applies to any change
in configuration of the device since the screen resources etc.
have to be recomputed based on the new configuration). In-
stead, it has to first destroy the activity and then re-create
it by executing its onCreate() followed by execution of its on-
Resume() method. But then, as Philips and Hardy [7] note,
unless the code they provide is appropriately corrected, the
user will be able cheat with impunity! The goal of the specifi-
cation formalism we develop in the next section is to capture
such subtleties5.

3. BEHAVIORAL SPECIFICATIONS

3.1 Models of activities
The model of an activity, in our approach, consists of three

distinct components. First is the model of the activity’s user
interface. While it would be possible to work with the ac-
tual UI of the activity, this would contain far too much de-
tail concerned with the appearance of each widget such as
its color, size, etc. Moreover, nearly all apps use the stan-
dard set of widgets provided by Android and it would be
pointless to repeat this information in the specification of
each one. Therefore, in our approach we include a number
of predefined model types, one corresponding to each type of
widget that may appear in the UI. These include MButton,
MTextView, and MEditText, corresponding, respectively, to
widgets of type Button, TextView and EditText. An instance
of MButton will include just one piece of information, its la-
bel, such as“True”or“Cheat!”. An instance of MTextView
will have a single piece of information associated with it, the
string of text displayed in it–or rather in the corresponding
Android TextView. An instance of MEditText will be simi-
lar, the difference between the two, reflecting the difference
between widgets of type TextView and EditText, being that
while the string in an instance of MTextView is modified by
means of the setText() operation (acting on the correspond-
ing TextView widget), the latter can also be modified by the
user; or, more precisely, by the action of the corresponding
listener method on the EditText widget.

The second component of the model of an activity, as in
JML’s model of a class, consists of a suitable set of model
fields whose values can be used to represent the state, i.e.,
the concrete values of the variables of the particular activity.
In simple examples, such as the two activities of the GeoQuiz
app, this part of the model will consist of the same variables
as the ones in the actual activity.

5The change in the app needed to deal with this bug re-
quires us to modify the code of both activities to save in the
bundle, by overriding their onSaveInstanceState() methods,
information about whether the user has cheated so that this
information is restored by the onCreate() method when the
activity is recreated.

The third component of the model of an activity is used to
represent important events, both those involving user input
via the widgets on the UI and user actions such as device
rotation; as well as events such as calls to lifecycle meth-
ods, triggered by the Android system. We split this part of
the model into two pieces, the first one which we will de-
note ν() which gives us the next event that the activity has
to respond to. This event may be either a user input event
such as the user pressing the Cheat! button which will result
in the triggering (by Android) of the corresponding listener
method; or an event denoting, e.g., return from another ac-
tivity such as return from CheatActivity to QuizActivity which
will result in the triggering of the onActivityResult() method
of QuizActivity and then its onResume().

The other piece of this component is a sequence, which
we will denote σ, that represents all the past events related
to the activity. In fact, given that an app may have more
than one activity, we have multiple such sequences, one cor-
responding to each activity. If it is not clear from the con-
text, we will use subscripts such as, e.g., σc a or σq a, to
distinguish between the sequence associated with CheatAc-
tivity from that associated with QuizActivity. In a sense, each
event“moves” from ν() to the σ (of the current activity); but
an event ν() may result in Android invoking several life-cycle
methods and each of these, and the original event from ν()
will appear in σ. We also use σσ to denote the sequence of
all past events involving all of the activities of the app, es-
sentially an appropriate merge of the individual σ’s. Being
able to easily refer to the next event and the sequence of
past events makes it convenient, as we will see, to specify
the relation between the state of the activity and the events
it has been involved in. Moreover, ν() allows us to abstract
away all of the considerable work that the Android system
has to perform in converting actual user actions, including
complex ones such as multi-touch gestures, into appropri-
ate input events and forwarding them to the appropriate
listener methods. Other kinds of interactions with the user
that the device might allow for, such as sounds or vibra-
tions etc., can also be accounted for in a straightforward
manner by ν() and σ. We only need to introduce additional
model types, similar to MEditText, that abstract away all
but the key information exchanged, in each such interaction
type, between the user and the device and that is relevant
to the app. ν() and σ are, in JML’s terminology, ghost fields
since they are not a model of information contained in the
activity’s variables.

Before concluding this section, it may be useful to con-
sider the following question. Suppose ν() returns, as the
next input event, (True, 〈〉), indicating that the True but-
ton was pressed, the second part indicating that there is
no additional associated data. How can we be sure that
QuizActivity is ready to process this event? For example,
what if the activity is currently paused because it invoked
CheatActivity and there was no event indicating return to
QuizActivity? This cannot happen, of course, because the
Android system will ensure that such events can take place
only when QuizActivity is running. But how is this repre-
sented in our formalism? The answer is that we will capture
such properties in a set of Android axioms, some of which
we will see below6.

6We should note that the set of these axioms is very much a
work-in-progress and we welcome comments from interested
researchers to help us fine-tune the axioms.

3.2 Specifying behavior
When specifying a Java class in JML, we specify its in-

variant and the pre- and post-conditions of each method as
assertions over the model fields of the class7. The class in-
variant is required to be established by the constructor and
maintained by each method. For an activity, its onCreate()
lifecycle method plays a role similar to that of the construc-
tor but it is possible that the activity was previously run-
ning and for some reason, perhaps because the device was
rotated, was destroyed and is being re-created by the sys-
tem, using the bundle, if any, that was previously saved by
its onSaveInstanceState(). Thus, to allow for this, our activ-
ity invariant will be a relation involving σ and the rest of
the model of the activity. And, as in the case of a Java class
where each method is expected to preserve the class invari-
ant, each listener method of the activity should preserve the
activity invariant. Here too, the fact that the activity in-
variant can refer to the elements in σ helps with expressing
properties suitable for inclusion in the invariant. This is be-
cause the conditions satisfied by the (model of the) member
variables of the activity will depend on the particular events
that the activity has gone through, including any values that
the activity may have received in those events, as well as any
values that the activity may have communicated to the out-
side world in some of the events8.

There is another essential aspect of the behavior of the ac-
tivity that has to be specified as part of its invariant. This
has to do with which listener method is attached to which
widget on the UI. This connection is established as part of
the onCreate() method, almost always as follows. For each
widget, get a reference to it via its resource id (as defined
in the resource files) using the Android standard function,
findViewById(); and assign the reference to a specific mem-
ber variable of the activity. Next, use the setOnClickListner()
method on that widget to specify the code to be executed
when the particular widget is clicked. And if the widget can
receive more than one kind of event, use setOnClickListner()
repeatedly to attach multiple listeners to the widget. Within
the rest of the code of the activity, the widget is accessed
via the reference to it in the particular variable of the activ-
ity. Although, in principle, these assignments can be revised
during the life of the activity, standard practice followed by
nearly all apps is to retain the correspondence for the life of
the activity; in this paper we will assume that is the case.

In the activity’s invariant, we thus include, for each wid-
get in the activity’s UI, the following information: the model
type of the widget, e.g., MButton in the case of a button
widget or MEditText in the case of a text box that can ac-
cept text input from the user; the program variable that
references the widget; and the specification of the listener
method bound to the widget. As we noted earlier, calls to
these methods don’t appear explicitly in the app’s code. In-
stead, Android invokes the methods when the corresponding
events happen (via the UI). So how do we ensure that the
pre-condition of such a method is satisfied when it is invoked
and what do we do with its post-condition?

7More precisely, only the specifications of the public methods
are to be available for use outside the class. But we ignore
these issues in this paper since essentially the same approach
to handle them as in JML is appropriate for our context.
8It is worth noting the parallel here to the approaches com-
monly used to deal with interacting processes in approaches
such as CSP [5, 8].

Consider the Next button in Fig. 1. Suppose we are al-
ready at the last question in the app. One possiblity in this
case, if the Next button is pressed at this point, would be to
“cycle around” and go back to the first question. But sup-
pose the app designer, instead, has decided to disable the
button in this situation (by calling setEnabled(false) when
the last question is reached). This relation between where
we are in the question array and the value of the enabled
bit in the state of the button can be easily represented by
including a suitable clause in the activity’s invariant. And,
in the pre-condition of the listener method bound to this
button, we require this bit to be true.

The question at the end of the last paragraph may then
be stated, in this situation, as, how do we ensure that the
enabled bit of the button (or rather of its state) will be true
when its listener method is invoked? What happens in the
actual system is that once setEnabled(false) is invoked on
a given button, Android greys out that button’s display on
the UI and the user’s attempts to click on it are ignored;
and this continues until setEnabled(true) is invoked on the
button. But how do we represent this in the formalism?
Since this is behavior that the Android system, rather than
the individual app, is responsible for, we represent it via the
following Android axiom:

[(ν().wid = b) ∧ (b.Type = MButton)]
⇒ (b.enabled = true) (A0)

(A0) states that if the type of the widget (wid) in the next
input event is MButton then its enabled bit must be true.
This axiom, in conjunction with the activity’s invariant will
allow us, in the case of the scenario described above, to show
that when the Next button is invoked, we are not currently
at the last question in the question array and hence the
index can indeed be advanced. Given this axiom, the pre-
condition for the listener method of most widgets would be
simply true since, if a particular widget is not greyed out,
the user may indeed click on it and the listener method must
be able to handle the event9. As far as the post-condition is
concerned, we simply need to ensure that when the method
finishes, the activity’s invariant is satisfied.

In addition to the listener methods, the activity may de-
fine a number of lifecycle methods which the Android system
invokes at appropriate points. Android provides default def-
initions for the lifecycle methods. If an activity provides a
definition for a lifecycle method, it will, as a rule, consist of a
call to the default definition provided by Android, followed
by additional code to achieve needed app/activity-specific
additional effects. Although Android includes a large num-
ber of lifecycle methods, the ones that are important for
most apps are, onCreate(), onPause(), and onResume(), and
in this paper, we will not consider others. Android invokes
onCreate() when the activity is created or re-created; it in-
vokes onPause() when the activity is going to the background
and another activity is getting control of the display (and
will interact with the user); it invokes onResume() when the
activity is coming to the foreground (either for the first time
or after having been paused) and will interact with the user.
9If the pre-condition of a listener method is stronger than
the activity’s invariant (plus requiring ν() being of the ap-
propriate type, i.e., the event being matched to this widget,
and the enabled bit of the widget being true), that may in-
dicate a potentially serious problem since it means that the
app may behave in unspecified ways if the user were to try
to use the particular widget when the additional conditions
that are part of the pre-condition are not satisfied.

There are a couple of other methods that are somewhat
related to the lifecycle methods that are important for many
apps. An activity may define onSaveInstanceState() to save,
on the standard bundle, the values of important variables
(such as the current value of the index in the question array
of QuizActivity). Android will invoke this method if it de-
stroys an activity, perhaps because the device was rotated.
The activity can then use the saved bundle in its onCre-
ate(), when Android invokes that method when the activity
is re-created, to restore these variables. An activity may use
startActivityForResult() to call another activity (expected to
return a result); e.g., QuizActivity uses this method to invoke
CheatActivity when the user presses the ”Cheat!” button.
The invoking activity should also define onActivityResult()
which Android will invoke (immediately before invoking on-
Resume()) when it resumes the current activity after the
invoked activity finishes.

Our formalism has to account for the behavior of these
methods and we will consider some of the issues below.

3.3 Behavior of GeoQuiz
Many apps, including GeoQuiz, make use of resource files

to specify such things as string constants, rather than pollut-
ing the code of the individual activities with this information
since even for small apps, the amount of this type of infor-
mation can be substantial. Thus, in GeoQuiz, string.xml
is defined to contain, as strings, the various questions that
might be posed to the user as well as other string constants
such as the message that might be displayed if the user pro-
vides the correct answer; a unique name is also specified for
each string. Android then generates a class file (R) that
contains these string constants and their names. Within the
individual activities, as part of the initialization code, a set
of variables are, typically, assigned the values from the R
class. This substantially reduces the size of the initializa-
tion code of these activities. Clearly, it would make sense
to apply this idea to specifications. We do so by assuming
that A(R) is a set of assertions that specifies these constants
and their names and making A(R) available when reasoning
about the app. For example, corresponding to the line,
〈string name="q_1"〉
Source of Nile River is in Egypt〈/string〉

A(R) will contain the assertion (q 1 = "Source of Nile...")
This will allow us (when checking/verifying the code against
our specification) to conclude that an assignment such as
“X=R.string.q_1” will result in X containing the speci-
fied string. Two points should be noted. First, A(R) can
be thought of as an Android axiom since it represents a
specific functionality that Android implements; but unlike
the axiom (A0) we saw earlier related to ensuring that a dis-
abled button does not receive any input, the set of assertions
in A(R) varies with the contents of the resource file(s) and
hence the app. Second, not just strings but other types of
constants along with unique idenifying names can and are
usually specified in resource files in most apps; and the class
R includes all of them. Even the layout.xml file which
specifies the layout of the UI and the activity’s widgets is a
resource file and the information is represented in R. The on-
Create() operation associates suitable listener methods with
each widget (identified by its unique name specified in the
layout file) and we have to specify the behavior of the lis-
tener method associated with each widget as part of our
specification of the activity and we turn to that next.

Consider the behavior of the button labeled Next in
QuizActivity. Recall that, according to the activity’s invari-
ant, this button would be disabled if the current value of the
question array index, mCI, is already at the last element in
the question array, mQA; and that (A0) ensures that in this
case, ν() will not be a click on this button, hence we do not
have to worry about this possibility in specifying its listener
method. The behavior of the listener method associated
with this button may be summarized as follows: increment
mCI by 1; replace the display in the TextView box on the
UI with the question which is the value of mQA[mCI]10; and
grey out the Next button if the new value of mCI is at the
last element of the array.

In terms of our model, a listener method, in general, has
three sets of effects. First, it moves the input event that re-
sulted in its invocation to σ, the history sequence associated
with the current activity; second, it updates the (model)
variables of the activity appropriately; third, it may add
one or more additional elements to σ corresponding to other
resulting events. The first effect does not have to be in-
cluded in the specifications of individual listener methods
since it represents the behavior of Android rather than of
the particular listener method; hence we represent it in our
formalism by an Android axiom (which we omit). We will
use δ to denote the elements added to σ, i.e., the change
in σ, as a result of the execution of this method. Thus the
post-condition of the listener method associated with click-
ing the Next button may be written as follows:

ensuresclickNext ≡ (1)

[(mCI = mCI@pre + 1)
∧ (1 ≤ |δ| ≤ 2)
∧ (δ[1] = (mQTextView, update,mCQ[mCI]))
∧ ((mCI < |mCQ|)⇒ (|δ| = 1))
∧ ((mCI = |mCQ|)⇒ ((|δ| = 2)

∧ δ[2] = (mNButton, setEnabled(false)))]

The first clause specifies the increase in the value of mCI
compared to its pre-value. The second clause states the
length of δ lies between 1 and 2, i.e., one or two elements (in
addition to the standard input event) will be added to σq a.
The third states that the first element added to σq a will be
an update of the question displayed in the TextView refer-
enced by the variable mQTextView. The last clause states
that if mCI is less than the length of the question array, only
one element is added to σ, else two elements are added with
the second element being one that disables, i.e., greys-out,
the button referenced by the variable mNButton.

But how exactly are the elements of δ, i.e., the new el-
ements of σ, created? In JML, given that σ is a ghost
variable, i.e., there are no actual variables of the QuizAc-
tivity class that map to σ but instead it represents addi-
tional information that is not saved in any of QuizActivity’s
variables, we are required to insert suitable set statements
in the code to appropriately create these new elements. In
our approach, we adopt the following alternative method:
in our reasoning system, the axiom for the statement mQ-
TextView.setText(. . .) that appears in the code of the activ-
ity, has the effect of creating this δ element. We can adopt
this approach because we don’t, unlike JML, allow for arbi-
trary ghost variables. The only ghosts in our approach are
ν and σ (and δ which is simply a notational convenience de-

10The actual question at this array element will, as we saw
above, be the appropriate one defined in strings.xml.

noting the new elements of σ). If we had allowed arbitrary
ghost variables, then our formal system could not adopt a
single approach such as the above to update all of them; and
we would need to allow set statements11.

Consider next the behavior of the button labeled True.
When this button is clicked, as we saw in Section 2, a toast
message appears. One of four different messages may be dis-
played, these being “Correct!” and “Incorrect!” depending on
whether the answer matches what is in the array of QuizAc-
tivity for the question at the mCI index, provided the value
of mIsCheater whose value denotes whether the user peeked
at the answer to the question before pressing the button
is false; and if mIsCheater’s value is true, the corresponding
messages are the ones in strings.xml associated with the
appropriate id’s.

ensuresclickTrue ≡ (2)

[(|δ| = 1)
∧ (∃k : (((mCA[mCI] = true) (2.1)

∧ (mIsCheater = false))⇒ (k = 11))
∧ . . .
∧ (δ[1] = (Toast, qk)))]

The first clause asserts that one element will be added to σ.
The line labeled (2.1) and the next one introduce a variable
to make it easy to refer to the various messages that may
be displayed. The two lines shown state that if the correct
answer to the question is indeed true and the user has not
cheated, the value of this variable is 11 since (we are assum-
ing that) the id of the corresponding string in strings.xml
is q11 so that, using the assertions in A(R), we can conclude
that the correct toast will be displayed.

Let us now briefly consider the Cheat! button or, rather,
what happens when the CheatActivity returns to QuizActiv-
ity. If the device is currently running CheatActivity, the user
may indicate to the system that she wants to return to the
previous activity by pressing the Back button (which is an
Android facilty and is not app-specific). The code in Cheat-
Activity ensures that information about whether the user
peeked at the answer is saved (in the form of an intent) in
the result to be returned to QuizActivity. When the user
presses the Back button, the current activity is destroyed,
and the saved result becomes available to the invoking ac-
tivity which, in this case, is QuizActivity. Android executes
the onActivityResult() of QuizActivity then its onResume(). In
other words, if the value of ν().wid is (Back, 〈〉), the result-
ing δ will consist of two elements, onActivityResult(), followed
by onResume(). What about onDestroy() on CheatActivity?
That element will be added to the history of CheatActivity,
σc a, not to σq a. All of this has to be captured in an An-
droid axiom corresponding to the click of Back button since
it is not app-specific.

Given specifications such as (1) and (2) which capture the
behavior of the various widgets for each activity in the app
and given the Android axioms which formalise the behavior
the system provides, we can, given any sequence of input
events, arrive at the sequence of events that the Android
system can be expected to go through and the results that
the user can expect to see on the display. We can then, e.g.,
test the app to see whether it meets our expectations.

11We should note that, in the specification (1), we have as-
sumed that the (model) variables that are not explicitly re-
ferred to remain unchanged.

4. DISCUSSION
The goal of our on-going work is to develop a suitable

formalism to enable us to precisely express the behaviors of
Android apps. As we noted earlier, although Android apps
are written in a version of Java, Android not only provides
a number of facilities such as widgets that implement im-
portant behaviors and that are a key part of every app, the
Android system implements specific behaviors when certain
key events take place and neither of these have counterparts
in Java. Thus an approach such as JML, as it stands, is
not adequate for our purposes. Hence, in our work, we are
developing suitable extensions to JML. Two novel aspects
of our work have been, first, the use of ν and σ to capture,
respectively the events that an activity may receive as in-
put and the sequence of events it participates in, including
events that the Android system injects into the execution
at specific times. And, second, the introduction of Android
axioms that represent the behavior that Android provides
behind the scenes. These features allow us to abstract away
much of the concrete detail that is not essential to thinking
about the abstract behavior provided by apps.

We conclude with a point related to testing. JUnit is
a widely used testing framework that is well suited for
specification-based testing. It is especially suited for testing
against JML specs since these specs are executable [4]. A
key issue, though, is coming up with a relatively small set of
test cases that adequately test the possible behaviors of the
methods of the class, given various possible starting states,
etc. Korat [2] takes a JML specification of a class and a set
of parameters that, in some respect, limits the size of each
test case, and generates such a set. It achieves this by ensur-
ing that the starting state in each test case satisfies the class
invariant and the pre-condition of the method in question;
and by generating only non-isomorphic test cases, isomor-
phism being defined based on the structure of instances of
the class. An important item of future work for us is to
develop an approach, possibly similar to that of Korat, that
allows us to test an app against its specification in our ap-
proach. An important question here will be how to define
isomorphism between given sequences of input events.

5. REFERENCES
[1] Android. Android, the world’s most popular mobile

platform.
http://developer.android.com/about/index.html, 2012.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In Proc.
of ISSTA, pages 123–133. ACM, 2002.

[3] P. Chalin, J. Kiniry, G. Leavens, and E. Poll. Beyond
assertions: Advanced specification and verification with
JML and ESC/Java2. In Formal Methods for
Components and Objects (FMCO), pages 342–363.
Springer (LNCS), 2006.

[4] Y. Cheon and G. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. In
Proc. of ECOOP 2002, pages 231–255. Springer-Verlag
LNCS, 2002.

[5] C. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[6] K. Leino. Data groups: Specifying the modification of
extended state. In Proc. OOPSLA, pages 144–153.
ACM, 1998.

[7] B. Philips and B. Hardy. Android programming. Big
Nerd Ranch, 2013.

[8] Q. Xu, W. de Roever, and J. He. Rely-guarantee
method for verifying shared variable concurrent
programs. Formal Aspects of Computing, 9(2):149–174,
1997.

