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Abstract

A new view-based approach to the represen-
tation of action is presented. The work is
motivated by the observation that a human
observer can easily and instantly recognize ac-
tion in extremely low resolution imagery, even
imagery in which individual frames provide no
information about three-dimensional struc-
ture of the scene. Our underlying representa-
tions are view-based descriptions of the coarse
image motion associated with viewing given
actions from particular directions.  Using
these descriptions, we propose an appearance-
based action-recognition strategy comprised
of two stages: first a motion energy image
(MEI) is computed that grossly describes the
spatial distribution of motion energy for a
given view of a given action. The input MEI
is matched against stored models which span
the range of views of known actions. Second,
any models that plausibly match the input
are tested for a coarse, categorical agreement
between a stored motion model of the action
and a parameterization of the input motion.
Using a “sitting” action as an example, and
using a manually placed stick model, we de-
velop a representation and verification tech-
nique that collapses the temporal variations
of the motion parameters into a single, low-
order vector. Finally we show the type of
patch-based motion model we intend to em-
ploy in a data driven action segmentation and
recognition system.

Categories: Human motion understanding;
Action recognition; Motion representation

1 Introduction

The recent shift in computer vision from static images
to video sequences has focused research on the under-
standing of action or behavior. In particular, the lure
of wireless interfaces (e.g. [10]) and interactive envi-
ronments [7] has heightened interest in understanding
human actions. Recently a number of approaches have
appeared attempting the full three-dimensional recon-
struction of the human form from image sequences, with
the presumption that such information would be useful
and perhaps even necessary to understand the action
taking place (e.g. [19]). This paper presents an alter-
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Figure 1: Selected frames from video of someone per-
forming an action. Almost no structure is present in
each frame, nor are there any features from which to

compute a structural description (as would be in a mov-
ing light display). Yet people can trivially recognize the
action as someone sitting.

native to the three-dimensional reconstruction proposal.
We develop a view-based approach to the representation
of action that is designed to support the direct recogni-
tion of the motion itself.

1.1 An observation

The motivation for the work presented in this paper
can be demonstrated in a single video-sequence. Unfor-
tunately the media upon which these words are printed
precludes the reader from experiencing the impact of
viewing the video. A poor substitute is a collection of
selected frames of the video, shown in Figure 1.

The video is a tremendously blurred sequence —
in this case an up-sampling from images of resolution
15x20 — of a human performing a simple, yet read-
ily recognizable, activity; when shown this video the
vast majority of a room full of spectators could identify



the action in less than one second from the start of the
sequence.” What should be quite apparent is that most
of the individual frames contain no discernible images
of a human being; even if a system knew the image was
that of a person, no particular pose could be reasonably
assigned.

A more subtle observation is that no good features
exist upon which to base a structure-from-motion al-
gorithm[22]. This distinction is important: although
individual frames of moving light displays also contain
insufficient information from which to recover pose, they
do contain features that allow for the structural recovery
of the limbs [13] without a priori knowledge of the se-
mantic assignments (e.g. “light 1 is the left hip”). One
cannot prove that the blurred sequence of Figure 1 can-
not be analyzed for three-dimensional structure before
the assignment of body parts to image regions. However
the lack of any image detail makes such a possibility re-
mote; it would seem that an initial alignment of model
to image is necessary.

1.2 Model-based, view-based recognition of ac-
tion

Given that motion recognition is possible in the absence
of features from which to compute three-dimensional
structure, how might it be accomplished? To us, the
most straightforward answer is that the motion pat-
tern itself is recognized. Much as a two-dimensional,
static pattern, say the schematic drawing of a face —
a circle, two dots and an arc — is instantly “recog-
nized” as a face, it should be possible to recognize a two-
dimensional motion pattern as an instance of a motion
field which is consistent with how some known move-
ment appears when viewed from a particular direction.
Such a capability requires a view-based, model-based
technique. The model, however, is of the motion, not of
the body.

In the remainder of this paper we develop a repre-
sentation of the motion of an action designed to support
such an approach. The basic components of the theory
are:

1. A motion model to be recognized is a coarse or cat-
egorical description of the motion observed when a
known movement is viewed from a given angle.

2. Motion recognition is embedded in a simple hy-
pothesis and test paradigm[12] where a data-driven
initial computation is used to index plausible mo-
tions which are then verified by a more rigorous
match.

3. The spatial distribution of motion integrated over
some temporal extent of the motion is employed
as the initial filter proposing possible actions and
viewing directions.

4. A coarse patch model of motion (similar to [3])
is capable of discriminating motions, once the mo-
tion energy distribution is used to pre-filter the hy-
potheses.

"The only instruction was: “You are about to see a
particular action happening. Raise your hand as soon
as you think you know what action is taking place.”

Because we are strongly motivated by the capability
of people viewing extremely blurred sequences, all of
our examples will be developed on blurred image video,
though the extent of the blurring is not as extreme as
that of Figure 1.2

We begin by considering some prior work on both
motion recognition and the view-based techniques in
object recognition. Next we develop a feature-based
characterization of the motion energy image (MEI) to
be used as an initial filter into the set of known move-
ments; the strengths and weaknesses of such a choice are
considered. We next explore the appropriate parameter-
ization of the motion appearance models. Our eventual
goal is to use motion patch deformations similar to [3]
but where the patches selected are different for each
known motion. To that end, using the sitting action as
an example, we develop a representation and verifica-
tion technique that collapses the temporal variations of
the motion parameters into a single, low-order vector.
We describe some initial experiments using manually
placed and tracked “sticks” as the underlying primitive
which shows the effectiveness of the representation. Fi-
nally, we describe how the same parameterization can
be applied to tracked motion patches and we how to
incorporate the representation in a data driven action
segmentation and recognition system.

2 Prior work

The number of papers on and approaches to recognizing
motion and action has recently grown at a tremendous
rate. For an excellent review on the machine under-
standing of motion see [5]. We divide the relevant prior
work into three areas: action recognition, view-based
(usually aspect) matching, and motion-based recogni-
tion.

The first and most obvious body of relevant work in-
cludes all the approaches to understanding action, and
in particular human action. Some recent examples in-
clude [1, 4, 8, 11, 14, 19, 20, 6, 24]. Some of these
techniques assume that a three-dimensional reconstruc-
tion precedes the recognition of action (e.g. [11]), while
others use only the two-dimensional appearance (e.g.
[8]). However, underlying all of these techniques is the
requirement that there be individual features or proper-
ties that can be extracted from each frame of the image
sequence. These approaches accomplish motion under-
standing by recognizing a sequence of static configura-
tions. It is difficult to imagine that such techniques
could be extended to the blurred sequence of Figure 1.

The second area related to this work is that of
appearance- or aspect-based recognition (e.g. [17, 16,
9]). The formal description of aspects [17] referred to
the visible surfaces of objects undergoing self occlusion.
For a range of viewing angles, which surfaces are vis-

2All the results presented in this paper use a blur ker-

nel corresponding to the second level of a Gaussian
pyramid giving an effective resolution of 80 by 60.
These dimensions are for the entire image, so the
person is only about 20 by 40 pixels. We wanted
to use blurred images of the same resolution as Fig-
ure 1 but we had difficulty getting stable motion im-
age estimates.



ible surfaces remains constant and only the shape of
their projection changes. Tkeuchi and Hong [16] refer to
the shape change within an aspect as a “linear shape
change.” Eggert, et al. [9] extend the use of aspects to
include scale by understanding how the visibility of sur-
faces is affected by the scale of observation. In general,
the term “aspect” recognition has come to include any
recognition scheme that partitions the view sphere into
distinct models. The motion model we will develop at-
tempts to span as wide an angular range as possible us-
ing a single, low order representation of the appearance
of the motion. However, when not possible, our model
can also accommodate discrete regions or aspects.

Finally there is the work on direct motion recogni-
tion [18, 21, 23, 3]. These approaches attempt to char-
acterize the motion itself without any reference to the
underlying static images. Of these techniques, the work
of Black and Yacoob [3] is the most relevant to the re-
sults presented here. The goal of their research is to
recognize human facial expressions as a dynamic sys-
tem, where it is the motion that is relevant. Their ap-
proach does not represent motion as a sequence of poses
or configurations. Except for using some facial features
for alignment of motion models, the system is “feature-
less” measuring only the motion in particular patches
of the face, and using a characterization of that mo-
tion to determine the facial expression being produced.
Our work can be viewed as an extension of the work
by Black and Yacoob to the general problem of action
recognition.

3 Spatial distribution of motion

In keeping with the hypothesis-and-test paradigm, our
first step is to construct an initial index into a known
motion library. To avoid exhaustive search we require a
data-driven, bottom up computation that can suggest a
small number of plausible motions to test further.

Our approach is to separate the consideration of
where is there motion from how the image is moving.
In this section we develop a representation of the spa-
tial distribution of motion which is independent of the
type of motion present; this characterization will serve
as our initial index. A coarse, compact description of
the motion pattern developed in the next section will
be used to test the selected hypotheses.

3.1 Motion-energy images

Consider the example of someone sitting, as shown in
Figure 2. The top row contains several key frames in a
sitting sequence. The bottom row displays cumulative
motion images — to be described momentarily — com-
puted from the start frame to the corresponding frame
above.® As expected the sequence sweeps out a partic-
ular region of image; our claim is that the shape of that
region can be used to suggest both the action occurring
and the viewing condition (angle).

To describe the motion pattern we first construct a
motion-energy image (MEI) for each training sequence.
We have experimented with several methods for deter-
mining motion-energy. An obvious approach is to com-

#These motion energy images are computed on the
blurred versions of the imagery.

pute optic flow field between each pair of frames using
a local, gradient-based technique similar to Lucas and
Kanade [2] yielding a vector image fg(z,y) for each se-
quential pair. The motion energy image is then com-
puted by simple summation:

T
. -/ N
MEI(z,y) = E 1:(z,y)

where Ti is a thresholded version of I; designed to pre-
vent noise in the motion computation from corrupting
the process. However, for the blurred images used for
this paper we have found that the summation of either
the square of image differences, or the square of the im-
ages generated by subtracting the first frame from each
of the N frames, often provides a more robust motion-
distribution signal. This is because motion-differencing
is not attempting to determine where pixels have moved
but only that they have changed; the results shown in
the paper are computed using a binary thresholding of
the sum of the squared difference between each frame
and the first.

For the training data, the value of T" as well as the
start of the “action” need to be determined manually.
For the initial work presented here we are choosing T
to be the length the entire action (about 45 frames).
This choice implies that a recognition system using this
representation will only be able to recognize sitting after
the entire action has been completed. Since we will use
the MEI as an index into a library of motion models,
we are investigating creating an MEI based only upon
initial or incremental phases of a motion. The idea is
that an initial detection by MEI could be used to index
either the complete or partial motion which would then
be verified.

Once we have constructed the MEI for each train-
ing sequence we need to compute an average MEI to
represent each viewing angle of the action. To do so
requires registering MEls that are of the same action
viewed from the same angle but executed by different
people. Therefore, to the extent that the MEIs cap-
ture the motion of the action, and to the extent that
people are roughly the same shape up to a scale factor,
the shapes of the MEIs should also be the same, vary-
ing only in translation and scale. To register MEIls we
compute the standard centroid and moments of each
individual MEI, and use these measures to align the
motion-energy images. We construct a robust MEI by
averaging® the aligned images. The robust MEI for sit-
ting from each of 10 viewing conditions (0° to 90° in
10° increments) is shown in Figure 3. Our task is to use
these images as an index for motion recognition.

3.2 MEI feature space

To use the MEI as an index for recognition we need to
characterize it. Since the intent is for the MEI to cap-
ture the spatial distribution of motion, we select a shape
description vector m to compare the input MEI of a se-
quence to the model MEI. Since the MEIs are blob-like
in appearance we employ a set of moments-based de-
scriptions. The first seven parameters < mi,...,mr >

*Results using a median are similar.



Frame 10

Figure 2: Example of someone sitting. Top row is keys frames; bottom row is cumulative motion images starting
from Frame 0. Motion images computed on the blurred imagery.

90°

Figure 3: Average MEIs of sitting from 10 viewing angles.

are the Hu moments [15] which are known to yield rea-
sonable shape discrimination in a translation-, scale-,
and rotation-invariant manner. Because many of the
Hu moments are not sensitive to axis reflection, and be-
cause human motion tends to have viewing symmetries,
we augment the feature vector to include terms sensitive
to orientation and the correlation between the z and y
locations: mg = [E(zy) — E(z)E(y)]/[oz04]. Also, we
include a measure of compactness mg computed as the
ratio of the area of the image to the area of the best fit
ellipse whose axes’ orientation and relative size are de-
termined by the principal components, and whose over-
all scale is set to a multiple of the standard deviation of

the spatial distribution of the pixels in the MEI.

We should note that this particular choice of shape
parameters is ad hoc. Also, we use binary images as
opposed to “gray-scale” images for computation of the
moments; we have found that doing so makes the com-
putation less sensitive to small variations. However,
we make no claim that these parameters are the best
method of describing the spatial distribution of the mo-
tion energy. For our experiments they were simply ade-
quate; we suspect that greatly differing domains would
require different shape descriptors.

To illustrate the effectiveness of the MEI shape
descriptions, we performed the following experiment.



First, as described above, we generate average MEIs
for all the sitting data. The complete data suite is
ten different viewing angles [0° (side view) through 90°
(frontal view) in 10° increments] for 4 people each sit-
ting twice, each time in a different chair. For each angle
an average MEI was computed, and shape descriptions
were generated.

Next we added to the sitting data the MEIs of 20
different aerobic exercises. We have chosen this domain
because 1) there are well defined motions that people
know and easily discriminate; 2) the range of motions
are broad; and, 3) realistic motions (e.g. sitting, throw-
ing, reaching) are similar to many of the steps. In fact
the set includes a simple squat which in many ways is
similar to sitting. The complete data set consists of 7
views (0° through 180° in 30° increments) of each of
the 20 movements, with each sequence containing on
the order of 100 frames. Therefore, there are 140 MEIs
generated by the aerobic data, yielding a total target
set of 150.

The experiment consisted of testing sitting examples
of a new subject whose data were not included in the
robust sitting MEls; there were 20 examples, 2 repeti-
tions each from 0° to 90° in 10° increments. For each of
the 20 inputs, the target MEIs were ranked according
to nearness using a metric of independent Mahalanobis
distance®; a ranking of 1 is the closest element.

The results are as follows: For the 20 input exam-
ples, the average rank of the correct sitting example
(same angle as input) is 4.0, with a median of 3. This
implies that typically the third or fourth best MEI out
of 150 would in fact be the correct motion, and that the
MEIs would be a good index for a hypothesis and test
paradigm were several hypotheses are considered.

Also, if there is some latitude in the verification pro-
cedure, then one only needs to find the correct action
at a near-by viewing direction. The average ranking of
the closest sitting MEI that is within 10° of the input
move is 1.8, with a median of 1.5, and a worst case of 3.
To find a close viewing direction of the correct action,
typically only 1 or 2 of the 150 action-angle hypotheses
need to be considered.

4 Motion modeling

The last component of the representation is the mo-
tion description. The idea is partially motivated by
the previously mentioned facial-expression recognition
work of Black and Yacoob [3]. Their innovative paper
proposed a qualitative description of the motion of pre-
defined patches of the face. The parameterization and
location relative to the face of each patch was given a
priori. The temporal trajectories of the motion param-
eters were qualitatively described according to positive
or negative intervals, and then these qualitative labels
were used to recognize such emotions as anger or hap-
piness.

Our work here seeks to extend that approach by us-
ing specific motion patch parameterizations for different
viewing angles of different movements. Clearly the rel-
evant motion fields to see a person sitting are not the
same as those to see someone performing a push-up.

5That is, a Mahalanobis distance with a diagonal ¥.

How then do we select which areas of the image to con-
sider for motion analysis, and how do we compare an
input sequence with a known motion?

Two possible answers should be considered. The first
is that perhaps the raw motion signal could be seg-
mented into distinct patches based solely on the motion
image. While this may be possible for high resolution
images, it would be quite difficult for the blurred images
we have presented, and almost certainly impossible for
images blurred to the extent of sequence in the intro-
duction.

A second answer, and one that we demonstrate here,
is that the stored motion models contain the patch pa-
rameterization necessary to qualitatively describe the
motion. The basic idea is that a stored motion model
consists of an index entry, a method for aligning the
patch model with the input data, and a description of
the motion fields expected for the given action viewed
from the given angle. With these tools it will be possible
to recognize a given input sequence as being consistent
with a known motion.

In this section we derive a motion description mech-
anism that collapses motion trajectories — the value
of the motion parameters as they vary during the per-
formance of an action — to a single, low-order vector.
Then, for each angle of each move we can define an ac-
ceptance region — or a probability distribution — on
that vector for a given view of a given action. If an in-
put motion falls within that region it can be said to be
accepted as an example of the action.

4.1 Sitting sticks

To derive our representation we employ a simplified
patch model, namely sticks manually placed and tracked
on the imagery. We do this to decouple the nature of the
representation from our ability to do patch tracking us-
ing optic flow or another motion estimation procedure.
Figure 4 show the manually placed sticks in five frames
of a sitting action.

A stick is defined by its two endpoints {< z1,y1 >
,< T2,y2 >}, and therefore has 4 degrees of freedom.
As such we can describe the motion of a stick from one
frame to another by four numbers. To help maintain
our intuitions we will consider the four variations to be
Trans-z, Trans-y, Rotation, and Scale, and we relate
them in the usual way to the algebraic transformation:

' a1 —ao T as
)=l )]
where [z,y]T are the position of an endpoint in one
frame, [z, y']” are the position of the endpoint in the
other, Trans-z = a3, Trans-y = a4, Scale = a1, and

Rotation = as.

For the sitting example, as illustrated, we use three
sticks. If we relate the three sticks at each time ¢ back
to the original stick configurations at time ¢t = 0, we can
characterize the motion of the sticks by a 12-dimension,
time-dependent vector ]l_‘[(t) For each given viewing
direction o we would get a different motion appearance
so we need to index the motion by «: Aﬁa(t).

The four graphs of the left-hand column of Figure 5
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Figure 5: Left: 4 motion parameters for one sitting stick, for each of training viewing angles; Middle: Eigen-functions
capturing 90% of the variance. Right: Typical reconstruction of a motion parameter trace.

show the average® traces for o every 10° from 0° to 180°
for each of the parameters of the torso stick.” Note how
the curves vary slowly as « changes: since appearance
changes slowly with viewpoint so does the parameteri-
zation. Highly dependent signals such as these can often
be well represented by a principal components decom-
position, reducing the data to a linear combination of
a small number of basis functions. The second column
of the figure shows all the eigen-functions required to
capture 90% of the variance of the original instances.
Notice that for this stick, only the Scale parameter re-

A dynamic time warping (DTW) of the 12-
dimensional signals is done to align the curves of a
given angle for each of the four subjects. Because we
are using absolute motion, not frame to frame, the

amplitude of Ma(t) is speed invariant and amenable
to scaling by DTW methods.
"The angles 100° to 180° are generated by reflecting
the original image data.

quires two eigen-functions; the remaining parameters,
only a single eigen-function. The right column contains
typical reconstructions of the parameters curve using
only the eigen-functions shown.

4.2 Variation within training data

To determine whether a test motion is consistent with a
known movement we need to characterize the variabil-
ity of the training data. The above principle component
decomposition has the effect of reducing the time-based
parameter curve to a low order coefficient vector (in fact
a singleton in 3 of the 4 parameters of the stick shown).
Therefore we can measure the variation of the coeffi-
cients of the training data to determine an acceptance
region. Figure 6 displays the mean value of the five co-
efficients (two for Scale, one for each of the other three)
along with a 30 envelope, where the training data are
two repetitions (two different chairs) of four people sit-
ting. The means of the coefficients can be considered as

an angle varying vector (_jm(a).
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Figure 4: Stick placement for sitting. Sticks are man-
ually placed and tracked on the torso, upper leg, and
lower leg.

These graphs represent the motion modeling for the
sitting action. When testing an input motion, the
three sticks need be placed and tracked, and the nec-
essary parameter trajectories recorded. Then, given a
hypothesized view angle aq, the input trajectories are
jointly dynamically time warped to match the recon-
structed trajectories generated by the eigen-coefficient
vector é’m(ao). After warping, the input traces are pro-
jected onto the eigen-function basis set to yield the co-

. —test . . . .
efficient vector C' . Finally, the input motion is ac-
cepted as an example of sitting motion at angle o if

every component of ¢/ of """ is within the k-0 en-
velope: Vs, |[ci®*" — c*|| < k (o).

To test this approach we performed the following
experiment: We first extracted stick parameters for 3
new people, sitting in different chairs, viewed from the
10 viewing angles. We also recorded stick parameters
for the 3 aerobics moves that involved full body mo-
tion and looked to us to be the most like sitting — the
closest example is a simple squat. For a wide range of
k, 3.0 < k < 9.0, all but one of the sitting examples
were accepted, whereas all of the aerobics moves were
rejected.?

4.3 Patches

While manually instantiated sticks are convenient for
deriving our verification method, to actually recognize
action we need to automatically recover motion param-
eters. Our goal is to have a set of polygonal patches
whose placement is determined by the hypothesized ac-
tion and view angle suggested by a matching target

8The one sitting example rejected was performed by
the aerobics instructor performing a sitting action as
an exercise. Her perfect posture fell out of the 3o
range — not surprising considering the four training
subjects were graduate students.
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Figure 6: Mean and 30 acceptance re%ion for one stick
of the motion model for sitting as a function of view
angle a.
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Figure 7: Automatic tracking of patches. After ini-
tialization by MEI alignment, the patches are tracked
using a parametric optic-flow algorithm; in this case, an
affine model is used.

MEI. The motion parameters are determined by track-
ing the patches using a region-based parametric optic
flow algorithm. Consistent with the stick approach
would be to use a parameterization that models op-
tic flow as a four parameter deformation; a 6- or 8-
parameter planar model is possible as well as long as it
is stable.

One example of tracked patches is shown in Fig-
ure 7. The three polygonal patches are created man-
ually but tracked automatically using an affine model
of optic flow[2]. The initial placement and scale of the



these patches needs to be adjusted to fit the position
and size of the motion in the image. One possibility
is to use centroid- and moment- based alignment be-
tween the input and target MEIs to define the neces-
sary 3-parameter transformation for the patches. We
have not yet achieved a robust enough model placement
and tracking algorithm to test the recognition method
on patches. Unlike face images of [3], our sitting images
can have quite a variety of image textures which makes
motion estimation a non-trivial operation.

4.4 Motion aspects

We conclude the section on motion description by noting
that it 1s unlikely that a single patch representation can
be robustly tracked over all possible views of an action.
Thus, the parameterization of the motion description
itself is sensitive to view angle. We refer to the space of
view angles over which a parameterization applies as a
motion aspect.

Fortunately, the hypothesize and test method can be
easily modified to use different patch models for dif-
ferent views. Using the MEI as an index, one can not
only retrieve the appropriate coefficients ém(a) but also
the patch model from which the coefficients are derived.
The basic algorithm would be to (1) Use the input MEI
to select a target MEI, a patch model, and coefficient
vector; (2) Compute a scale and translation transforma-
tion between the MEIs; (3) Use the transformation to
align the selected patch model with the input sequence;
(4) Track the patch model and extract the motion pa-
rameters; and (5) Test for acceptance of the action and
view angle associated with the selected target MEI.

5 What’s next:
recognition

Segmentation and

Our motion-based recognition technique has been de-
signed to allow for the automatic temporal segmenta-
tion of an input video stream. The method relies on
looking backward in time, much as is done by [8]. The
system will continually construct MEIs backwards, up
to a time delay of t4, and attempt to find a matching
MEI in the library. If any matches are found, the cor-
responding motion appearance model is retrieved and
applied backward in time attempting to verify the mo-
tion. We have not yet completed implementation of the
temporal segmentation mechanism so we cannot report
the results. However, the computational complexities of
both the MEI computation (mostly image differencing)
and the patch parameter estimates (least-squares over
small patches) are low, and near real time performance
should be possible on standard hardware.

6 Conclusion

A new view-based approach to the representation of ac-
tion for recognition is presented. The fundamental idea
is to recognize the motion itself, not a sequence of static
configurations. The paradigm we consider is hypothe-
size and test. The hypothesis phase requires a model-
free method if exhaustive search is to be avoided. We de-
velop motion-energy images (MEIs) as a method of cap-
turing the spatial distribution of motion, and propose
a simple shape description feature-vector as the initial

index as to the motion and viewing condition present.
Once candidates are proposed, they can be verified using
model-based techniques. Using a manually placed and
tracked stick model we derive a principal-components
method for collapsing the time varying motion parame-
ters to a single, low-order, coefficient vector. The coef-
ficients are a function of view angle and can be used to
verify agreement with training data. Our next goals are
to apply these techniques to the automatic placement
and tracking of patches and to then implement the com-
plete recognition system to automatically segment and
recognize actions.

We find our initial results promising, but need to
experiment further in a domain where we have many
known motions. Our intent is to apply the system to the
tasks of recognizing a set of aerobic exercises (trained
on professionals but tested on out-of-shape academics)
and detecting particular actions in live video (such as
simply noticing when anyone sits down anywhere in a
room).
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