Understanding, Specifying, and Testing Mobile Software

Neelam Soundarajan, Yan Xu, Swaroop Joshi
Computer Sc. & Eng., Ohio State University
{neelam, xuyan, joshis}@cse.ohio-state.edu

ABSTRACT

In the last few years, there has been an enormous growth
in both the number of apps running on mobile platforms
as well as in the variety of tasks that they are designed to
perform. At the same time, the size and complexity of the
code of even the simplest app can be daunting to someone
trying to understand its behavior or is attempting to modify
the behavior. In related on-going work, we have proposed
an approach to the formal specifications of the behavior of
Android apps. In this paper, we consider how, based on our
formal specifications, we can arrive at precise documentation
of an Android app; and an approach to testing the app and
presenting the results in a manner that ties it to the docu-
mentation. We believe this will be of value to the original
developer during development of the app as well as to others
who might be interested in getting a good understanding of
how it functions, perhaps with the goal of modifying it.

1. INTRODUCTION

The number and variety of applications running on mo-
bile platforms has exploded in just a few short years. From
banking to e-commerce, from location-based targeted adver-
tising to even enabling social revolutions, apps have started
dominating more and more domains. Indeed, all indications
are that mobile software may well, in the near future, sup-
plant both laptop and desktop software for nearly every type
of application. At the same time, the size and complexity
of the code of even the simplest app can be challenging to
someone trying to comprehend its behavior, to relate spe-
cific aspects of the behavior with specific portions of the
code, and possibly identify bugs in that code that may be
responsible for the app exhibiting unexpected behavior or to
modify its functionality in particular ways. A key part of the
problem is that the code responsible for the core functional
behavior of the app is often intertwined with code that is re-
sponsible for its appearance and other effects on the display.
Thus the goal of our work is to develop ways that can be
used to provide precise documentation of an Android app
that focuses on its functional behavior; and an approach to
testing the app and presenting the results of the tests in a
manner that ties it to the documentation. This should be
of value to the original developer during development of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

app as well as to others who might be interested in getting
a good understanding of how it functions, perhaps with the
goal of modifying its core functionality.

In other on-going work, we are developing an approach
to formally specifying the behavior of Android apps [2]. In
that work, a preliminary version [10] of which has been sub-
mitted to the ICSE ’1} FormaliSE workshop, such details
as the layout on the display are abstracted away, the focus
being on the formal specification of the essential functional
behavior that results in response to specific user input. The
main goal of the work reported in the current paper is to au-
tomatically generate, from these formal specifications, clear
documentation of apps that is accessible to practitioners.
Our formal specifications can also be used as a basis for cre-
ating suitable test cases for the app. A second goal of the
current work is to generate understandable descriptions of
the results of these test cases. As we will see, we use a widely
used open-source tool for both tasks.

Before continuing, it may be useful to note that although
Android uses a version of Java, there are important differ-
ences. First, control in an Android app flows among vari-
ous listener methods corresponding to inputs that the app
user provides by interacting via the widgets on the display
rather than method calls that appear in the code of a typ-
ical Java program. The listener methods that are executed
may, in turn, display appropriate information through par-
ticular widgets on the display, or modify the internal state,
or both. Thus, in documenting the behavior of an app, we
have to relate the sequence of user inputs received via the
display widgets with the sequence of outputs that the app
is expected to produce as well as the accompanying changes
in its internal state. One especially important type of be-
havior is when the action of a listener method is expected
to result in the current activity being moved to the back-
stack and another activity becoming the current one that
then receives and responds to subsequent user inputs. This
has to be properly documented since the way the app re-
sponds to subsequent user inputs may completely change;
and developers who wish to relate the exhibited behavior
with specific parts of the app’s code obviously need to know
which activity is currently responding to user inputs.

Second, lifecycle methods play a critical role in the be-
havior of Android apps. The Android system, rather than
specific lines of code in the app, is responsible for invoking
the correct lifecycle methods of the activity at the correct
times. Indeed, some user actions such as rotating the device,
that the user may not even think of as inputs, can result in
the system invoking several of these methods. The execution
of these methods can have a substantial impact on the sub-
sequent behavior exhibited by the app as a whole. Hence,
appropriate descriptions of these aspects of the app’s be-
havior must be an integral part of its documentation. A
key consideration in all of this, as noted above, is to ensure
that the focus is on the core, functional behavior of the app,



rather than on such details as its appearance on the screen.

Similar comments may be made with respect to test cases
and the results of running the tests. In other words, for
each test case, we must generate a suitable description of
the sequence of input actions and the resulting sequence of
outputs as well as suitable information about the internal
states of the various activities that might become current at
various points along the way so that the developer can see
whether the results agree with the expected behaviors.

These considerations mean that some of the existing ap-
proaches to the tasks of creating documentation of Java
methods and classes and for creating readable descriptions
of test cases are not suitable for our purposes. At the same
time, as we will see below, ideas from some of these ap-
proaches can be suitably adapted and extended to allow us
to meet our goals. In the next section, we briefly summarize
some of these related approaches. We also summarize some
of the important aspects of the Android®. In general, an An-
droid app is made up of four different types of components.
Most apps, however, define only one type of component,
that being activity and we consider only such apps in this
paper. In Section 2, we also briefly summarize our approach
to formally specifying Android apps.

In Section 3, we consider our approach to creating precise
and readable documentation of the activities of an app from
their formal specifications. The approach exploits the shad-
owing facilities provided by Robolectric [7], an open-source
tool designed for testing Android apps while running them
on a standard JVM, rather than on an Android device or em-
ulator. Robolectric enables this by defining shadow classes
for the standard classes provided by the Android frame-
work, with a custom class loader substituting instances of
the shadow classes in place of instances of Android classes.
The tool also allows its user to create custom versions of the
shadow classes and it is this facility that will enable us to
to generate documentation of activities from their specifica-
tions. It is the same facility that we exploit for producing
readable summaries of test case results which we also de-
scribe in Section 3. In Sections 2 and 3, we use GeoQuiz,
a simple app borrowed from a standard textbook [9], as an
illustrative example. In Section 4, we briefly summarize our
key ideas, our plans for implementation, and answer the
questions posed in the ERA Track call for papers.

2. BACKGROUND AND RELATED WORK

Android System (Simplified):. We start with a brief sum-
mary of the Android system. It consists of the underly-
ing operating system, a large framework of classes useful
for building apps, and the Dalvik virtual machine that ex-
ecutes the compiled apps. An app may consist of four
types of components, activities, services, broadcast receivers,
and content providers. Most apps consist only of activi-
ties and, in this paper, we consider only such apps. The
GeoQuiz app [9] consists of two activities, the main one
called QuizActivity and a second one called CheatActivity.
Fig. 1 shows the screen corresponding to QuizActivity, the
app’s main activity. The UI for this activity includes five
widgets; the first, a text-box, poses a geography-related
true/false question; the next two, labeled True/False, are
buttons that can be clicked to answer the question, after
which the activity will display an appropriate response in

!The name “Android” is generally used to describe both the
underlying system as well as the language notation of the
apps. We follow this practice.

the form of a toast (“Correct!” or “Incorrect!”) message.

If the user clicks

the button labeled =y
Next, respectively

Prev, QuizActivity

displays the next,

respectively previ-

ous, question. As

noted earlier, the

behavior in response
to a wuser input

is provided by the

corresponding lis-

tener method. The

© <. 2:40

,.=1 GeoQuiz N

The Pacific Ocean is larger than the Atlantic Ocean.

True False

mapping of the lis- Cheat!
tener method cor-
responding to each {Prev Nextl

event is (typically)

specified in onCre-

ate(), one of the

main lifecycle meth-

ods. The code

in this method at-

taches, using the = — ="
id’s of the widgets
defined in the re-
source files, the lis-
tener method for the event corresponding to each widget?.

The button labeled Cheat! in Fig. 1, if clicked, (fires its lis-
tener method which) invokes CheatActivity (whose screen we
omit). CheatActivity allows the user, by pressing its ShowAn-
swer button, to take a peek at the answer before going back
to the original activity, by pressing the standard Back but-
ton, and then answering the question! But CheatActivity,
when it returns to QuizActivity, supplies information about
this so that it can adjust the response to True/False but-
tons being clicked. When the user originally pressed Cheat!,
the triggering of the second activity takes place because of
a startActivityForResult() command in the listener method
that triggers CheatActivity. When this is executed, Android
pauses the current activity by executing its onSavelnstanceS-
tate() and then its onPause() method. When the activity
resumes, the system executes its onResume(). All must be
included in the documentation of the app; and violations of
particular aspects of the expected behavior during execution
of any test cases identified.

A number of authors have proposed techniques for gener-
ating documentation for methods as well as classes. Dragon
et al. [4] propose techniques for automatically classifying in-
dividual methods as accessor, creational, etc., by static anal-
ysis of the code, relying on standard language structures
and idioms. In [5], they extend the approach to classes, au-
tomatically categorizing given classes as factory, controller,
etc., based on the frequency of occurrence of various method
stereotypes obtained by their classification of the methods.

Moreno et al. [8] build on this work by adding human
readable summaries of the class. These summaries are in-

Figure 1: GeoQuiz: QuizActivity

2 Android does not require this. It is possible to associate
listener methods to events in other ways. But most apps
follow this approach and it is considered a best practice.
Second, some widgets may have multiple events associated
such as click and long-click; these are two different events
and typically have different associated listeners.



tended to allow the reader to get a broad understanding of
the content and responsibilities of the class. The summary
is generated by a tool and provides information about the
stereotype of the class and its interfaces and superclass; a
description of the class’s structure based on its stereotype;
a description of the behavior of its most relevant methods
relevance being decided by its stereotype; and a list of inner
classes (if any). In our work, we plan to adapt the approach
of Moreno et al. to generate human readable descriptions
from the formal specifications of an app’s activities.

Kamimura and Murphy [6] present an approach to gener-
ating readable summaries of JUnit test cases for Java meth-
ods. Their tool looks for assert* calls to identify the asser-
tion(s) the test case is intended to check. The tool identifies
what is unique about a test case based on how many times it
invokes various methods and with which arguments. Based
on this analysis, the summaries generated identify the key
methods that the test cases calls and the assertions it checks.

van der Merwe et al. [11] describe an extension of Java
PathFinder, a model checking tool, to help detect problems
such as deadlocks in Android apps. One similarity with our
work is that their tool runs on a standard JVM, rather than
the Android Dalvik machine. But their focus is on detect-
ing common problems such as runtime exceptions whereas
our focus is on the functional behavior that a given app is
intended to exhibit. In some ways, their work is similar to
that of using Monkey [1], a tool that (runs on Dalvik and)
generates random user events to see if the app crashes.

We conclude with a brief summary of our on-going work
[10] on formal specification of apps. We propose an exten-
sion of JML [3] which accounts for the main differences be-
tween Java and Android. First, corresponding to each type
of widget that an activity might include on its UI, we de-
fine a model type that includes just the information related
to its functional behavior; e.g., our model type M TextView
has just one field, the string of text displayed in the corre-
sponding widget; MButton has the label that appears in the
corresponding Button as well as a boolean field that indi-
cates whether the button is currently enabled, i.e., can be
clicked; etc. Second, we introduce a sequence, o4, that rep-
resents the history of all past events related to the activity
ac. This includes both such events as events involving the
UI as well as events generated by the Android system such
as invoking onPause(). In addition, we use a function, v(),
that specifies the next incoming event that the activity will
have to deal with. Third, we define a set of azioms intended
to represent the actions of the Android system; e.g., one of
these axioms states that if the value returned by v() is the
click of a particular mButton, its enabled field must be true.
Fourth, the activity invariant is written in terms of o4 and
its model; the use of o,. makes it easy to capture impor-
tant behavior that is related to the activity’s past events.
The specifications of the various methods are also written
in terms of g, and the model; in the post-conditions, we
also use the notation § to refer to the difference between
0ac When the method started and when it ended, i.e., the
sequence of events during the method execution.

3. SHADOWS TO DOCUMENTATION

Throughout this section, we use the GeoQuiz example
to illustrate the discussion. We first consider the behavior
of the listener method associated with the Next button of
QuizActivity and its formal specification. Then we consider
a potential bug in the method and test cases that might re-
veal the bug. Finally, we will turn to how we can exploit

the shadowing facilities of Robolectric [7] for executing the
test cases —without our having to actually write them in the
form of JUnit test cases— and for generating documentation.

In our specification of the listener method of a widget,
the pre-condition must be the assertion true, i.e., is always
satisfied. The reason is that the user might click the widget
at any time; and if we allowed a pre-condition that was not
satisfied at the time of the click, the listener method may
behave in an arbitrary manner (while being consistent with
its spec). We avoid this by having true as the pre-condition.

The post-condition, or the ensures clause, of the listener
for the Next button is as follows:

ENSUTESc|ickNext = (1)

[ (mCl=mCl@pre + 1)

A< 6] < 2)

A (8[1] = (mQTextView, update, nCQ[mClI]))

A ((mCl < [mCQ|) = (18] = 1))

A ((mCl = [mCQ|) = (3] = 2)

A 8[2] = (mNButton, setEnabled(false)))]

The first clause specifies the increase in the value of mCl,
the (model) variable that holds the value of the index into
the question array, compared to its pre-value. The second
clause states that the length of § lies between 1 and 2, i.e.,
one or two elements will be added to 4., the sequence
that records the events of this activity. The third states
that the first element added to o4 , will be an update of the
question displayed in the TextView (widget corresponding to
the MTextView model object) mQTextView with the newly
displayed question being the one in the corresponding loca-
tion of mCQ), the question array. The last clause states that
if mCl is less than the length of mCQ, only one element is
added to o; else two elements are added with the second ele-
ment being one that disables, i.e., greys-out, the Next button
(mNButton being the corresponding model object).

In addition to specifications of various listener methods
(and life-cycle methods), the specification of the activity will
also include an invariant. One clause of the invariant for
QuizActivity will specify the relation between the value of the
array index, mCl, and the sequence of Next and Prev click
events recorded in o4 o. Another will state that if this value
of mCl is equal to the length of the array, then there will be
a (mNButton, setEnabled(false)) event on o4 o; and the event
that enables the button will appear following the next Prev
event in o4 o. This, in conjunction with the Android axiom
we briefly discussed at the end of Section 2 will ensure that
the Next button cannot be clicked if we are already at the
last element of the array. Thus each listener (and life-cycle)
method is required to ensure that the activity invariant is
satified when it finishes; and, in turn, we may assume that
the invariant is satified at the start of the method.

What if there was a bug in the code of this listener method
so that, in some cases, it fails to disable the button although
the value of mCl is equal to the length of the array? In
this case the app may fail since the user will be able to
click the Next button, the Android system will invoke the
listener method with the invariant not being satisfied at this
point. Thus the question is, what test cases will help us
identify such bugs and how do we arrive at them? The test
case itself is fairly clear: generate a sequence of k events
each of which is a click of the Next button, k being the
length of the question array and assert that the (mNButton,
setEnabled(false)) event appears on o, , following the k'™
click. More generally, assert, as part of the test case, that
following the execution of each listener method, its ensures



clause as well as the activity’s invariants are satisfied.

But, for this to work, we must ensure that the various
variables referred to in the post-conditions and the invari-
ant, including the sequence o4, as well as model objects
such as mNButton exist, and their values are appropriately
updated at the correct moments. For example, (mNButton,
setEnabled(false)) has to be appended to o4, and the enabled
bit of mNButton set to false when a method of QuizActivity
invokes setEnabled(false) on the Next button. How do we
ensure this when variables such as o4, and mNButton are
part of our model, not part of the actual Android app?

We achieve this by exploiting the shadowing capabilities
of Robolectric [7]. As mentioned earlier, this tool allows tests
for Android apps to be run on the JVM rather than on the
Dalvik machine. It does by this defining shadow classes cor-
responding to the various classes provided by the Android
framework; thus ShadowButton is the shadow for the Button
class. A custom class loader which is part of the Robolec-
tric test runner intercepts any call to create an instance of a
class such as Button, replacing it with an instance of Shad-
owButton. Unlike an instance of the Button class which cor-
responds to a button on the screen of an Android device and
has such properties as its color, coordinates, etc., with the
Dalvik runtime system ensuring that the button displayed
indeed has the right properties, an instance of ShadowButton
is a simple Java object with few attributes.

Robolectric also allows us to redefine ShadowButton and
other shadow classes as we choose (as long as certain inher-
itance relations are preserved). Given this, we redefine the
ShadowActivity class to include the sequence o of events that
the activity is involved in; and redefine ShadowButton, Shad-
owTextBox, etc., so that methods such as setEnabled(false)
when invoked on a Button, which the Robolectric test run-
ner would have converted into an invocation on the corre-
sponding ShadowButton, to not only set the enabled bit of
the ShadowButton class to false —which the Robolectric def-
inition already does— but also add the corresponding event
to the ShadowActivity’s o. Essentially, we define the vari-
ous shadow classes to act as the corresponding model classes;
and to include, in the definitions of the methods correspond-
ing to the various events, not only the updates of the model
objects but also add, to the sequence o, elements recording
the occurrence of the events — including internally generated
events such as invocation of life-cycle methods.

While that is adequate for running test-cases such as the
one we considered for identifying the bug in clickNext(), we
go further. First, rather than writing the test-cases by hand,
we write the code corresponding to the v() function which,
as we saw earlier, is intended, when called, to give us the
next event. The sequence of events that this function returns
when called repeatedly, in effect, gives us all the information
needed for a particular test case; all we need then is to define
the Robolectric “test-case” to instead be a test-case driver
that repeatedly invokes this function and, based on the re-
sult returned, invokes the corresponding listener method.

Second, we include a file containing the specification of
the app among the resource files and modify the ShadowAp-
plication class so that it reads in this file. This file contains
specifications such as (1) although we are still experiment-
ing with the precise notation to be used. More importantly,
following JML, rather than depending on a high-powered
solver that can check whether or not a complex assertion is
satisfied by the current values of the various (model) vari-

ables, we are identifying a small set of functions (such as
the length of o) and a restricted set of assertions based on
these functions, which can be implemented easily. When
the test-case driver invokes the various listener methods (as
well as life-cycle methods), it is these assertions that will
be checked following each such invocation. Further, borrow-
ing from the work of Moreno et al. [8], we are developing
simple templates that convert such assertions into readable
summaries. For example, a complex assertion involving the
length of o and the values in particular elements of o will be
converted into a summary such as “appropriate condition
involving the number of elements of sigma and the values
recorded in its elements”. These summaries are used both to
generate a description of the app before the test-case driver
starts and to report results as it executes.

4. CONCLUSION

We conclude by answering the questions posed in the ERA
call for submissions. The new idea in our work is to gener-
ate documentation for Android apps from their formal specs
rather than the code. And to generate documentation for
the test cases based on the execution of the test case; the
documentation identifies any violations of the expected be-
havior. This is achieved mostly by exploiting the facilities
provided by the widely used Robolectric tool rather than by
building a new tool. To our knowledge, analogous work has
not been done, certainly not for mobile software. The two
most related papers are the ones by Moreno et al. [8] and by
Kamimura and Murphy [6]. Our on-going work on formaliz-
ing Android apps serves as the basis of the work reported in
the current paper although the same approach can be used
with any other formalization of Android. The feedback we
desire from the ICPC gathering are general comments on the
usefulness of documentation of the kind we propose generat-
ing; and, in particular, comments about what may be most
useful to include and what may be omitted, in the interest
of brevity, from the generated documentation.

S. REFERENCES
[1] Android. Monkey UI/Application exerciser.

http://goo.gl/DkzXSd, 2010.

[2] Android. The android mobile platform.
http://developer.android.com/about, 2012.

[3] Y Cheon, G Leavens. A simple approach to unit
testing: JML and JUnit. ECOOP, pp. 231-255, 2002.

[4] N Dragan, M Collard, J Maletic. Reverse eng. method
stereotypes. ICSM, pp. 24-34. IEEE CS, 2006.

[5] N Dragan, M Collard, J Maletic. Automatic
identification of class stereotypes. Int. Conf. Aut.
Softw. Eng., pp. 1-10. IEEE CS, 2010.

[6] M Kamimura G Murphy. Generating human-oriented
summaries of test cases. ICPC, pp. 215-218, 2013.

[7] Pivotal Labs. Robolectric 2.2 documentation.
http://goo.gl/elaeWp, 2013.

[8] L Moreno, J Aponte, G Sridhara, A Marcus,

L Pollock, K Shanker. Automatic generation of nat.
lang. summ. for Java classes. ICPC, pp 23-32, 2013.
[9] B Philips and B Hardy. Android. Nerd Ranch, 2013.
[10] N Soundarajan, S Joshi, and Y Xu. Behavioral spec.
of Android apps. http://goo.gl/TNkFoC, 2014.
[11] H van der Merwe, B van der Merwe, and W Visser.
Verif. Android apps using JPF. SEN, 37(6):1-5, 2012.



