
A s high-performance computers containing large amounts
of memory and disk space become more accessible,

demands for more effective visualization methods that can
analyze large-scale numerical data also continue to grow.
Among many problems that are faced by visualization re-
searchers, how to effectively visualize numerical vector field
data is one of the most challenging research subjects. In 1993,
Cabral and Leedom1 proposed an innovative approach called
line-integral convolution (LIC), which can produce realistic
visualizations of flow direction everywhere in a vector-field.
This technique has drawn a lot of attention from researchers
as well as practical users in the past several years. Generally,
people are impressed by the results of using LIC to visualize
vector-field data. In this article, I briefly review this new visu-
alization technique, along with some recent extensions, in the
hope that you will find it useful for your own applications.

Visualizing dense vector-field data is a difficult problem.
This is because the graphical icons that can naturally represent
a vector tend to use up too much of the spatial resolution of
the display. Suppose we were to draw a line segment repre-
senting a vector’s direction and make the length of the seg-
ment proportional to the vector magnitude. Unlike displaying
a scalar quantity, in which we can just paint a color to a single
pixel to illustrate its value, drawing a line segment inevitably
requires more screen space. As a result, the display window
quickly gets cluttered as the size of vector data increases.

Another way to visualize the vector field is to specify seed
locations and then compute streamlines, curves that are tangent
everywhere to the flow direction in the field. This is one of the
most popular visualization techniques in computational fluid
dynamics. The disadvantage of using streamlines, however, is
that in order not to miss any subtle features in the data, you have

to know where to place
those seed points. For
large-scale simula-

tions with complex geometric
models, knowing for sure
where the interesting features
are is nontrivial. You prob-
ably will need to place a lot of
streamlines, which again clut-
ter the display, or you can
probe around by trial-and-er-
ror, but you never know if you
have missed anything.

To solve the problems,
visualization researchers have
been working on “global tech-
niques,” trying to image the
flow direction everywhere in
the field into a single picture.
Such techniques attempt to
represent the vector at every
grid point by as little as one
pixel display space and to pull
out interesting features auto-
matically. In this way, large
data sets can be effectively
visualized, and the amount of
user interaction involved be-
comes minimal. In the follow-
ing, I review the LIC algo-
rithm and some of its exten-
sions to show you how the
technique realizes these goals.

Convolution algorithm
Image convolution is a

common technique in image
processing. Given an input

Han-Wei Shen is a research scientist with MRJ Inc. at NASA Ames Research
Center, Moffett Field, CA 94034. E-mail: hwshen@nas.nasa.gov

 © 1997 AMERICAN INSTITUTE OF PHYSICS S0894-1866(97)00805-5

PRACTICAL VISUALIZATION

USING LINE-INTEGRAL
CONVOLUTION
TO VISUALIZE DENSE
VECTOR FIELDS

Han-Wei Shen

Department Editor:
Steve Bryson
bryson@nas.nasa.gov Figure 1. Demonstration of one-dimensional image convolution.

Image (a) with random pixels, when convoluted with set of hori-
zontal lines (b), yields horizontal texture pattern (c).

Figure 2. Process of line-integral
convolution.

 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997474

image, each pixel value in the output image is computed by the
weighted averaging of a small region of pixel values from the
input. The weighting variable used to multiply the input pixel
value is defined by a function called the convolution kernel.
With reference to the dimension of the small region covered
by the convolution kernel for each pixel, we can classify the
operation as one-dimensional, two-dimensional, or three-di-
mensional convolution.

People often use “convolution” to mean smoothing an
image or computing derivatives. However, image convolu-
tion can also be used to synthesize textures based on prede-
fined patterns. For example, Fig. 1(a) is an image with random
pixels. Figure 1(b) shows horizontal lines in a plane of the
same size. Suppose we want to create a new image that has
the horizontal texture pattern as shown in Fig. 1(b). To
achieve this, we apply a one-dimensional convolution (the
convolution region for each pixel will be a line) to the random
image. For each pixel, the convolution is computed by aver-
aging the values of the pixel itself, and its left and right five
neighboring pixels along the horizontal direction. This aver-
age is then used as the pixel’s output value. Once the process
is finished, we get Fig. 1(c). As you can see, it shows the
horizontal texture pattern that we want.

One-dimensional image convolution can be used to create
textures of arbitrarily oriented lines. For vector-field visuali-
zation, we can synthesize images based on the flowline direc-
tions.

The original LIC algorithm proposed by Cabral and
Leedom takes as inputs a vector field on uniform Cartesian
grids and an image. The vector field can be two- or three-di-
mensional, and the image contains white noise with the same
resolution as the vector field. To visualize the vector data, the
LIC algorithm uses a one-dimensional low-pass filter func-
tion based on the flow-line directions in the vector field as the

kernel to perform convolutions on the input noise image. The
convolution region for each pixel is defined by streamlines
originating from that pixel in both its positive and negative
directions. These streamlines can be computed using numeri-
cal-integration schemes such as second- or fourth-order Runge-
Kutta methods. The weighting variables used to multiply the
input pixel values along the streamlines are computed by the
exact integral of the convolution kernel function k at every
numerical-integration step of the streamline, which can be
written as

hi = ∫
si

si+∆si

k (w)dw

where ∆si is the ith step size (distance) of the numerical
integration and si is the distance that the streamline has
traveled after i steps:

s0 = 0

si = si−1 + ∆si−1

Using the exact integration result hi as the weighting vari-
able, we can compute the convolution result at each pixel as:

Fout (x, y) =

∑
i = 0

l

Fin(Pi)hi + ∑
i = 0

l ′

Fin(Pi′)hi′

∑
i = 0

l

hi + ∑
i = 0

l ′

hi′

where Fout(x, y) is the output value at pixel (x, y), Fin(Pi) is the
input pixel value from the noise image at point Pi, Pi is the
position of the ith streamline integration in the positive direc-
tion, Pi′ represents the corresponding step in the negative
direction, P0 = (x, y), l and l′ are the convolution distances
along the positive and negative directions respectively, and
hi and hi′ are the weighting variables as described above.
Figure 2 illustrates the convolution process for a pixel.

In the above convolution, the user needs to specify a
single parameter, the convolution length L, which is equal to
the variables l and l′ that are used in the above formula. When
L is made larger, the convolution result becomes smoother,
and the streamlines appear to be more continuous.

The convolution kernel is a low-pass filter function.
Cabral and Leedom use a periodic low-pass filter, called the
Hanning windowed function, which can be expressed as:

k (w) =
1 + cos(cw)

2
 ×

1 + cos(dw + b)
2

=
1
4

(1 + cos(cw) + cos(dw + b) + cos(cw)cos(dw + b))

where c and d are constants and b is the phase shift given in
radians. The period of the function’s phase is 2p .

Remember that we need the exact integration of the
kernel function in the convolution. It is:Figure 3. Visualization of a two-dimensional vector field using LIC.

 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 475

∫ k
a

 b

 (w) dw =
1
4

 ×

 b − a +
sin(bc) − sin(ac)

c

+
sin(bd + b) − sin(ad + b)

d

+
sin(b(c − d) − b) − sin(a(c − d) − b)

2(c − d)

+
sin(b(c + d) + b) − sin(a(c + d) + b)

2(c + d)

Figure 3 shows an example of an LIC image.
A feature of LIC is its ability to animate the flow. In the

above formula, the value of b represents the function’s phase.
The shape of this convolution kernel function will be shifted
forward if its phase is stepped from 0 to 2p . Using different
phases of the kernel function in the convolution, we can gener-
ate a sequence of images, in which the noisy “blobs” will
appear to move forward, hence creating a realistic flow effect.

In addition to visualizing vector fields, LIC can be used
to create interesting special effects.1 The idea is to use a regular
image and a vector field associated with that image as the
inputs to the LIC. By computing the LIC based on the inputs,
you can smear the colors in the image along the flow directions.

I have briefly reviewed the LIC algorithm. In the follow-
ing, we look at some interesting extensions of LIC that have
been developed.

Curvilinear grid data
Line-integral convolution is primarily for data on regular

Cartesian grids. However, a majority of flow simulations
generate data on structured curvilinear grids. Lisa Forssell
extended LIC to work on such grids.2

For a curvilinear-gridded field, the location of any point
in the domain can be represented by a physical coordinate
system (in physical space) or by a computational coordinate
system (in computational space). In computational space, data
points are organized in a regular Cartesian grid, and cell

elements are uniformly sized in all dimensions. In physical
space, meshes conform to model geometries, and the spaces
between grid points are nonuniform. Forssell proposed com-
puting the LIC first in computational space, since data in this
space have the Cartesian grid structure that LIC requires.
Once the convolution is completed, the results can be trans-
formed back to physical space using a standard inverse map-
ping. In Forssell’s approach, if the vector data are defined in
physical space, you need to transform them to computational
space before the LIC computation can proceed. This can be
done by multiplying the vectors by inverse Jacobian matrices.

In the LIC convolution, we need to specify a convolution
length that a streamline, which defines the convolution path,
can travel. This convolution length is used globally so that the
streamline generated from each pixel travels the same dis-
tance in space. Since we compute the LIC in computational
space, when we transform the result back to physical space
for display, a given fixed convolution length actually corre-
sponds to different distances for regions with different grid
densities. This will cause a problem for us.

Why is this a problem? Remember that animations of
flow motion can be generated by shifting the phase of the
convolution kernel. In the animation, the flow speed appears
to be affected by the amount of phase that is shifted at each
animation step and convolution kernel length. The combina-
tion of these two factors decides the distance that a “ripple”
can move in each frame. If the convolution kernel length is L
and the convolution kernel phase is shifted by 1/n at each
animation frame, then the distance that a “ripple” can move
at each step is approximately L × 1/n. When we transform the
LIC result from computational space back to physical space,
the convolution length L becomes shorter in regions that have
higher grid densities. In the formula L × 1/n, because L is now
smaller, the flow speed will appear to be slower. Of course
this is wrong, because we know that the flow velocity has nothing
to do with the grid density. To amend this problem, Forssell
proposed a solution that stretches the convolution kernel
length in computational space for pixels that are in regions
with higher grid density so that its corresponding length in
physical space becomes the same everywhere.2 To do this, the
convolution kernel length at each pixel p is computed by

l(p) = a + b × r(p) ,

where a is the fixed minimum kernel length for everyone, b
is the maximum of extra convolution length, and r(p) is the

Figure 4. Convolution ranges of pixels P1 and P2.

Figure 5. LIC image of a curvilinear-gridded blunt-fin data set.

grid density at cell p. Details can be found in
Forssell’s paper,2 which includes a formula to
compute the grid density. Figure 5 is an LIC
image of curvilinear gridded blunt-fin data.

Accelerating the computation
Although LIC is effective at visualizing

vector fields, unfortunately it is not fast enough
to perform real-time data exploration. Stalling
and Hege have proposed an extension that
speeds up the process.3 Their work is based on
two key observations. First, a streamline start-
ing from any point in the domain actually passes
through many pixels. These pixels can be made
to share this streamline when computing the
convolution, so as to avoid redundant numerical
integrations (numerical integration is expen-
sive). The second observation is that adjacent
pixels in the same streamline use similar pixel
sets for the convolution. Therefore, the LIC
value computed for one pixel can be reused by
its neighbors with small modifications to accel-
erate the convolutions. By reducing the number
of streamlines computed and reusing portions
of the computation, Stalling and Hege achieve
significant savings.

Figure 4 illustrates the convolution ranges for pixels P1 and
P2. The wide overlap area in the middle is used by both pixels.
Assuming that the convolution output for P1 is I(P1), then we
can compute the convolution value for P2 as:

I(P2) = I(P1) − I(∆ 1) + I(∆ 2)

where I(∆1) and I(∆2) are the convolution values for areas ∆1
and ∆2. To make the above equality true, Stalling and Hege
use a box filter, which is a constant function k . With such a
filter, the convolution result for pixel x0 can be expressed as

I(x0) = k ∑

i = −L

L

 T(xi) k =
1

(2 L + 1)

where xi is the pixel at the ith step of the streamline integra-
tion, T(xi) is the input image (texture) value at xi, and L is the
convolution length. Once I(xm) is known (m = 0 in this case),
we can compute I(xm+1) and I(xm-1) as:

I(x m + 1) = I(xm) + k [T (xm + 1 + L) − T (xm − L)]

I(x m − 1) = I(xm) + k [T (xm − 1 − L) − T (xm + L)]

The results for I(xm+1) and I(xm-1) are stored into pixel xm+1

and xm-1 respectively. The convolution then continues one step
further in both streamline directions using the above formula.

With this convolution method, by computing a single
streamline, we can “hit” many pixels along the line and
quickly compute their LIC values. To reduce the total number
of streamlines computed in the field, Stalling and Hege rec-

ommend starting the convolution from random pixels and
keeping track of how many “hits” each pixel has received
from streamlines originated from elsewhere. A new stream-
line is then initiated from a given pixel only if its number of
“hits” is lower than some threshold value.

Stalling and Hege also propose other improvements on
LIC such as relaxing the size requirements on input vector
fields, input texture images, and output result images. In their
paper they also describe methods that can produce smoother
animation sequences.

Dye advection
LIC is very effective in visualizing flow directions in

vector fields. However, sometimes we are interested in ob-
serving the correspondence between neighboring streamlines
such as the propagation of wavefronts. Unfortunately, the
convolution result given by LIC does not highlight such
features clearly. To amend this problem, Shen (myself),
Johnson, and Ma propose introducing dye advection into LIC
computation.4 The special effect known as “smearing” men-
tioned previously can readily be used to simulate the dye
advection. Initially, we apply the regular LIC method to
compute the image frames as usual. To inject dye into the
field, we replace the noise values of the input pixels that serve
as seed points with colors of the inserted dye, then recompute
the LIC convolution. Due to the nature of LIC, these colors
are smeared away by the flows.

Although the LIC convolution is computed globally, the
dye advection will affect only local regions, that is, those
pixels in the way of dye propagation. It would be inefficient
to recompute the LIC of the whole field so as to represent only
a small amount of dye injection. To avoid such inefficiency,
we note that for a given dyed area, only the pixels with
backward streamlines passing through this area will be af-

Figure 6. Snapshots from an animation of a three-dimensional tornado simulation visualized by
LIC with dye advection.

 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 477

fected by the dye. A fast search algorithm that creates a direct
flowback neighbor list for each pixel and uses a broad first-
search algorithm rapidly locates the dyed regions. LIC is then
recomputed only in those regions.

In our paper we also demonstrate a volume-rendering
model to display three-dimensional (3D) LIC results. To
extend to three dimensions the original LIC algorithm pro-
posed by Cabral and Leedom, a 3D noise volume is used
instead of a noise image as the input texture. The streamline
convolution is then performed in 3D space, and the LIC
output is a 3D scalar volume. Direct volume-rendering tech-
niques can be used, but with some modifications, to render
this volume. Normally in volume rendering, the transfer
function that specifies regions of interest is defined upon the
scalar values of the volume itself. For volumes with LIC
output, the transfer function must be defined by another scalar
variable such as pressure, temperature, or magnitude of ve-
locity. This is because the scalar values of LIC output are
basically smoothed noise data and therefore cannot be used
to define regions with meaningful physical characteristics.
My colleagues and I propose a bivariate volume-rendering
model, which can accept two scalar data sets, one as the
primary data and the other as the secondary data. The primary
data set is the scalar quantity used to define local regions, and
the secondary data set is the LIC output that shows directional
patterns on those regions. Figure 6 shows snapshots from an
animation sequence of LIC with dye advection.

Multifrequency noise
Another extension of LIC worth mentioning is the multifre-

quency LIC method of Kiu and Banks.5 Although LIC is excel-
lent for illustrating the flow direction in a vector field, the
magnitude of the velocity is usually difficult to discern in LIC
images. To amend this problem, Kiu and Banks propose a
method that varies the spatial frequency of the input noise texture
based on the velocity magnitude in the field. Starting with the
high-frequency noise input, they apply a Gaussian filter with
different width w to the high-frequency noise image so as to

create masks of different spatial frequencies. Because the
Gaussian filter width w is inversely proportional to the velocity
magnitude, larger blobs are created for regions with higher
velocities.

To compute the LIC, masks with different noise frequen-
cies representing regions with different velocities are assem-
bled as the input noise texture. This multifrequency noise
texture is then used by the regular LIC algorithm. Figure 7 is
a result created by this technique.

Significant new developments
Line-integral convolution is a powerful method for im-

aging large-scale vector-field data. In contrast with interac-
tive visualization, which requires a lot of user probing, LIC
reveals important data features by displaying a dense array of
information everywhere in the field. Recent developments
have made LIC even more powerful. In addition to the tech-
niques that I have reviewed here, other significant LIC tech-
niques, which I do not have enough space to describe in detail,
are Okada and Kao’s postfiltering techniques for sharpening
LIC output and highlighting flow features such as flow sepa-
rations and reattachments (published in SPIE Electronic Im-
age ’97); Stalling, Zockler, and Hege’s parallel line-integral
convolution (published in Proceedings of the First Euro-
graphics Workshop on Parallel Graphics and Visualization);
Battke, Stalling, and Hege’s fast line-integral convolution for
arbitrary surfaces in 3D (published in Visualization and
Mathematics 1997 conference); and Mao et al.’s line-integral
convolution for arbitrary 3D surfaces using solid texturing
(published in Eurographics Workshop on Visualization in
SuperComputing 1997). In addition, I and my colleague
David Kao at NASA Ames will have a paper in this year’s
IEEE Visualization ’97 conference about a new convolution
algorithm for visualizing unsteady flow data. Up-to-date in-
formation on LIC can be found in the proceedings of the August
1997 SIGGRAPH conference, which had a tutorial on the sub-
ject (see http://www.icase.edu/~kma/lic_course97.html).

References
 1. B. Cabral and C. Leedom, “Imaging vector fields using

line integral convolution,” in Proceedings of SIGGRAPH
93 (ACM SIGGRAPH, New York, 1993), pp. 263–270.

 2. L. K. Forssell and S. D. Cohen, “Using Line Integral
Convolution for Flow Visualization: Curvilinear Grids,
Variable-Speed Animation, and Unsteady Flows,” IEEE
Transactions on Visualization and Computer Graphics
1(2), 133–141 (1995).

 3. D. Stalling and H.-C. Hege, “Fast and resolution inde-
pendent Line Integral Convolution,” in Proceedings of
SIGGRAPH 95, (ACM SIGGRAPH, New York, 1995),
pp. 249–256.

 4. H.-W. Shen, C. R. Johnson, and K.-L. Ma, “Visualizing
Vector Fields Using Line Integral Convolution and Dye
Advection,” in Proceedings of 1996 Symposium on Vol-
ume Visualization (IEEE Computer Society Press, Los
Alamitos, CA, 1996), pp. 63–70.

 5. M.-H. Kiu and D. Banks, “Multi-Frequency Noise for LIC,”
in Proceedings of Visualization ’96 (IEEE Computer So-
ciety Press, Los Alamitos, CA, 1996), pp. 121–126.

Figure 7. Image created by multifrequency LIC. Regions with different
velocities have different texture densities.

 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997478

