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Abstract

We present a new contour analysis technique to detect
people in thermal imagery. Background-subtraction is first
used to identify local regions-of-interest. Gradient informa-
tion within each region is then combined into a contour
saliency map. To extract contour fragments, a watershed-
based selection algorithm is used. A path-constrained A*
search is employed to complete any broken contours, from
which silhouettes are formed. Results using thermal video
sequences demonstrate the capability of the approach to ro-
bustly detect people across a wider range of environmental
conditions than is possible with standard approaches.

1. Introduction

Intelligent activity analysis systems (e.g., for surveil-
lance and monitoring) will be required to bepersistent(con-
tinuous 24-7 operability) andubiquitous (deployed any-
where and everywhere). These requirements provide sev-
eral challenges for both fundamental and applied computer
vision research. In this paper, we present a new contour-
based technique for robust person detection using a persis-
tent video camera under different environmental conditions.

Color and grayscale video cameras have an obvious out-
door limitation of daytime-only operation (not persistent).
Thermalvideo cameras detect the amount of thermal radia-
tion emitted/reflected from objects in the scene, and are ap-
plicable to both day and night scenarios. Therefore, they be-
come a prime candidate for a persistent video system. As
long as the thermal properties of the person are slightly dif-
ferent (higher or lower) than the background radiation, the
person regions are detectable. Also, shadows do not appear
unless the person is stationary for a long duration (shadow
gradually cooling the background).

∗ Appears inInternational Conference on Pattern Recognition, Cam-
bridge, UK, August 23-26, 2004, pp. 713-716.

(a) (b)

Figure 1. Thermal image (Summer afternoon)
and background-subtraction results.

Though some classic problems are alleviated with the
use of thermal cameras, they have their own unique chal-
lenges, including a lower signal-to-noise ratio, polarity in-
version, and the “halo effect” that appears around very hot
or cold objects with ferroelectric sensors (e.g., notice the
strong bright halo around the people in Fig. 1.a).

Most of the previous strategies for detection in thermal
imagery use “hot-spot” algorithms, relying on the assump-
tion that the person (object) is much hotter than the sur-
rounding environment. Though this is common in cooler
nighttime environments (or during Winter), it is not univer-
sally true throughout the day or across different seasons of
the year.

Our approach to detect people is to first use a standard
background-subtraction technique to identify local regions-
of-interest, each containing the person and surrounding
thermal halo. The foreground and background gradient in-
formation within each region are then combined into a con-
tour saliency map (highlighting the person boundary). Us-
ing a watershed-based algorithm, the gradients are thinned
and thresholded into contour fragments. The remaining wa-
tershed lines are used as a guide for an A* search algorithm
to connect any contour gaps. Finally, the closed contours are
flood-filled to make silhouettes. As we will demonstrate,
this approach enables silhouette extraction across a wider
range of environmental conditions.



2. Related Work

Some template-based approaches have been used to de-
tect people, but most methods employ some form of back-
ground subtraction. The most common approaches employ
a single or multi-modal Gaussian formulation [10, 7]. Other
approaches include the W4 method for detecting body
parts and tracking [2], the three-stage (pixel/region/frame)
Wallflower approach [8], a two-stage color and gradi-
ent technique [4], and a Markov chain Monte Carlo ap-
proach [11].

Recently, person detection using thermal imagery has
been explored [3, 1], but these approaches rely heavily on
the assumption that the person region always has a much
hotter (brighter) appearance than the background. We ex-
amine a new contour analysis technique for detecting people
in thermal imagery that is most related to the color/gradient
approach of [4].

3. Person Detection in Thermal Imagery

One issue with the use of uncalibrated ferroelectric ther-
mal sensors is that the polarity (black/white) and strength
of the thermal intensity can change dramatically across dif-
ferent environment conditions. Additionally, these sensors
produce thermal halos around objects having a large ther-
mal contrast with the background (see white halo in Fig.
1.a). Hence, the use of a statistical background-subtraction
techniques will be ineffective to detect the precise silhou-
ette of the person (see Fig. 1.b).

Two key observations regarding thermal imagery are
that 1) thermal halos fade smoothly into the image, and
2) stronger halos cause the edge/contour information of the
person to become more pronounced. Based on these obser-
vations, we propose a new technique for person detection in
thermal imagery that focuses on the extraction and comple-
tion of edge contours within the halo regions.

3.1. Halo Detection

To find the regions-of-interest (ROIs) that contain the
person (or people) and the surrounding halo, we apply
a standard Gaussian background-subtraction approach to
identify pixels in the foreground image that are statistically
different from the background model using

D(x, y) =

{
1 |I(x,y)−µ(x,y)|

σ(x,y) > T

0 otherwise
(1)

We show the background-subtraction results (T = 6) for
a sample image in Fig. 1. Note that a statistical background-
subtraction technique alone is ineffective at detecting the

precise shape of the person. We then use a 5×5 dilation op-
eration and connected-components algorithm to extract the
individual ROIs.

3.2. Contour Saliency Map

We next examine each ROI individually to sepa-
rate the person (or people) from the surrounding halo. From
the earlier observations regarding thermal halos, the gradi-
ent/edge strengths within the ROI can be used to identify
the person boundary. For each ROI, we form acon-
tour saliency map(CSM) by multiplying the normal-
ized foreground gradient magnitudes with the normal-
ized foreground-background gradient difference magni-
tudes

CSM =
‖〈Ix, Iy〉‖

max
× ‖〈(Ix −BGx), (Iy −BGy)〉‖

max
(2)

The CSM for the ROI in Fig. 2.a (using Gaussian deriva-
tive masks withσ = .75) is shown in Fig 2.b. Notice that
the non-person gradients are suppressed in the CSM.

3.3. Watershed Analysis

Our next step is to extract the person contours from the
CSM. We make use of the watershed transform [9] as a uni-
fied method to both thin the CSM and to guide the comple-
tion of any contour fragments.

After computing the watershed transform of the CSM,
we employ a “contour dynamics” approach [6, 5] to as-
sign a “strength” value to each contour segment and merge
contours into groups. However, each group is assigned the
dynamic of its weakest member, suppressing stronger con-
tour segments. Therefore simple thresholding of the contour
groups will not suffice.

To combat this problem, we first compute the median of
the sub-contourci minimums (in group̂c) as

MEDĉ = median(MIN c1 , · · · , MIN cn) (3)

Next, for each pixel in̂c, we compare its original strength
value to MED̂c, and retain the minimum of the two values.
This method results in a final thinned contour image suit-
able for thresholding (see Fig. 2.c).

To adaptively threshold the contours, we use K-means
clustering (with low/medium/high-value clusters) of the
thinned contour values and select the threshold as the value
between the bottom two clusters (see selected white pix-
els in Fig. 2.d).

3.4. Closing Contour Fragments

As there is no guarantee that the resulting binary con-
tour image is a closed figure (required for making silhou-
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Figure 2. Detection stages. (a) Selected ROI. (b) CSM. (c) Thinned CSM. (d) Watershed with selected
contours. (e) Flood-filled region of completed/closed contours.

ettes), we next identify and close any broken contour seg-
ments using the watershed lines. To ensure the best possible
completion, we follow a two-stage strategy.

Stage-1: Gap Completion
Each contour fragment endpoint is forced to grow outward
along the watershed lines towards other contour points. To
find the optimal path, we employ the classic A* search algo-
rithm that minimizes the expected costthroughthe current
pixel location to reach a contour point. The Euclidean dis-
tance from the current location to the closest contour point
is employed as the heuristic cost function.

Gap completion is performed using only the original
contour points so that the order of gap completion does not
influence the result. To minimize short “loop backs” and to
force the path to grow outwards, we do not consider any of
the points belonging to the endpoint’s own contour as po-
tential targets.

Stage-2: Figure Closure
We next identify all contours that are not part of a closed
loop (e.g., a line connecting two closed circles is itself not
closed). For each of these contours, we perform the A*
search strategy to move along other watershed lines from
one endpoint to the other. To find solutions that create the
minimum number of new contour pixels on the watershed
lines, we give no penalty (step cost) in the A* algorithm for
moving along existing contour pixels on the watershed. If
no possible path exists between the endpoints, we default to
a straight-line connection.

The flood-filled result for the thresholded contours in
Fig. 2.d after Stage-1 and Stage-2 is shown in Fig. 2.e. In
this example, the bodies were joined since there is a very
small gap between the people where the contours are frag-
mented.

4. Experiments

We examined the proposed approach on several frames
from three thermal sequences recorded at very different en-

vironmental conditions: Winter afternoon, Summer after-
noon, and Summer night. Each sequence contained>300
frames and had a separate 30-frame background sequence
for learning the statistical background model. For each of
the sequences, we used the same parameter/threshold set-
tings to demonstrate the applicability of the approach to dif-
ferent conditions.

Since we process each ROI separately, we additionally
weighted each resulting silhouette in the image with a con-
trast measurement calculated from the ratio of the max-
imum foreground-background intensity difference within
the silhouette region to the full intensity range of the back-
ground model. A final sensitivity threshold could easily be
used to remove the minimal-contrast (noise) regions.

In Fig. 3, we show a representative frame from each
of the sequences and the resulting silhouettes. The images
demonstrate the ability of the algorithm to separate multi-
ple people contained within a single ROI. In Fig. 3.a-b, the
person silhouettes are identified quite well. The small sil-
houette regions in the top left corner of Fig. 3.a are a re-
sult of the people being occluded by tree branches. Despite
the very low thermal person-background differences in Fig.
3.c, the algorithm is still able to detect reasonable portions
of the people. The overall results of the approach were en-
couraging and perform better than background-subtraction
or hot-spot approaches alone.

There were some problems with the current approach
that deserve mentioning. When the thermal intensity of the
people is similar to the background, a reduction of the con-
tour saliency occurs and sometimes results in the contour
completion growing into the similar background region. In
another situation, we noticed that a highly fragmented ROI
could result in an over-completion creating false contours.
Furthermore, when sequences have weak halos, the weaker
gradients of the people can be deleted in the thinned CSM
(see Fig. 4.a). One approach to combat this problem would
be to estimate the strength of the halo and amplify the CSM
when the halo is weak. We show the positive effect of an ex-
ponent amplification (CSM

1
2 ) in Fig. 4.b.
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Figure 3. Thermal images (Winter, Summer) and resulting silhouette regions (contrast weighted).

(a) (b)

Figure 4. Problem image. (a) Using normal
contours. (b) Using amplified contours.

5. Summary

We presented a new approach to person detection in ther-
mal imagery that is applicable over a wide range of envi-
ronmental conditions. Our approach is designed to handle
the common problems with thermal imagery such as polar-
ity inversion and halo effects. These issues render classic
background-subtraction and hot-spot detection methods in-
effective by themselves.

We first use a statistical background-subtraction tech-
nique to identify local regions-of-interest. The foreground
and background gradient information within each region are
then combined into a contour saliency map. A watershed-
based algorithm is used to extract contours of the person
from the saliency map. To close any contour fragments,
an A* method constrained to the watershed paths is used.
Lastly, the contours are flood-filled to produce silhouettes.

Experiments with three thermal video sequences
recorded at very different environmental conditions
showed promising results. In future work we will incor-
porate a multi-modal background model, estimate halo
strengths for amplification, and include motion informa-
tion.
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