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ABSTRACT

Activity and gait recognition are among the various applica-
tions that necessitate view-specific input. In a real surveil-
lance scenario it is impractical to assume that the desired
canonical view will always be available. We present a frame-
work to generate the canonical view of any translating object
in a scene monitored by multiple cameras. The method is
capable of recovering this view despite the fact that none of
the cameras can see it individually. In this two step pro-
cess, first the camera and scene geometry is used to identify
the sagittal plane of the object, which is used to define the
canonical view. Next, each original view is warped to the
canonical view through planar homographies learnt from ge-
ometric constraints. The warped images are then combined
by way of evidence fusion to recover the shape energy map,
which is used to obtain the final binary silhouette of the
object’s shape. Results presented for various indoor and
outdoor sequences demonstrate the efficacy of this method
in generating the shape of the object as seen from the canon-
ical view, while resolving occlusions.

Categories and Subject Descriptors

1.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Motion, Sensor fusion, Shape; 1.2.10 [Artificial
Intelligence]: Vision and Scene Understanding—3D/stereo
scene analysis, Shape, Video analysis

General Terms
Algorithms, Security
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1. INTRODUCTION

Surveillance is an important area of research in computer
vision that deals with moving objects like people, animals,
vehicles, etc. Other scenarios dealing with locomotion in-
clude Unmanned Aerial Vehicles (UAV), sport videos, smart
houses and meeting rooms. One important requirement
in all these applications is to recognize these objects and
classify their actions (for e.g., Walking, Running, Jumping,
etc.).

Bulk of research in the area of action and gait recogni-
tion still requires view based inputs (e.g. [3, 4, 5, 6, 10]),
with an exception to some efforts in view-independent ac-
tion recognition ([21, 18]). All view based algorithms require
the object of interest to be imaged from a particular vantage
point which is not always possible in an unconstrained envi-
ronment. The first obvious solution to this problem would
involve building the full 3D model of the object/scene us-
ing multiple cameras and generating the required canonical
view. Such an approach becomes impractical for articulated
object motion sequences as dense correspondence required
for 3D reconstruction is not feasible.

This begs the question: Is the 3D reconstruction indis-
pensable for this task, or, could we instead use the basic 3D
scene structure and employ geometric constraints to gener-
ate novel views of any object and by-pass the full recon-
struction?
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Figure 1: Imaginary body planes (Image from
http://training.seer.cancer.gov)



We present a technique to generate the canonical view of
any object translating freely in an area observed by multiple
cameras. To demonstrate the approach we select the side-
view of the object as the canonical view. We can define the
side-view with respect to the sagittal plane of the object.
Sagittal plane for a symmetric 3D object is the longitudinal
plane passing through the object center dividing it into left
and right sections (fig 1). The side view of an object has
been found to be very useful in the task of action recognition
and gait analysis. If any other view is deemed canonical (e.g.
Bounded Canonical Sets [7]) then it can be calculated with
reference to the sagittal plane.

First, we identify the scene geometry and the ground plane
that (along with other geometric constraints) are used to
determine the sagittal plane. The canonical view is defined
with respect to this reference plane and a virtual camera is
synthesized to generate this view. Next, each observed view
is warped to the virtual-view through planar homographies
calculated with respect to the sagittal plane. This map-
ping ensures that the pixels belonging to the object shape,
which are on (or near) the sagittal plane, are mapped con-
sistently with no (or small) parallax. Structure far away
from the sagittal plane is mapped at different locations due
to parallax. This property of planar homographies enable
us to collect evidence of object shape as projected on its
sagittal plane (side-view) from different views. Information
is combined from the original views by the means of evi-
dence fusion. We demonstrate the working of this approach
through experimentation done on both indoor and outdoor
sequences.

Even though the cost to deploy cameras in urban and
military scenarios is decreasing, still we cannot always place
enough cameras in order to accurately reconstruct the world
in 3D. The method presented here on the other hand require
a modest number of cameras (> 2) from which it fuses infor-
mation, with a tradeoff between robustness to occlusions vs.
number of cameras. Moreover, apart from the basic claim of
generating the canonical view of an object, the method can
be used for automatic view based shape tracking without
the use of complex methods such as snakes, level sets, etc.

The remainder of this paper is organized as follows. We
being with a review of related work on multi-camera systems
and novel view generation in Sect. 2. The main algorithm
is described in Sect. 3 followed by experimental results in
Sect. 4. We finally summarize the work and conclude in
Sect. 5.

2. RELATED WORK

The problem of identifying the 3D structure from 2D im-
ages have been studied for more than 20 years [11, 12]. With
a better understanding of the 3D geometry several methods
for recovering the Structure from Motion (SfM) of 3D static
scene have been proposed. An important class of algorithms
deal with discovering the Shape from Silhouette (SFS) us-
ing multiple cameras [24]. SFS is one way to reconstruct the
3D model of an object (essentially its visual hull) that can
eventually be projected to any arbitrary view. The qual-
ity of 3D reconstruction in SFS is limited by the quality of
the reconstructed visual hull, which is in turn depended on
the number of cameras. Typically one requires a large num-
ber of cameras (10-20) for a reasonable reconstruction using
standard SFS algorithms. We want to avoid using such a
high number of cameras with the intension of just recover-
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ing a particular view of interest rather than the entire 3D
structure of the object.

Another body of work has been in the area of novel view
generation from a given set of reference views [1, 8]. Algo-
rithms to generate novel views of static objects from multiple
cameras have been presented. They are based on dense ob-
ject correspondence that effectively can lead to 3D structure
recovery and hence the novel pose. Such methods are not
suitable for articulated object motion sequences and wide
baseline cameras.

One related work on side view generation from monocular
sequences was presented in [2]. It provides a simple method
to learn the intrinsic camera parameters and estimate the
direction of motion from the video sequence. A geometric
correction can applied to warp the observed pose to the ref-
erence side view. The is suitable only for limited cases where
the direction of motion is roughly fronto-parallel to the cam-
era and there are no occlusions. Our method on the other
hand can handle any arbitrary direction of motion and is
capable of (self- or external-) occlusion reasoning.

Finally, the idea of parallax induced by planar homogra-
phies has been exploited in various applications including
shadow removal [13] and people tracking [14]. Our proposed
framework is motivated by the problems and issues raised by
these approaches and seeks to provide a simple and elegant
method to identify one of the principal planes of a translat-
ing object. We further exploit this orientation information
to generate the object pose as seen from the canonical view.

3. SAGITTAL PLANE DISCOVERY AND
NOVEL VIEW GENERATION

In this section we describe the various steps involved in
obtaining the shape of an object as it would be seen from a
camera directly looking at its sagittal plane. The algorithm
goes through the process of camera calibration, which is
a one time process until the viewpoints are changed. We
then impose geometric constraints to obtain the position
and orientation of the sagittal plane given the knowledge
about the ground plane. The probabilistic foreground maps
for each original view are warped to the novel view through
the homographies of the sagittal plane and finally fused and
thresholded to produce the shape silhouette. A flowchart
describing the entire pipeline of this framework is shown in
fig. 2.

3.1 Notation

In the remaining sections of this paper, we will use the fol-
lowing notational standards. Matrices will be denoted with
a capital boldface, like M, and the vectors will be denoted
with lowercase boldface, like v. Image matrices will be de-
noted with calligraphic font such as Z. Any mathematical
operator used in conjunction with images will denote pixel-
wise operations.

We follow the standard notation for multiple view geome-
try [9], where a 3D point in space, X, is viewed by a set of
cameras with projection matrices P?. The image projection
of the j-th point as seen by the i-th camera is denoted by a
3-vector x; = (zf,yi, 1)"

3.2 Camera and Scene Geometry

Given m views of a scene we first calibrate the multi-
camera system to estimate the camera and scene geometry.
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Figure 2: Flowchart

We assume that n > 3 correspondences are known across
all the views, of which, at least 3 lie on the ground plane.
Following a “stratified” reconstruction paradigm, we first es-
timate the projective reconstruction that is finally upgraded
to a metric reconstruction using the auto-calibration meth-
ods.

Projective reconstruction is carried out through a factor-
ization based method presented in [23] that was later en-
hanced by [16]. The projection of a 3D point on the image
plane is related as )\jxé- = P'X;, where )\;- is a constant
scale factor. For a given set of n points seen in m different
views the projection equations can be written in the matrix
form as:

W =P,.,;X (1)
where, the W is the measurement matrix denoted by
Aixi Aix3 Abxl
A3x32 A2x32 A2x2
W = (2)
At AnXat Anrxopt

and Ppro; and X are the matrices formed by stacking the
camera matrices P* and 3D points X;

Pl
P2

Ppron - (3)

C X Xe X, |
pr

If the depths )\; are known, then camera matrices Ppro;
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and the 3D points X can be estimated by decomposing the
closest (in Frobenius norm) rank 4 approximation of the
measurement matrix W. Thus, if W = UDV7T | all but first
four diagonal entries of D are set to zero resulting in ]3, then
Pr0j = UD and X = V7. Tt should be noted here that this
factorization is not unique due to a projective ambiguity.
We iterate over this process of factorization starting from
an initial estimate of )\é = 1 and re-projecting the points
into each image to obtain the new estimates of depths at
each iteration. During the entire process the image data is
normalized using the isotropic scaling method of [9] and at
each iteration the depths are re-normalized such that the
values of )\; are as close to unity as possible.

It is often advantageous to refine the projective recon-
struction by doing a nonlinear bundle adjustment that seeks
a Maximum-Likelihood (ML) solution to the projection equa-
tions x; = P*X; in the presence of (Gaussian) noise. The
best estimate of the projection matrices P and the 3D points
X that minimizes the (geometric) re-projection error in im-
age points is obtained using the non-linear Nelder-Mead sim-
plex optimization [17].

The projective reconstruction {P},,;, X} is upgraded to
a metric reconstruction using the auto-calibration technique
of [20]. Auto-calibration methods can simultaneously esti-
mate the internal camera parameters while learning the met-
ric scene structure, hence, the cameras are not required to
be calibrated in advance. It exploits the properties of the
absolute dual quadric, Q%,, which is a degenerate dual (i.e.
plane) quadric represented by a 4x4 homogeneous matrix of
rank 3. It encodes both the plane at infinity (7) and the
absolute conic () in a concise fashion. Hence if we can
estimate the absolute dual quadric, then we can find both
7 and €2, which can be used to upgrade the projective re-
construction to affine and then metric reconstruction. The
tricky part is to estimate Qb .

The projection of QJ, (through the camera matrix P) is
the dual image of the absolution conic w*

w* =PQLP" =KK" (4)
where K is the matrix containing the internal camera pa-
rameters. The idea of auto-calibration based on QJ, is to
transfer the constraints on w* via the (known) camera ma-
trix P¢. The symmetric matrix QX can be parameterized by
10 homogeneous parameters, including the 4 diagonal and 6
above-diagonal entries and can be solved using a linear sys-
tem of equations. Pollefeys et. al [19] suggest solving a set
of uncertainty weighted linear equations imposing the zero
skew constraints to estimate QJ,. Once QJ, has been esti-
mated, then the rectifying homography H can be determined
by its eigenvalue decomposition as Q. = HIHT, where

fos 0 6

I:{oo

The projective reconstruction can be upgraded to the met-
ric reconstruction {Pmetric = P;ij,H_IXj} using the
rectifying homography. As a final step, we improve the
metric reconstruction by doing a non-linear bundle adjust-
ment. The camera projection matrices, P%,.;,..., can be fac-
tored into the camera internal matrix K;, rotation, R;, and
translation, t;, such that Pi,.,.;. = Ki[R;[t;]. Finally, we
transform the world coordinate system to align with the co-
ordinate system of camera 1.



3.3 Sagittal Plane Estimation

Once the relative positions of all cameras are estimated
in a metric coordinate frame we can proceed with the de-
tection of the sagittal plane. First, the 3D locations of the
ground plane points (X4p) are estimated from known corre-
spondences using a non-linear triangulation method. This
non-linear search is bootstrapped from the result of a lin-
ear triangulation method that minimizes the total (squared)
projection error. We then fit a plane, [ngp, dgp], to the points
X, such that the sum of errors (ng,.X —dgp)? is minimized
VX € Xgp. Here, ngy, is the normal to the ground plane and
dgp is the distance of this plane from origin.

We also require the information about the direction of
motion of the object of interest. This can be estimated by
tracking any feature on the object that is visible in all views.
Surface features are not always visible across different views
due to self occlusion, hence tracking the object centroid or
ground contact such as feet is an alternative. Tracking feet
is generally not a good idea in a crowded scenario since they
are occluded most often than not. Object centroid can also
be noisy due to segmentation errors. Instead, we believe that
the top of the head, often referred to as a frontier point, can
be used as a good view invariant reference point. A head
detection algorithm can be used to obtain this information.

To proceed with the algorithm description, we assume
that the head point correspondences of the object are known
in all views. In a similar way as done earlier, we triangulate
these image correspondences to estimate their corresponding
3D location. We add this 3D location to the set, X, con-
taining 3D head locations from previous time frames. X,
should contain at least one frame history, and is continu-
ously updated to prune old 3D locations. We then estimate
the best fitting 3D vector 1ls, (minimum least squared error
sense) to the points in Xsp.

It is fair to assume that the orientation of a translating
object is normal to the ground plane due to gravity con-
straints. Now, since we have already calculated the normal
to the ground plane (ng,) and a vector lying in the sagittal
plane (1sp) , we can calculate the equation of the sagittal
plane, [nsp, dsp], as

ng, = Ngp X1
dsp = ngp-Xsp (6)

where, X and - represent the vector cross and dot products
respectively, and X, is the centroid of 3D head locations.

Furthermore, it should be noted that the object is as-
sumed to move forward or backward, i.e., the motion di-
rection is along the sagittal plane. However, if the object
was moving laterally, like from left to right, then everything
will still hold, except that the sagittal plane will be replaced
by the coronal plane (see fig. 1). Any other arbitrary mo-
tion can be handled by breaking it into small linear motion
segments along the sagittal or coronal planes.

3.4 Side View Generation

After identifying the scene geometry and orientation of
the sagittal plane, we place a virtual camera looking directly
at the sagittal plane so that its output corresponds to the
side view of the translating object. We want to place this
virtual camera C', such that its viewing direction and up
vector are aligned to n,, and ng, respectively. The distance
of this camera from the object (d,) can be adjusted as per
requirement, and we choose it to be equal to half the average

distance of the object from all cameras. This will enable us
to get a close-up look at the object.

The virtual camera view can be specified in terms of its
rotation, R, and translation, t,, with respect to (say) the
first real camera C;. Let 2 = (0,0,1)” be the optical axis
of the virtual camera, then the rotation from ns, to z is a
rotation about the axis w = ngp X z with a rotation angle
6 = cos *(nsp - 2). The resulting rotation matrix is Ry1 =
el“1x? where [w]x is the anti-symmetric matrix such that
for any vector v, [w]xVv = w x v. If the original up direction
of the camera was g = (0,1,0)7, then the new up-vector
becomes 1, = RI {ig. To finally align the up vector with
n,,, we correct the rotation by Rys = e[®#1x% where § =
cos (ngp - 01,). Hence the final rotation for the virtual
camera is given by R, = Ry,1Ry2. The translation can
therefore be calculated as t, = —R,(Xsp + donsp).

Now, there still remains one question to be answered. How
are the novel views generated? This is one of the novel con-
tributions of our method that is based on the planar ho-
mography constraints. It is well known that a planar ho-
mography is defined with respect to a particular plane in
the world. An interesting effect of this is the parallax re-
sulted from warping any structure not lying on the refer-
ence plane from one view to another. The homography will
consistently warp all 3D points lying on the reference plane
but will induce a parallax for other points. We exploit this
principle by identifying the fact that homographies learnt
with respect to the sagittal plane will warp the projection
of points on the object consistently and inducing a paral-
lax for everything else. Hence, if we can warp the multiple
camera views via this planar homography, then the object
shape will reinforce itself at the same location while other
objects (whose sagittal plane do not coincide with the one
already identified) or noise will map to different locations.
Selecting the virtual camera as the reference view will hence
warp only the side view projection of the object consistently
from all other camera views, which can finally be combined
in a fusion framework.

To warp any point x; in the i-th camera view to its cor-
responding location x, in the virtual view we need to cal-
culate the corresponding planar homography H,;, such that
X, = Hyix;. The homography from camera C; to the vir-
tual camera C, with respect to the sagittal plane is given
by

tyng _
Hvl = KU (Rv + —p) Kl ! (7)
dsp
where we assume that K, = Kji. For any other camera

(Cj, j € {2..m}) whose rotation (R;) and translation (t;)
with respect to Cy are known, the homography can be con-
structed by composition as follows

tin, 1
K, (Rj + ]d—pf’) K;

H,; = Hu,Hy, (8)

Hlj

3.5 Evidence Fusion

Since the cameras are static, we first estimate a simple
median background (B;, ¢ € {1---m}) from the video se-
quence in each of the m original view. For each new frame
(Z;) we proceed by doing a simple background subtraction
to obtain the foreground mask F; = |Z; — B;|, where | - | is
the absolute value operator. For each pixel, we normalize F;



by N; = maxz(B;, 255 — B;) to obtain the foreground proba-
bilities P; = F;/N;. The foreground probability images, P;,
from the original camera views are warped to the novel side
view, W;, using the sagittal plane homographies, H,;.

Before we combine the evidence from all the views, we
should make this careful observation. For a given object
pose, if an original camera view is aligned with the virtual
camera view then it should be given more weight during fu-
sion as opposed to another camera that is, say, looking in
the orthogonal direction. In other words, a camera looking
from behind or from front of the object will not contribute
any information regarding the side view as opposed to the
camera whose viewing direction is similar to the side view-
ing virtual camera. Due to this observation, we propose a
weighted fusion method, where each camera is assigned an
importance weight based on the square of the cosine of the
angle between its viewing direction and that of the virtual
camera’s viewing direction. Let these weights be denoted by
o; such that

m

izm;ai = Z (nsp~RiT2)2 =1

i=1

(9)

We investigated some traditional approaches to evidence
fusion of warped foreground maps, including, simple oper-
ators like and, or, sum, product, arithmetic and geometric
mean, etc., and combinations thereof. We found that the
product based rules are not useful to deal with situations con-
taining occlusions, since an occlusion in single image (area)
can drive the entire product to a low value after fusion. For
this reason we decided to use the following addition based
exponentially weighted fusion rule

E=) [1—(1-W)™]

(10)
i=1
E=w2-""
0| ’,r"
wos B=wOS Eed—(- w0
y
oafp Fel—(1- W2

Figure 3: Transformation of sensor detection prob-
abilities (W) for two exponentially weighted fusion
functions (a) £E=W* and (b) £E=1—-(1-W)*

The fusion rule in eqn. 10 is more accurate as opposed to
the obvious combination, > W;*, since the latter incorrectly
amplifies the detection probabilities for sensors having low
weights. As seen from fig. 3, the regular fusion function,
W%, and our proposed rule, 1 — (1 — W)<, both transform
the sensor detection probabilities (approximately) linearly
for reliable sensors (e.g. a = 0.8). But, in the case of
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unreliable sensors (e.g. a = 0.2), the regular exponentiation
rule believes more in the probability measurements of the
sensor as opposed to our transformed rule that correctly
suppresses the unreliable sensor’s measurements. This effect
is more drastic for low-probability detection measurements
from the unreliable sensors.

Fusing the warped foreground probability images, W;, as
per eqn. 10 results in a pseudo-probability image, which we
refer to as the “shape energy map”. Due to the homogra-
phy constraints, the regions belonging to object shape are
warped to the same location resulting in high energy regions.
We desire a binary shape silhouette as the final result of the
process, which can be obtained by thresholding the shape
energy map. This threshold can be user defined but we have
found that Otsu’s thresholding method produces desirable
results for most cases.

4. EXPERIMENTS

In this section we demonstrate the proposed framework by
presenting results of the experiments conducted on various
indoor and outdoor sequences.

For all the experiments, we need to determine the relative
orientation of the cameras in the scene using the method de-
scribed in Sect. 3.2. In all cases cameras are assumed to be
wide baseline, so an automatic matching approach like that
of [26] cannot be used to recover the point correspondences.
One could implement a more sophisticated matching algo-
rithm similar to [25], but we chose to manually select corre-
sponding points from the scene to avoid the propagation of
calibration errors into our final results.

Furthermore, we would like to mention that it is expected
in a surveillance scenario that the cameras are placed such
that they observe the monitored area from various different
vantage points. The method will not magically produce the
desired canonical view if no information about it is present.
For example, if only two cameras are placed at 180 degrees
from each other and the object is moving along the baseline
then the side view generated by this algorithm will not be ac-
curate since there is no evidence for the same. On contrary,
if 4 cameras are placed in say 4 corners of the surveillance
area than at a given time the worst views will still be only
45 degrees off the canonical view and fusion step will com-
bine the complimentary information to produce a reasonable
output for the desired view.

4.1 Indoor

The indoor configuration consists of four cameras looking
at a human shaped toy (“mini-man”) from roughly the four
corners of the room. We attempt to simulate a surveillance
like scenario where the cameras are looking down at objects
moving on a ground plane (fig. 4). Mini-man is an inter-
esting object for this experiment as it can give a qualitative
assessment of the results based on the extracted shape its
body parts. We attached a pointer on to the toys head to
enable the identification of longitudinal (back-to-front) mo-
tion direction.

To demonstrate that our method is useful in cases where
the object is unrestricted to move in any direction, we cap-
tured four sequences (A, B, C, and D), each representing a
different orientation of mini-man. Fig. 6 shows the view
from camera 4 for sequences B, C, and D.

Fig. 5 shows the original foreground probabilities in each
view (top row), which are warped to the novel canonical view



Figure 4: Four different cameras views for the indoor sequence A (Camera 1 to 4 from left to right)

Figure 5: Intermediate results for processing of indoor sequence D. Original probability maps (top row) from
each camera view are warped to the canonical view (bottom row) through planar homographies

(bottom row) through the appropriate planar homographies.
It can be seen from these images how the object is centered,
magnified, and warped in each image. These results are then
combined according to eqn. 10 to produce the shape energy
map shown in fig. 7. The final binary results are obtained by
(Otsu’s) thresholding the shape energy map and are shown
in fig. 8(a)-(d) for sequences A, B, C, and D, respectively.
One can also imagine doing a weighted combination of color
information from the original images to obtain a textured
output as shown in 8(e). Obviously, this may not represent
the true object texture.

Finally, table 1 presents the (%) reliability of each cam-
era view in contributing information for side-view genera-
tion for different indoor sequences. The method automat-
ically determines the importance of each original view and
accordingly combines information to produce the side view.
For instance, camera view 2 in indoor sequence D (fig. 5) is
looking at mini-man from behind and, hence, has almost no
information to contribute to the process of side-view gener-
ation. It is also noteworthy how the algorithm is inherently
able to deal with arbitrary camera angles, such as that of
camera 2 in the indoor sequences.

4.1.1 Robustness to Occlusions

One can argue that after calculating the reliability for
each original view, we can select the “best” camera view
and generate the output by warping it to the canonical view.
This is a simpler approach that may work in certain cases,
but certainly not in presence of occlusions. The weighted
fusion technique to combine information from different views
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Figure 6: View from camera 4 for different poses of
mini-man

is preferred over this method. Nevertheless, our method is
still applicable to scenarios that require to identify only the
“best” camera views, e.g., to collect face mug-shots etc.

To demonstrate the robustness of our approach to occlu-
sions in different camera views we manually occluded regions
in each image (in fig. 9). As seen in fig. 10, the proposed
method gracefully fills the missing information in each view
and successfully generates the complete side-view of mini-
man.



Figure 7: Shape energy map: Result of fusing informa-
tion from warped camera views as per eqn. 10 for
indoor sequence D

(a) (b) () (d)

Figure 8: (a)-(d) Binary results for indoor sequences
A-D and (e) Result of weighted color fusion for se-
quence D

Figure 9: Manually created occlusions in the four
camera views for an indoor sequence

Figure 10: Resulting side view after occlusion rea-
soning as a result of weighted fusion
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Cam 1 | Cam 2 | Cam 3 | Cam 4
Seq A | 29 29 32 10
Seq B 03 51 05 41
Seq C 32 10 28 30
Seq D 48 00 46 06

Table 1: Percentage reliability of each camera view
for different indoor sequences

4.2 Outdoor

We tested our system on a real outdoor sequence of a
surveillance area monitored by 3 cameras. Two of these
cameras were color and the third was grayscale. Represen-
tative views from these cameras can be seen in fig. 11.

Figure 11: Camera views from the outdoor surveil-
lance cameras

Figure 12: Resulting binary silhouettes (various
stance) for some frames of the outdoor sequence

Most of these cameras are placed on top of tall buildings
thus the objects of interest (people) are typically imaged
at low resolutions, e.g., 15 x 30. We employ simple back-
ground subtraction techniques (Sect. 3.5) and manually click
on head points for the purpose of this experiment. One
can implement more sophisticated methods of foreground
extraction [15, 22] and head detection [27], if desired.

We present the final binary outputs from a few frames of
the sequence in fig. 12. Notice how well the shape of the legs
is captured in these silhouettes as it would have been seen
in the side-view of the action. Moreover, the silhouettes are



bigger in size since the virtual camera is placed closer to
the person. We were able to eliminate most of the strong
shadows (due to parallax), but some artifacts due to un-
removed shadows and poor background subtraction can be
seen in the results. Improved pre-processing techniques will
definitely enhance the overall quality of the generated sil-
houettes. Furthermore, as pointed out earlier, most of these
surveillance cameras are placed at very high locations, cap-
turing more of a top-down view, and hence their contribu-
tion towards side-view information is reduced as compared
to a camera placed at the eye-level. The effectiveness of the
method is expected to scale up with the availability of more
complementing camera views.

5. SUMMARY AND CONCLUSION

We presented a novel method for generating canonical
views of any moving object observed by multiple cameras.
After identifying relative camera orientations and ground
plane correspondences, we use simple geometric constraints
to identify the reference sagittal plane passing through the
object. The desired canonical view is selected with respect
to the sagittal plane and a virtual camera is positioned ac-
cordingly. Next, we define a set of planar homographies
with respect to the reference plane that maps the points in
original camera views to the virtual camera view. These ho-
mographies ensure that object projections on the reference
plane are warped consistently from all the views, whereas,
other projections will suffer from parallax. Thus, evidence
is gathered from different views that are fused together to
produce the shape energy map. This map is finally thresh-
olded to obtain a binary shape silhouette of the object in
the desired canonical pose.

Experimental results are presented for various sequences
demonstrating the applicability of our algorithm in extract-
ing side-views for objects oriented in arbitrary directions.
The approach is found to be robustness in dealing with oc-
clusions. This is a work in progress and we are currently
striving to integrate it with other applications such as ac-
tion recognition. We also plan to obtain more quantitative
results regarding the performance of this algorithm with dif-
ferent number of cameras and their relative placements.
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