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Abstract 

We present a new method, called differential volume 
rendering, to speed up the process of volume animation 
for flow visualization. Data coherency between consec- 
utive simulation time steps is used to avoid casting un- 
necessary rays from the image plane. We illustrate the 
utility and speed of the differential volume rendering al- 
gorithm with simulation data from electrical wave propa- 
gation within a cellular automaton model of the ventricu- 
lar myocardium. We can achieve considerable disk-space 
savings and nearly real-time rendering of 3-d flow using 
low-cost, single processor workstations. 

Introduction 

We have developed a cellular automaton model to 
study electrical activation in the myocardium. Each el- 
ement in the model simulates a region of the ventricu- 
lar myocardium and has the following characteristics: ex- 
citability, cycle length dependant absolute refractory peri- 
ods and relative refractory periods. Anisotropy of impulse 
propagation from one element to another is introduced 
by a dependence of the propagation velocity on the lo- 
cal fiber orientation, with the fastest conduction oriented 
along the fiber axis. Details of the model may be found 
in [l] . The model is primarily used to study factors that 
affect the vulnerability of the heart to fibrillation. Hence, 
most observations need to be concentrated on the prop- 
agating activation wavefront. Volume visualization was 
chosen to be the most suitable means of visualizing the 
3-d nature of the wavefront throughout the entire my- 
ocardium. The major drawback of conventional volume 
visualization is that it is extremely resource (time and 
memory) intensive. We have exploited the temporal co- 
herence in simulated data to achieve a significant speedup 
over traditional volume rendering schemes. To ensure nu- 
merical stability, most flow simulations are computed us- 
ing small time steps such that a very small fraction of the 
total elements change their values from one step to the 
next. If we concentrate our rendering efforts solely on the 
changed cells, the number of rays that need to be cast 
decreases dramatically and yields a sizable reduction in 
terms of the amount of time devoted to rendering. Since 

we concentrate on the differences in data throughout the 
simulation, we call this new technique - Differential Vol- 
ume Rendering. 

Differential Volume Rendering 

From preliminary studies of our wave propagation sim- 
ulations, the only elements which changed values between 
consecutive time steps were the activated cells and their 
neighbors. In addition, when a sequence of propagating 
images is animated, the viewing parameters usually don't 
change. Thus, the pixels in the new image will keep the 
same color values unless they corresponded to changed 
data elements. The main idea of the differential volume- 
rendering algorithm is to exploit the temporal coherence 
between sets of volume data. Rays are cast along a path 
corresponding only to changed data elements. By decreas- 
ing the number of rays that need to be cast, and retaining 
the color values from the non-changing pixels , a signif- 
icant amount of time saving can be achieved for volume 
animations. 

Visualization Pipeline 

The visualization pipeline of the differential volume ren- 
dering method can be divided into two phases, static and 
dynamic. In the static phase, operations are performed 
once for a data set. Data is generated from a simula- 
tion which might typically consist of hundreds or thou- 
sands of time steps worth of information. The simulation 
data of consecutive time steps is then compared to obtain 
the positions of changed data elements. The positions 
of those changed elements and their corresponding time 
step values are output into a single differential file which is 
the only information needed to produce animated volume 
rendered images. Due to the small fraction of variation 
between consecutive time steps, the differential file which 
replaces the whole sequence of volume data yields tremen- 
dous saving of disk space. 

In the dynamic phase, the positions of changed ele- 
ments are extracted from the differential file a t  each time 
step and the pixels where new rays need to be cast are 
computed according to the viewing direction. The resul- 
tant pixel positions are placed into a ray casting list, which 
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is referred to by the ray casting process before firing new 
rays to produce the updated image. These operations are 
classified as the dynamic phase because the pixels corre- 
sponding to those changed elements are dependent on the 
viewing direction. The pixel positions remain undeter- 
mined until the user specifies the viewing parameters. 

Time 
Steps 

Results and Discussion 

Regular Ray Differential Ray Casting 
Casting Pixel I Ray I Total 

The software for the differential volume rendering al- 
gorithm has been implemented using OpenGL, which is 
portable across most hardware platforms. The parallel 
projection and template-based 26 connected discrete ray 
casting paradigms [2] were used in our implementation. 
The performance measurements were evaluated on a SGI 
Indy workstation with a single 100 MHZ MIPS R4000 
processor. 

Upon analysis of our simulation data, we noticed that 
only a small fraction of elements changed states between 
time steps. Table 1 compares the average rendering times 
for a differential volume renderer and a traditional vol- 
ume renderer using a 128 x 128 x 128 volume. The ren- 
dering times for the first image are the same, with a sig- 
nificant reduction for subsequent time steps. In our sim- 
ulation data, the average time to render 100 images with- 
out adopting the differential method was approximately 
13.39 x 100 = 1339 seconds. Differential volume render- 
ing achieved the same amount of rendering and the same 
image quality in only 65.5 seconds, a savings of 95%. The 
disk space taken by the 100 time steps of volume data was 
2.10 x 100 = 210 M Bytes. By using the differential vol- 
ume rendering algorithm, which only require the volume 
data of the first simulation time step and the differential 
file, we could reduce the allocated disk space to 2.1 + 2.08 
= 4.18 M Bytes, a reduction of 95%. 

The robustness of the differential volume rendering was 
tested by varying the number of changed elements be- 
tween time steps. Table 2 lists the rendering times for 
different amount of changed elements in a 64 x 64 x 64 
volume. When the percentage of changed elements was 
over 50-60%, the performance of the differential volume 
rendering algorithm became worse than the regular ray 
casting method, due to the overhead needed to calculate 
the pixel positions before casting new rays. 

Although our algorithm has  limitations when the num- 
ber of changed elements exceeds SO%, for most flow vi- 
sualization applications the number of changed elements 
during the propagation at  each time step constitutes only 
a small fraction of the whole volume. Therefore] differen- 
tial volume rendering represents an attractive technique 
for flow visualizations. 

Currently we are in the process of evaluating and 
adopting different rendering paradigms as well as paral- 
lelizing the algorithm to maximize performance. 

% of Changed 
Elements 

Differential Ray Casting 
Pixel I Ray I Total 

70 13.401 0.118 I 0.173 0.291 
80 13.397 0.112 I 0.153 0.265 

Regular Method 
5% 

I I I I 

90 I 13.398 I 0.105 I 0.129 I 0.234 

Calculation Casting 
0 2.372 2.372 

0.151 0.127 0.234 
0.482 
0.643 
0.898 

45% 1.142 

Table 2: Rendering time (in seconds) for different amount 
of changed elements in a 64 x 64 x 64 volume 
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