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Abstract

We present a three-mode expressive-feature model for representing and recognizing performance styles of human actions. A set of style

variations for an action are initially arranged into a three-mode data representation (body pose, time, style) and factored into its three-mode

principal components to reduce the data dimensionality. We next embed tunable weights on trajectories within the sub-space model to enable

different context-based style estimations. We outline physical and perceptual parameterization methods for choosing style labels for the

training data, from which we automatically learn the necessary expressive weights using a gradient descent procedure. Experiments are

presented examining several motion-capture walking variations corresponding to carrying load, gender, and pace. Results demonstrate a

greater flexibility of the expressive three-mode model, over standard squared-error style estimation, to adapt to different style matching

criteria.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Human actions exhibit certain observable styles. For

example, people can easily determine whether another

person is walking ‘in a hurry’ as if late for a meeting, or if

the person is just ‘casually strolling along’. Other examples

include seeing if a person is ‘straining to carry’ a heavy

object rather than ‘effortlessly holding it’, or if someone is

about to ‘toss’ a ball a short distance or preparing to ‘throw’

it a very long distance. People are quite adept at identifying

such exertion movement qualities, even from impoverished

visual cues such as point-lights and stick figures [14,34].

Furthermore, observable movement properties can be used

to infer certain emotional qualities [31,40]. Other more

internal physical origins can be the cause of some stylistic

changes, such as the walking differences that occur between

children and adults [17] or the walking styles due to gender

[3,12,22,36]. Our goal is to develop an efficient compu-

tational framework capable of representing and recognizing

such human action styles. We describe a multi-modal

principal components method incorporating trainable fea-

ture weights to emphasize key feature trajectories during the

style estimation process.

Computational models of action style are relevant to

several important application areas. Automatic video

annotation of descriptive scene behavior is a desired

capability of advanced surveillance systems. Rather than

just reporting ‘OBJECT: IN-MOTION’, it is desirable to

generate more qualitative motion descriptions of the activity

such as ‘PERSON-WALKING: IN-A-HURRY’ or ‘PERSON-WALK-

ING: CARRYING-HEAVY-OBJECT’ which may help the system

(or operator) to reason about higher-level behavior patterns.

A system able to differentiate various action styles would

also be relevant to ergonomic evaluation (e.g. for detecting

improper heavy-lifting techniques to help reduce the

(re-)occurrence of back injury), and for athletic training to

help prevent injuries by recognizing the onset of fatigue

(from movement) during endurance workouts. Another

application is the re-use of motion-capture data by employ-

ing a style model to ‘warp’ animations into new styles [7,

15]. Lastly, a style model could be used for searching digital

motion libraries to find movements exhibiting a similar (or
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different) style to the input query (e.g. ‘Show me examples

of people running fast’).

One approach to recognizing action style variations is to

match new movements to multitudes of training examples

(of different style) based on their proximity in some global

feature space. This approach would obviously be sensitive

to features not directly associated with the style. Our belief

is that certain visual cues have regularity across style

variations that enable observers to reliably distinguish and

recognize different style properties directly. Emphasizing

these most expressive features during recognition would

increase the ability of the system to reliably discriminate the

style by focusing on the most predictive information. But

which motion properties of an action give the strongest

impression of certain stylistic changes? In this paper we

present a weighted three-mode principal components model

that learns the most expressive motion features (key

features) needed for reliable recognition and matching of

action style variations.

In our approach, training examples for an action style at

different performance variations are placed into a 3D data

cube representation, with each frontal plane corresponding

to the motion trajectories of a movement at a particular style

variation. The cube representation reflects the inherent

three-mode nature of the data: body pose (mode-1), time

(mode-2), and style (mode-3). As there typically exist a high

amount of data redundancy, we reduce the dimensionality of

the data cube into three small basis sets spanning the

columns (body pose), rows (time), and slices (style). To

achieve this multi-modal reduction, we apply a three-mode

principal components factorization technique. This factor-

ization is an extension of the standard matrix principal

components method, and individually solves for a basis in

each dimension by reshaping the data cube into three

different 2D flattened matrix arrangements and applying

standard principal components. A core cube is then solved

which reconstructs the three basis sets back into the original

data cube.

From data projections into the three-mode basis set, one

could estimate the style for a new action using a standard

least-squares match to the closest training example. To

capitalize on the most predictive motion information (key

features), we instead present a weighted-least-squares

approach that is influenced by those motion trajectories

that are most reflective of the assigned matching criterion.

We outline a gradient descent method to learn the

appropriate weight values given a collection of training

examples with known style variations.

We present experimental results demonstrating the

ability of the framework to model different stylistic actions

of single and multiple people. We evaluate the approach

with analysis and recognition of several motion-capture

walking motions with style variations caused by (1) carrying

load (light-to-heavy), (2) gender (male, female), and (3)

walking pace (leisurely-to-quickly). Results demonstrate

that the approach can successfully conform to different

matching criteria of the action styles.

The remainder of this paper is presented as follows. In

Section 2, we discuss related work on style analysis. The

general three-mode factorization technique is presented in

Section 3, and the expressive three-mode model is presented

in Section 4. In Section 5, we describe the learning

algorithm for the expressive weights using physical and

perceptual matching criteria. In Section 6, we present

experimental results demonstrating the approach. Lastly, we

present the conclusion and future directions for this research

in Section 7.

2. Related work

It is well known that certain types of biological

movement patterns can be unambiguously recognized

from their own organization of motion. People can easily

recognize actions from limited types of input such as point-

lights and blurred video [13,21]. But people can further

differentiate stylistic action differences, such as the gender

of the walker (even from viewing only two moving ankle

points [22,23]) and the perceived exertion level of a person

lifting a box [34]. Such perceptual motivations naturally

lead to the desire to seek a computational model for

addressing subtle, yet informative, stylistic motion

variations.

There has been much recent work in computer vision on

detecting, tracking, and recognizing human actions (see

literature reviews [1,19,43]). With regards to style variation,

a Parameterized-HMM was used by Ref. [44] to model

spatial pointing gestures by adding a global variation

parameter in the output probabilities of the HMM states.

A bilinear model was used in Ref. [35] for separating

perceptual content and style parameters, and was demon-

strated with non-action two-mode examples including

extrapolation of fonts to unseen letters and translation of

faces to novel illuminates. In Ref. [17], an approach to

discriminate children from adults based on variations in

relative stride length and stride frequency over various

walking speeds was presented. Additionally, in Ref. [16] the

regularities in the walking motions for several people at

different speeds were used to classify typical from atypical

gaits. A two-mode principal components framework was

described in Ref. [36] to linearly classify male and female

walkers from trajectories of projection coefficients of the

body pose. Morphable models were employed in Ref. [20]

to represent complex motion patterns by linear combi-

nations of prototype sequences and used for movement

analysis and synthesis. A method for recognizing skill-level

was presented in Ref. [45] to determine the ability of skiers

by ranking properties such as synchronous and smooth

motions.

In computer animation, a Fourier-based approach with

basic and additional factors (walk; brisk) was employed in
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Ref. [39] to generate human motion with different emotional

properties (e.g. a happy walk). An HMM with entropy

minimization was used by Ref. [7] to generate different

state-based animation styles. An N-mode factorization of

motion-capture data for extracting person-specific motion

signatures was described in Ref. [42] to produce animations

of people performing novel actions based on examples of

other activities. The approach was also used to model faces

under several changes, including illumination, expression,

and pose [41]. A movement exaggeration model using

measurements of the observability and predictability of

joint-angle trajectories was presented in Ref. [15] to warp

motions at one effort into increasing efforts using only

selected trajectories. In Ref. [10], the EMOTE character

animation system used the Effort and Shape components of

Laban Movement Analysis to describe a parameterization

for generating natural synthetic gestures with different

expressive qualities.

A three-mode analysis of human movements over

various performance efforts for biomechanic evaluation

was presented in Ref. [29]. Arm segment velocities of 12

athletes throwing three different weighted balls were

examined using a three-mode principal components factor-

ization. The components themselves were manually

inspected in an attempt to determine values signifying

horizontal/vertical velocities, proximal/distal velocities,

various throwing phases, and different skill levels of the

throwers.

In this paper we present a different approach to

modeling and recognizing style, where we use a three-

mode principal components factorization of the data in

which we embed trainable feature weights to bias the

style estimation to a given matching criteria. The three-

mode decomposition provides an explicit separation of

the three natural modes into a low-dimensional set of

components from which we can easily incorporate tunable

weights on the motion trajectories. The approach can also

capture meaningful temporal style variations in a

computationally efficient manner, and does not require

large training sets.

3. Three-mode principal components

Actions can be described as the changing body pose

(mode-1) over time (mode-2). When considering stylistic

actions, we therefore have a third action mode correspond-

ing to the action style (mode-3). The data for multiple

stylistic performances of a particular action can be naturally

organized into a 3D cube Z (Fig. 1(a)), with the rows in each

frontal plane Zk comprised of the trajectories (segmented

and normalized to a fixed length/size) for a particular style

index k: The data for each variation k could alternatively be

rasterized into a column vector and placed into an ordinary

two-mode matrix (each column a motion example), but this

simply ignores the underlying three-mode nature of the data

(pose, time, style).

Many times it is preferable to reduce the dimension-

ality of large data sets for ease of analysis (or

recognition) by describing the data as linear combinations

of a smaller number of latent, or hidden, prototypes.

Principal components analysis (PCA) and singular value

decomposition (SVD) are standard methods for achieving

this data reduction, and have been successfully applied to

several two-mode (matrix) problems in computer vision

(e.g. Refs. [5,6,26,28,38]). Three-mode factorization [37]

is an extension of the traditional two-mode PCA/SVD in

that it produces three orthonormal basis sets for a given

data set represented as a 3D cube rather than a 2D

matrix. As we will show, a three-mode action decompo-

sition offers an efficient low-dimensional framework

suitable to incorporating tunable weights on trajectories

to drive the style estimation process to a context-based

matching criteria.

3.1. Three-mode factorization

Before factorization of the data, we first ij-center the

motions in Z by mean-subtraction of the trajectories along

the style dimension. A three-mode factorization decom-

poses Z into three orthonormal matrices P; T ; and S that

span the column (pose), row (time), and slice (style)

Fig. 1. (a) Three-mode arrangement of stylistic motion data. (b) Three-mode factorization of the data.
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dimensions of the cube Z (Fig. 1(b)). The core C is a cube

(much smaller in size than Z) and represents the complex

relationships of the components in P; T ; and S for

reconstructing Z:

The three basis sets can be solved using three different

2D matrix flattening arrangements of Z

Pose : P ¼ colSpaceð½Z1lZ2l· · ·lZn�Þ ð1Þ

Time : T ¼ colSpaceð½lZT
1 lZT

2 l· · ·lZT
n �Þ ð2Þ

Style : S ¼ rowSpaceð½~Z1l~Z2l· · ·l~Zn�Þ ð3Þ

where ZT
k is the transpose of Zk; and ~Zk is the rasterized

column vector of matrix Zk (concatenation of motion

trajectories for style k into a single column vector). The

desired column and row spaces in Eqs. (1)–(3) can be found

using standard two-mode SVD of the flattened matrix data.

The resulting pose basis P is able to represent any body pose

at any particular time and style (any column in Z). The time

basis T represents a temporal trajectory of any feature (e.g.

joint) position at any style (any row in Z). Lastly, the style

basis S represents the style changes for any feature position

at any particular time (any slice line in Z). Note that no two

of the three basis sets can be produced within a single two-

mode (matrix) SVD factorization. Typically, each mode

needs only to retain its first few components (meeting some

modal variance criteria) to capture most of the fit to Z when

they are recombined.

The three-mode factorization of Z can be concisely

written as Z ¼ PCðST^TTÞ; or in flattened matrix form as

½Z1lZ2l· · ·lZn� ¼ P½C1lC2l· · ·lCu�ðS
T^TTÞ ð4Þ

where ^ is the Kronecker product [25]. The core C

(flattened) can be solved by re-arranging Eq. (4) as

C ¼ ½C1lC2l· · ·lCu� ¼ PT½Z1lZ2l· · ·lZn�ðS
T^TTÞT ð5Þ

where C need not be diagonal, as is required in two-mode

PCA/SVD. Related methods for solving this three-mode

factorization can be found in Refs. [24,41].

3.2. Comparison between two-mode and three-mode

PCA/SVD

The three-mode factorization can be used to directly

compute the traditional two-mode eigenvalues and projec-

tion operation if desired. To show a correspondence

between three-mode and two-mode PCA/SVD for recog-

nition, it is sufficient to derive the two-mode projection

operation from the three-mode factorization.

It can be shown [25] that the squared summation of the

rth frontal-plane elements of the three-mode core C (of

cube Z) is equal to the rth squared singular values s2
r (or

equivalently the eigenvalues lr) of the rasterized flattened

matrix ~Z (each column in ~Z is a rasterized motion vector ~Zk)

lr ¼ s2
r ¼

X
i

X
j

C2
i;j;r ð6Þ

The SVD factorization of the two-mode matrix is ~Z ¼

USVT; and the projection of the rasterized training

examples onto the column space is UT~Z ¼
P

VT:

Referring to Eq. (3), the style basis calculated for the

cube Z is equivalent to the row basis V of the rasterized

data in matrix ~Z: Therefore, we can compute the two-

mode projection coefficients SVT from the singular

values (eigenvalues) derived from the three-mode core

(Eq. (6)) and the two-mode row basis V ¼ S:

The advantage to a three-mode factorization over a

two-mode decomposition is that we have a tri-modal

separation of the data space from which we can easily

weight certain dimensional variables (e.g. trajectories)

with more influence when estimating the action style. The

three-mode factorization also makes available useful basis

sets for the feature trajectories and poses, which are not

available from a single two-mode factorization of the

rasterized data.

3.3. Three-mode estimation of style parameters

Any frontal plane Zk (action at a particular style k) can be

reconstructed in connection with Eq. (4) as

Zk ¼ P
Xu

r¼1

SkrCr

 !
TT ð7Þ

where each example k has a corresponding set of Skr

component loadings from the style mode S: To determine

the style for a new action within this framework, we

therefore need only to estimate its corresponding style

parameters in S: For this, a minimization of the reconstruc-

tion error can be used.

The three-mode reconstruction of each data element

Zijk of Z can be written from Eq. (7) as a summation of

particular three-mode basis elements, where the style

loadings can be isolated from the remaining factored

terms as

Zijk ¼
Xs

p¼1

Xt

q¼1

Xu

r¼1

PipTjqSkrCpqr ð8Þ

Zijk ¼
Xu

r¼1

Skr

Xs

p¼1

Xt

q¼1

PipTjqCpqr

0
@

1
A ð9Þ

Zijk ¼
Xu

r¼1

Skraijr ð10Þ

Recall that indices i; j; and k correspond to elements

in the respective pose, time, and style dimensions.

If we have a nearly diagonal core (with cpqr < 0

when p – q), we can further reduce the computations

with aijr ¼
Pminðs;tÞ

p¼1 PipTjpCppr:

The style values for a new action ẑ (after mean-

subtraction with the model) can be estimated by
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minimizing the least-squares reconstruction error for each

element ẑij of ẑ

F ¼
X

i

X
j

ẑij 2
Xu

r¼1

ŝraijr

 !2

ð11Þ

Setting the following partial derivatives to zero

›F

›ŝr

¼ 22
X

i

X
j

ẑij 2
Xu

r¼1

ŝraijr

 !
aijr ¼ 0 ð12Þ

and re-arranging the terms in matrix format, we produceXX
a2

ij1

XX
aij2aij1 · · ·

XX
aijuaij1XX

aij1aij2

XX
a2

ij2 · · ·
XX

aijuaij2

..

.

XX
aij1aiju

XX
aij2aiju · · ·

XX
a2

iju

2
666666664

3
777777775

ŝ1

ŝ2

..

.

ŝu

2
66666664

3
77777775

¼

XX
zijaij1XX
zijaij2

..

.

XX
zijaiju

2
666666664

3
777777775

ð13Þ

The ŝr style loadings can then be estimated using standard

matrix inversion, where the a values and the u £ u matrix

can be pre-computed.

4. Estimation of style parameters using expressive

features

The least-squares style estimation in Eq. (13) places

equal prior emphasis on each motion trajectory in an action

and minimizes based on those trajectories with the largest

magnitude differences. Perhaps only select trajectories carry

the salient information to distinguish the styles, while the

differences in other trajectories may not correspond to the

style changes. Furthermore, these salient trajectories may

have smaller magnitude differences as compared to the

other trajectories. What is needed is a method to place more

emphasis on the important style-related trajectories. We

refer to those key motion trajectories that reliably carry the

impression of the styles as expressive trajectories.1 To

accommodate the notion of expressive features in our three-

mode framework, we need to bias the three-mode style

estimation process to emphasize the most style-expressive

trajectories.

As all trajectories may not equally discriminate the

action style (i.e. all may not be expressive key features), we

augment the previous error function of Eq. (11) with

positive expressibility weights Ei on each of the feature-i

trajectories

F ¼
X

i

Ei

X
j

ðẑij 2
Xu

r¼1

ŝraijrÞ
2 ð14Þ

The weighted-least-squares estimation of the style is thenX
i

Ei

X
j

a2
ij1 · · ·

X
i

Ei

X
j

aijuaij1

..

.

X
i

Ei

X
j

aij1aiju · · ·
X

i

Ei

X
j

a2
iju

2
666666664

3
777777775

ŝ1

..

.

ŝu

2
6664

3
7775

¼

X
i

Ei

X
j

zijaij1

..

.

X
i

Ei

X
j

zijaiju

2
666666664

3
777777775

ð15Þ

For a given set of expressive weights Ei; the above linear

system can be used to solve for the target style values.

We desire to learn the expressive weight values needed to

map the training data to some given set of style values.

Under different contexts, we may desire different style

associations for the motions. But even for a small number of

training examples, there would be multiple style parameters

ðs1· · ·suÞ for each example, which makes it difficult to

gauge/assign these values to examples for a learning

process. As there typically exists strong regularity within

an action style, we expect that a single style parameter can

be used to simply describe the range of variation. Therefore

we consider a reduced model having only a single style

parameter, which also simplifies the learning of the

expressive weights and the computation of style.

4.1. Reduced three-mode model

To reduce the style mode in the previous three-mode

model, and yet account for as much variance as possible, we

focus on the two extreme style variations, Z1 and Z2 (e.g.

slowest/fastest walking or lightest/heaviest carrying).

First we compute the ij-mean (along the style dimension)

for the two extreme motions. This mean is subtracted from

all of the training data to center the three-mode model on the

two extremes. We then assign a ð2 £ 1Þ style basis S ¼

½21; 1�T=
ffiffi
2

p
to account only for the two extreme motions.

For many continuous style variations (e.g. walking pace

from slow-to-fast), we expect the variations that occur

between these two extremes to exhibit smooth and

predictable regularity [27]. Hence the remaining style

variations in the training data between these two extremes

are expected to be well-approximated with a style value in

the range 21ffiffi
2

p # ŝ # 1ffiffi
2

p :

The remaining P and T basis sets have no restriction on

the number of training examples, therefore all of the training

1 An alternate meaning of expressive features is given by Ref. [11] that

refers to the principal eigenvectors.
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data (mean-subtracted) can be used to compute P and T : The

core is solved as in Eq. (5), but using only the two extreme

motion examples (mean-subtracted) to match the dimen-

sionality in S

C ¼ PT½Z1lZ2�ðS
T^TTÞT ð16Þ

The core C is therefore reduced from a cube to a matrix.

The new reduced model with one ð2 £ 1Þ style com-

ponent has only 1 style parameter, as shown in

Zk ¼ PðskCÞTT ¼ skPCTT ð17Þ

Zijk ¼ skaij ð18Þ

which are the new reduced versions of the full style

equations of Eqs. (7) and (10). With only two extreme

styles, Z1 ¼ 21ffiffi
2

p PCTT and Z2 ¼ 1ffiffi
2

p PCTT:

If we have the style ranges of multiple people in the

training set, two ‘prototype’ extreme motions can be formed

using the average of the lowest extreme Z1 and the average

of the highest extreme Z2 from the set of multiple people.

These two extreme prototypes can then be used in the above

formulation. We will demonstrate this multi-person

approach in the experiments.

4.2. Reduced style estimation

Recalling the expressive error function of Eq. (14), we

can construct and solve a new error function using this

reduced model (using Eq. (18)) to estimate the style value ŝ

for a movement ẑ with

F̂ ¼
X

i

Ei

X
j

ðẑij 2 ŝ·aijÞ
2 ð19Þ

For minimizing F̂ to estimate the target style parameter ŝ;

we again set the partial derivatives to zero and re-arrange to

produce

ŝ ¼

P
iEi

P
jẑijaijP

iEi

P
ja

2
ij

ð20Þ

ŝ ¼
X

i

Êi

X
j

ẑijaij ð21Þ

ŝ ¼
X

i

ÊiDi ð22Þ

where Di ¼
P

j ẑijaij: As the denominator
P

i Ei

P
j a

2
ij in

Eq. (20) is a constant for a given set of Ei; we fold this term

into the new expressive weights Êi:

Setting the new expressive weights to Êi ¼ ð
P

m

P
n �

a2
mnÞ

21 in Eq. (22) yields the standard sum-of-squared-error

(SSE) least-squares estimation of the style parameter. This

is also equivalent to using standard two-mode PCA/SVD

with rasterized data to recover the style parameter (the

projection coefficient). However, with non-uniform expres-

sive weights, to emphasize certain trajectories, the approach

is capable of producing other desired style estimations.

The approach is therefore not limited to the standard

minimization of SSE solution (as is the case with standard

PCA/SVD).

5. Learning expressive weights

The remaining task is to determine the appropriate values

of the expressive weights Êi within the reduced three-mode

model to compute styles that correspond to some preferred

values. We outline a method on how these weights can be

efficiently learned from labeled training examples.

Our approach is based on minimizing an error function

comparing the computed style values (using Eq. (22)) with

the given training style values. With a set of ðK $ 2Þ

training motions (K different variations), we first construct

the reduced three-mode basis. We then construct an error

function of the K examples, comparing the computed style

values ŝk with the desired style values �sk pre-assigned to

those examples

J ¼
X

k

ð�sk 2 ŝkÞ
2 ð23Þ

J ¼
X

k

ð�sk 2
X

i

ÊiDikÞ
2 ð24Þ

The expressive weights in Eq. (24) can be solved linearly,

but this requires as many style variations ðKÞ as there are

expressive weights (feature trajectories). Instead, to accom-

modate smaller training sets, we employ a fast iterative

gradient descent algorithm [9] of the form

Êiðn þ 1Þ ¼ ÊiðnÞ2 hðnÞ·
›J

›Êi

ð25Þ

with the gradients ›J=›Êi computed over the K training

examples

›J

›Êi

¼ 22
X

k

Dik �sk 2
X

j

ÊjDjk

0
@

1
A ð26Þ

The learning rate h is re-computed at each iteration (via

interpolation of the error function [9]) to yield the best

incremental update.

The general gradient descent algorithm determines a

local minimum for a multi-parameter error function by

searching through the ‘parameter space’ to find the

minimum error. The algorithm evaluates the error function

with the current parameter values (in our case, the Êi) and

then determines a change in those parameters that decreases

the error. Updating the parameters by a small amount in the

opposite direction of the positive error gradient reduces

the error function. This updating process is repeated until

the process converges or reaches a maximum number of

iterations.

In our approach, the expressive weights are initialized to

Êi ¼ ð
P

m

P
n a

2
mnÞ

21 (the default SSE formulation) and

confined to be positive. Following termination of Eq. (25),
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the style variation for a motion can then be estimated using

the learned expressive weights in Eq. (22).

5.1. Pre-assignment of style to training data

A numeric assignment of the style parameters �sk to the K

variations is required before the training phase. In the case

of smoothly changing (continuous) variations, such

as walking at different speeds (from slow-to-fast), the

two extreme variations are assigned the default values of

�s1 ¼ 21ffiffi
2

p and �s2 ¼ 1ffiffi
2

p : The remaining ðK 2 2Þ variations are

then assigned values in the range �s1 # �sk # �s2; according to

their relationship to the extreme variations. For a binary

(discrete) style change with no in-between variations and

multiple training examples, such as labeling walkers as

male or female, all K training actions are assigned to either

�s1 ¼ 21ffiffi
2

p or �s2 ¼ 1ffiffi
2

p ; depending on their known state. We

conform style variations to one of these two scenarios

(continuous, discrete). We now describe two methods of

determining the actual style values to be used in training the

expressive weights.

5.1.1. Physical parameterization

A measured physical quantity of the action or actor can

be used as the target style variation. For example, one could

assign the style values for a lifting action based on the

amount of weight of the object being lifted. For a person

lifting five progressively heavier objects in turn (e.g. 10, 20,

30, 40, 50 lbs), the variation mapping of �sk will be evenly

distributed as 21ffiffi
2

p ; 21
2
ffiffi
2

p ; 0; 1
2
ffiffi
2

p ; 1ffiffi
2

p : The trained model would

then be able to estimate the actual amount of weight of new

objects being lifted by the person.

We note, however, that such dynamic physical style

assignments, as mapping to the actual weight being lifted,

are typically only valid for the one particular individual used

to train the system. The actual body movement changes due

to the different weights will obviously be relative to the

strength and build of the person. A 10 lb object may seem

fairly light for an adult to lift, but it may be extremely

difficult for a young child. Hence, if the framework employs

these dynamic physical mappings to style, the resulting

model will generally not be valid across multiple people.

However, non-dynamic physical properties, such as labeling

a person as a male or female, can be used within a general

multi-person model (as will be demonstrated). For any

physical parameterization to be successful, there must exist

a high correlation between the physical style labels and the

observable movement changes.

From these physical style values, the expressive weights

can be adapted (using Eq. (25)) such that the model

produces these desired style variations using Eq. (22). New

test motions outside of the trained variation range can still

be identified via extrapolation of the physical-value

mappings.

5.1.2. Perceptual parameterization

An alternate method of assigning style variations to

training motions is to have multiple people observe the

target actions to determine a ‘perceptual’ style rating.

In the continuous style variation case, the two extreme

motions can be linearly interpolated (and/or extrapolated) to

create synthetic in-between style variations. These synthetic

motions therefore have known style values linearly sampled

between 21ffiffi
2

p and 1ffiffi
2

p : A perceptual matching task involving

the K real training variations and the synthetic examples can

then be performed. Here the observer is asked to select

which of the synthetic motions appears most similar to each

real motion. With multiple observers matching the motions,

we can assign the numeric value of the average (or the most

common) style value of the synthetic motions perceptually

matched to each real motion.

If instead we have a two-class discrete case (e.g. gender),

the perceptual task is slightly different. Instead of matching

between real and synthetic motions, the observer is

presented with each motion (individually) and asked to

label it as class-1 ( 21ffiffi
2

p ) or class-2 ( 1ffiffi
2

p ). For example, the

observer may be asked if the displayed motion looks more

like a male or a female. This result may be quite different

from the true physical label (as we will demonstrate).

With a perceptual style value assigned to each of the

motions (either by synthetic matching or classification), we

then proceed to adapt the expressive weights to bias the

reduced three-mode model to produce the assigned style

values for the motions. Given the set of K training motions

and their assigned perceptual styles �sk; we slightly alter the

previous matching error function J to reflect the strength of

the perceptual matching results with

Jp ¼
X

k

vðskÞ·ð�sk 2
X

i

ÊiDikÞ
2 ð27Þ

where vðskÞ is a function of the perceptual matching

consistency for each motion k: This consistency function is

used to give more influence during minimization to those

examples having more reliable matches across the observers

(e.g. having a smaller standard deviation of the synthetic

choices). The corresponding perceptual gradient is then

›Jp

›Êi

¼ 22
X

k

vðskÞDikð�sk 2
X

j

ÊjDjkÞ ð28Þ

which is used as before in the gradient descent procedure

(Eq. (25)) to determine the appropriate expressive weights

for the data.

6. Experiments

We present experiments to demonstrate the potential of

the expressive three-mode framework for modeling and

recognizing different human action style variations. We test

the generality of the expressive model by examining
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different matching criteria (physical, perceptual) and

showing the capability of the model to produce useful

expressive feature weights for estimating the desired styles.

Specifically, we test the approach with several walking

variations that are due to (1) light-to-heavy carrying load

(physical, perceptual), (2) different gender (physical), and

(3) increased pace (perceptual). Both single-person and

multi-person training sets are evaluated.

As the focus of this work is a representation for

movement/action recognition, and not on the initial body

tracking mechanism, we tested the approach with motion

trajectories of people collected with a motion-capture

system. The carrying load and walking pace examples

were collected with an in-house 14-camera Vicon-8 system,

and the gender data was provided from the collection used

in Ref. [36]. Trajectories of the x; y image coordinates for

the joints of the hands, elbows, shoulders, hips, knees, feet,

and head were selected (or generated automatically with

software) from a collection of markers strategically placed

on the body (Fig. 2). In future work, we will attempt to

incorporate a video-based human body tracker, such as one

of the approaches presented in Refs. [4,8,18,30,33], to

extract these joint positions automatically. To help facilitate

a smoother transition from motion-capture data to video

tracking output, we selected only those joint positions that

are typically used in the articulated figure models of the

cited trackers. Also, we used the 2D position (image)

trajectories, rather than relying completely on full 3D

position or joint-angles.

The motion-capture trajectories were initially lowpass

filtered using a 5th-order, zero-phase forward-and-reverse

Butterworth filter with cut-off at 6 Hz. The translation

component for each action was removed from each

trajectory by subtracting the mean root translation during

the action. Two action cycles for each carry and pace

example were automatically extracted using trajectory

curvature peaks (of the leg motion), averaged, and time-

normalized to a fixed duration using spline interpolation. A

total of 15 joint positions (30 x–y trajectories) were used.

For the gender data provided to us, one cycle was extracted

(due to non-regular translational shifts that occurred over

multiple cycles) and 13 (of the 15) joint locations were used.

All data were saved as 2D (orthographic) joint-position

trajectories at selected views.

6.1. Physical style variation experiments

For the physical parameterization experiments, a physi-

cal property directly associated with the changing style was

recorded for the actions. For each example, a relative style

metric between the two extremes ( 21ffiffi
2

p ; 1ffiffi
2

p ) was assigned.

These values were then used to adapt the expressive weights

(using Eq. (25)) so the reduced three-mode model could

produce the desired physical style values for the given

motions (using Eq. (22)).

6.1.1. Carrying load

Our first experiment was to model the style changes that

occur for a single person walking while carrying packages

of different (increasing) weight. The person walked on a

treadmill at a constant speed (1.4 mph) while carrying

(with one hand) nine differently loaded bags in succession

Fig. 2. Motion-capture. (a) Person in T-pose configuration suited with reflective markers. (b) Limited body-skeleton derived from the motion-capture data.
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(0–40 lbs). The joint-position trajectories for one complete

walk cycle at each carrying effort were rendered at a 458

view angle to best show the body changes, and the

trajectories were time-normalized to 42 frames (duration

chosen from the slowest cycle-time of the carry examples).

The lightest and heaviest carry motions (0, 40 lbs)

were then used as the extreme motions needed to create

the reduced three-mode basis. With an 85% modal

variance criterion using the full training set, P and T

were of dimension ð30 £ 10Þ and ð42 £ 5Þ; having 10 and

5 components, respectively. By default in the reduced

model, the style mode had a single ð2 £ 1Þ component

S ¼ ½211�T=
ffiffi
2

p
: The core C had the size ð10 £ 5Þ: The

size of the full training set was 9 £ ð30 £ 42Þ: The

reduced three-mode modal captured 99.2% of the overall

data variance in the two carry extremes.

To learn the expressive weights needed to capture the

actual physical carrying load of the person, the style

values for the nine carry examples were evenly

distributed between the extreme values of 21ffiffi
2

p and 1ffiffi
2

p :

Running the gradient descent learning algorithm of

Eq. (25) (for 1500 iterations, with SSE initial values of

Êi ¼ ð
P

m

P
n a

2
mnÞ

21 ¼ 7:72 £ 1024) produced the 30

expressive feature weights shown in Fig. 3. Approxi-

mately one-third of the weights were zero. The ordering

of the 30 weights correspond to x–y joint positions

{ROOT:(1–2), LEFT-LEG/HIP:(3–8), RIGHT-LEG/HIP:(9–14),

HEAD-NECK:(15 –18), LEFT-ARM:(19– 24), RIGHT-

ARM:(25–30)}.

The target style values and the non-expressive SSE result

(using Êi ¼ 7:72 £ 1024) are shown in Fig. 4(a). The default

SSE estimation was quite different from the desired styles

(average error ¼ 0.1424). In Fig. 4(b), we present the

resulting expressive estimation after adapting the expressive

weights to the training data. The model conformed quite well to the training data, producing styles similar to the

target values (average error ¼ 0.0198).

6.1.2. Gender of walker

In our second physical parameterization experiment, we

examined the style differences of multiple male and female

walkers (two-state discrete style variation). The data set

for this experiment included 20 males and 20 females, each

walking at a comfortable pace on a treadmill. The motion

trajectories of one cycle at the frontal view (determined to be

the most discriminating view [36]) were automatically

extracted and time-normalized to 50 frames. To build the

reduced three-mode model, the prototype method

(as described in Section 4.1) was used in which the

male motions were averaged together to form a ‘male

prototype’ and the female motions were averaged into a

‘female prototype’ (each person was first height-normal-

ized). All of the data were used to compute the P and T basis

sets, and the prototypes were used to solve for the core C:

With an 85% modal variance criterion for the full training

set, P and T were of dimension ð26 £ 16Þ and ð50 £ 5Þ;Fig. 3. Expressive weights for the physical carrying load experiment.

Fig. 4. Physical carrying load experiment results. (a) Physical and SSE

styles. (b) Physical and expressive styles.
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respectively (C was therefore of size ð16 £ 5Þ). The size of

the full training set was 40 £ ð26 £ 50Þ: The reduced three-

mode model captured 98.57% of the overall data variance in

the two gender prototypes.

To learn the expressive weights from the training data,

all of the females were assigned to a style of 21ffiffi
2

p and all

of the males were assigned a value of 1ffiffi
2

p : The gradient

descent learning algorithm (1500 iterations, with SSE

initial values of Êi ¼ 1:2119) produced the 26 expressive

feature weights shown in Fig. 5. The ordering of the 26

weights correspond to {HEAD:(1–2), RIGHT-ARM:(3–8),

LEFT-ARM:(9 –14), RIGHT/LEFT-HIP:(15– 18), RIGHT-

LEG:(19–22), and LEFT-LEG:(23–26)}.

The target two-class style values and the non-

expressive SSE result for the 40 people are shown in

Fig. 6(a). The SSE estimation of the gender was quite

different from the true label (average error ¼ 0.9423). In

Fig. 6(b), we present the expressive estimation for the

gender data. The expressive model adapted to the data to

produce styles much more similar to the true genders

(average error ¼ 0.2990).

Thresholding the estimated style values at zero (midway

between the male–female assignments) produced a 7.5%

classification error of male and female walkers for the

expressive model. Thresholding the SSE estimation pro-

duced a much larger 27.5% error. To examine the

generalization capability of the model (and to avoid

overfitting), we also performed a leave-one-out cross-

validation of the data. We computed 40 different models

(each using 39 examples by leaving one example out of the

training set) and averaged the resulting expressive weights

from the 40 models. The average cross-validation training

error with the expressive model was 6.54% (SSE average

training error was 26.92%). For the testing samples, the

average classification error for the expressive model was

22.50% (SSE average testing error was 30.00%). Using the

averaged set of expressive weights from cross-validation on the complete set of training data produced the same

classification as the previous result (7.5% error).

6.2. Perceptual style variation experiments

We next assigned style values to the training data using

perceptual matching labels rather than employing an actual

physical property. In these experiments, observers were

asked to match examples of carrying load (carrying light-to-

heavy objects) and walking pace (walking leisurely-to-

quickly). A computer program was developed to facilitate

the perceptual matching task for assigning style values to

the motion data.

In the computer display (Fig. 7), two motions are

presented side-by-side to the observer, with the motions

synchronized and looped. The motion on the left of the

display, referred to as a ‘reference’ motion, is one of

the examples we wish to assign a perceptual style label. The

motion displayed on the right is a synthetic motion linearlyFig. 5. Expressive weights for the physical gender experiment.

Fig. 6. Physical gender experiment results. (a) Physical and SSE styles. (b)

Physical and expressive styles.
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interpolated/extrapolated from the two extreme reference

style variations. As the synthetics are linearly derived from

the two extremes, they have known style values. The task

for the observer is to seek through the various synthetic

motions to find the best match to the displayed reference

motion. The left and right arrow keys on the keyboard

enable the user to quickly and easily seek through all

possible synthetics (generated online). Once the user has

made a selection of which synthetic motion most closely

resembles the reference action, the person confirms this

choice by pressing the spacebar (changing the color of the

synthetic motion to blue) and hits the enter key to load the

next random reference and synthetic motions.

The program records the style value of the synthetic

motion selected (determined from the interpolation/extra-

polation amount) for each reference action. The display was

generated at a 1280 £ 1024 resolution on a 1900 monitor

using Cþþ and OpenGL with anti-aliasing. The user was

seated a typical working distance to the computer.

Since the reference motions will not have a perfect

correspondence with the synthetic motions (except at the

two extremes), the person will have to match the motions

based on some subjective measure of similarity. Our goal is

to tune the expressive weights to reflect this unknown

perceptual similarity process.

6.2.1. Carrying Load

For the carrying load perceptual matching task, the same

data used in the previous physical carry parameterization

experiment are judged by multiple observers for similarity

with their synthetic counterparts. Fig. 8 shows a sample of

the synthetic versions generated between the two carry

extremes. The interpolation/extrapolation was produced

with a sampling interval of 2
14
ffiffi
2

p (producing 13 interpola-

tions between the two extremes). In this experiment, the

carried object was not displayed so the observer would

concentrate only on the changing body movements (rather

than on the movement of the bag).

Ten people were given the task of perceptually matching

the carrying movements to the set of synthetic motions to

provide the needed training labels. From the resulting

reference-synthetic perceptual choices of the 10 observers,

the mean and standard deviation of the 10 selected synthetic

style values for each reference motion were computed. The

average correlation coefficient of the reference-synthetic

values for pairwise observers was r ¼ 0:8 (SD 0.1),

suggesting that the observers were fairly consistent in

perceiving a similar carrying effort for the movements.

We employed the reduced three-mode basis from the

previous physical carrying load experiment and trained

the model with the perceptually labeled examples. Using the

perceptual means �sk and standard deviations sk for each

carrying example, the gradient descent learning algorithm

with the perceptual gradient function (Eq. (28)) was run (for

1500 iterations, with the initial SSE values of

Êi ¼ 7:72 £ 1024) to determine the appropriate expressive

weights for the training data. We used the weighting factor

vðskÞ ¼ expð2s2
k =0:25Þ in Eq. (28) to give more emphasis

to those examples with the most consistent perceptual

matches (this weighting factor is also used in the following

experiment). The resulting 30 expressive weights are shown

in Fig. 9. As 19 out of 30 weights are zero, the focus on

expressive features significantly reduced the amount of data

needed to capture the perceived variations.

Fig. 7. Screen-shot of perceptual matching program. The user manipulates

the motion on the right to make it look as similar as possible to the motion

on the left.

Fig. 8. Multiple efforts for carrying (object carried in the person’s right hand is not shown). The real lightest and heaviest carry actions are used to generate the

synthetic linear interpolations. One frame from each interpolated sequence is shown.
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In Fig. 10(a), we show the perceptual style values for the

reference motions (style means with one standard deviation)

and the default SSE style estimation. Note that the

perceptual styles appear sub-categorical to the observers

(with no smooth trend as in the physical parameterization of

carry load). The reference motions #8 and #9 (two heaviest

carries) were perceived quite differently from the remaining

lighter carry motions (#1–#7). In Fig. 10(b), we show the

perceptual results along with the output of the expressive

model trained with the perceptual style means and standard

deviations. The results show that our model could adapt well

to the perceptual ranking of the effort styles (in addition to

the previous physical parameterization). The average errors

for the SSE and expressive models were 0.1624 and 0.0442,

respectively.

6.2.2. Walking pace

To further evaluate the framework using perceptual

styles, we examined different walking paces of multiple

people to address the dynamic changes that occur with

increased walking speed. Rather than mapping to the actual

physical walking speed, we instead focus on the observer’s

judgement of the pace, such as determining if the person is

walking ‘leisurely’ or walking ‘in a hurry’. Actual walking

speed is not a global indicator for the walking pace of

different people. Consider a child walking alongside an

adult. Both are moving at the same ground speed, but the

child’s pace will be much higher to keep up with the adult.

Thus, speed and cycle time do not generally correspond to

the pace.

The training set was comprised of five different walking

speeds for each of three people walking on a treadmill at

speeds ranging between 2.0 mph and each person’s natural

walk-run transition. Two additional motions (one slower at

1.6 mph and one midway between the 2.0 mph and the

walk-run transition) were collected for further testing.

The motions were time-normalized (to 50 frames) to

remove the influence of the actual cycle time and speed of

the walkers.

To generate the synthetic motions for the perceptual test

and to construct the reduced three-mode basis from multiple

people, we use the prototype method outlined in Section 4.1.

The minimum-pace prototype was formed by averaging2 the

three people walking at 2.0 mph, and the maximum-pace

prototype was formed by averaging the motions just before

their respective walk-run transitions. Example pace syn-

thetics between the prototypes are shown in Fig. 11. As in

the previous perceptual experiment, the motions were

rendered in real-time at 30 Hz at a 458 camera view, but

the figure heights were normalized (by the image height of

the person) to accommodate for different person statures.

Ten observers (from the previous experiment) were

given the task of perceptually matching the reference

walking pace movements of the three people (15 total) to the

set of synthetic walking motions generated from the two

Fig. 9. Expressive weights for the perceptual carry experiment.

Fig. 10. Perceptual carry experiment results. (a) Physical and SSE styles.

(b) Physical and expressive styles.

2 In this experiment, we averaged the motion-capture skeleton (limb

lengths) and joint-angles rather than the joint positions.
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prototypes. The mean and standard deviation of the 10

synthetic pace values selected for each reference motion

were computed. The average correlation coefficient of the

reference-synthetic choices for pairwise observers was r ¼

0:8 (SD 0.1). The observers were also asked to match the

remaining two motions from each walker to the synthetics.

With an 85% modal variance criterion using the 15

training examples (height-normalized), P and T were of size

ð30 £ 10Þ and ð50 £ 4Þ; respectively. The core C was of size

ð10 £ 4Þ: The size of the complete training set was 15 £

ð30 £ 50Þ: The combined basis sets captured 94.3% of the

overall data variance in the walking pace prototypes. The 30

expressive weights produced by the perceptually-based

gradient descent learning algorithm (1500 iterations,

initialized with SSE values of Êi ¼ 2:2022) are shown in

Fig. 12.

We compared the perceptual pace matches between the

reference and synthetic motions separately for each person

in the training set. For Person-1, the perceptual and

expressive results were very similar, but the SSE esti-

mations were different (shifted) from the desired perceptual

labels (Fig. 13(a)). The advantage of the adaptable

expressive model is well illustrated. For Person-2, the SSE

estimation method is still different, though now within the

^1 SD range (Fig. 13(b)). Lastly, for Person-3, the SSE and

expressive styles were very similar except at the mid-pace

examples of #3 and #4 (Fig. 13(c)). The average error for the

SSE and expressive methods for the 15 examples were

0.1950 and 0.0417, respectively.

We also tested the two additional walking motions

collected from each person to evaluate the expressive style

estimation method for new motions of the training people.

In Fig. 14(a)–(c), the expressive values (learned only from

the previous training examples) and SSE estimations closely

matched the perceptual results for all three people, though

the average expressive error (0.1004) was less than the

average SSE error (0.1638).

6.3. Discussion of results

We presented several experiments examining the ability

of the expressive three-mode framework to adapt to both

physical and perceptual values assigned to the style

variations of the general walking category. The successful

adaptation of the model to the different matching criteria

demonstrates the potential of the method to learn the

necessary key features of the motions needed to produce the

desired style output.

We examined both physical and perceptual variations for

a single person carrying objects of different weight, showing

how the physical and perceptual criteria are quite different

(linear vs. sub-categorical), but that the expressive model

was capable of tuning itself to either criteria. Thus an

advantage of this model is that one set of expressive weights

can be used to model the physical load and another set of

weights can be used to recognize the observed heaviness,

though only one three-mode basis is required. The different

recognition contexts are reflected only in the expressive

weights.

We also examined the approach to model walking

variations due to gender. The results showed an impressive

7.5% classification error on a set of 40 walkers. As gender

recognition has been an active research domain for several

years, we feel our model has merit for further analysis in this

area. Depending on the input representation selected for

Fig. 11. Action styles for the mean-prototype slowest and fastest walking pace with linearly interpolated examples. One frame from each interpolated sequence

is shown.

Fig. 12. Expressive weights for perceptual pace experiment.
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Fig. 13. Perceptual (mean ^ 1 SD), SSE, and expressive pace estimation

for the five walking motions of (a) Person-1, (b) Person-2, and (c) Person-3.

Fig. 14. Perceptual (mean ^ 1 SD), SSE, and expressive pace estimation

for two new (non-training) walking motions of (a) Person-1, (b) Person-2,

and (c) Person-3.
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the motion data, our model may provide insight to which

features may be used by human observers during the gender

classification task.

Lastly, we demonstrated the framework’s ability to

capture the general style changes associated with the

walking pace of multiple walkers. The results again clearly

illustrated the advantage of the expressive model over a

standard SSE estimation.

7. Conclusion and future directions

We presented an approach for modeling and recognizing

different action styles using an efficient three-mode

principal components framework that gives more influence

to key expressive trajectories learned from style-labeled

training data.

The approach initially factors training examples with

different style variations into a reduced three-mode

principal components model to provide individual basis

sets for the body poses, temporal trajectories, and styles. An

advantage of this multi-modal basis set is that it offers a low-

dimensional decomposition of the data suitable for incor-

porating expressive weights on trajectories to bias the model

estimation of style to desired values. We presented a

weighted-least-squares style estimation method in this

three-mode sub-space with expressive weights to emphasize

those trajectories most indicative of the style.

To learn the values of the expressive weights, we

presented two types of style parameterization of the

training data. Physical parameterization manually assigns

style values that correspond to a known physical property

of the motion, such as the actual carrying load or gender.

Perceptual parameterization is accomplished by using a

perceptual matching task to attain the observable

correspondences of real motions to synthetic variations

having known style values. The style-labeled training

data are then used in a gradient descent learning

algorithm to solve for the expressive weight values

needed to align the model estimation of style to the

assigned training values. Thus instead of matching a new

motion to several exemplars for recognition, our low-

order expressive model is used to directly compute a

metric value of style for the motion.

The approach was examined with several walking style

variations that were due to carrying load (physical,

perceptual), gender (physical), and pace (perceptual). We

showed that our model with expressive weights can be used

to adapt to different style parameterizations, and therefore

demonstrated more flexibility than a standard SSE-based

style estimation.

In future work, we plan to incorporate a video-based

body tracking algorithm to locate and track the same

motion-captured body joints used in this research, and

evaluate the approach with occlusion and tracking errors.

We will additionally broaden the range of actions to include

other non-periodic activities (e.g. throwing, lifting), which

will in turn require a method of robust temporal segmenta-

tion of the actions for proper time normalization. We are

currently examining curvature-based approaches such as in

Refs. [2,32] to automatically detect action keyframes for the

segmentation. We demonstrated the expressive three-mode

approach with experiments using physical male/female

gender labels, but we will additionally examine a percep-

tually-based gender assignment to the training data to

compare results using the true gender with results using the

perceived gender. We are also interested in the relation of

our framework and its applicability to modeling the Effort

factor of Laban Movement Analysis.
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