
Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors)

An Image-Based Modelling Approach To GPU-based
Unstructured Grid Volume Rendering

Naeem Shareef,1 Teng-Yok Lee,1 Han-Wei Shen,1 and Klaus Mueller2

1Department of Computer Science & Engineering, The Ohio State University
2Department of Computer Science, Stony Brook University

Abstract
Unstructured grid volume rendering on the GPU is an ongoing research goal. The main difficulty is how to map
the irregular data efficiently to the graphics hardware. Grid cells cannot be directly processed by the pipeline
since polyhedral cells are not basic graphics primitives. Thus, approaches that render directly from the grid must
try to overcome inherent computational bottlenecks such as cell ordering.
We present a novel image-based approach that allows for flexible sample placement and an efficient mapping to
graphics hardware that can leverage current trends in hardware performance. The unstructured grid is replaced by
a semi-regular data structure we call the Pixel Ray Image (PRI), which consists of a pixelized projection plane and
samples defined on sampling rays that intersect the grid. Each ray is interpreted as a linear spline of scalar values.
The knot count is reduced by taking advantage of coherence in the sampling direction using spline simplification.
The final representation is stored in a packed fashion onto 2D textures and uploaded once to texture memory
prior to rendering. We detail how to perform efficient rendering utilizing shader programming and a slice-based
rendering scheme that is similar to those used by hardware-accelerated rendering approaches for regular grids.

Categories and Subject Descriptors(according to ACM CCS): I.3.0 [Computer Graphics]: General; I.3.1 [Com-
puting Methodologies]: Computer Graphics-Hardware Architecture; I.3.3 [Computer Graphics]: Picture/Image
Generation-Viewing algorithms; I.3.3 [Computer Graphics]: Picture/Image Generation-Display algorithms; G.1.1
[Numerical Analysis]: Interpolation

1. Introduction

Todays PC graphics hardware has shown to be an ideal plat-
form for volume rendering of regular grids. The reason is
that a regular grid volume dataset naturally maps to a stack
of 2D textures or a 3D texture where interpolation of the
scalar field within the grid cells is performed efficiently by
texture mapping hardware, a well optimized operation for
some time now. On the other hand, unstructured grid vol-
ume rendering on graphics hardware has been particularly
challenging due to the irregular organization of the data sam-
ples. Nevertheless, the unprecedented performance gains of
graphics hardware on the PC over recent years makes it a
preferred platform for many visualization tasks today, and
this technology can also greatly increase the usability of un-
structured grid data in key areas such as the sciences, engi-
neering, and medicine.

The complexity of the unstructured grid poses unique

challenges when trying to map rendering tasks to graphics
hardware. Current approaches differ in how they utilize the
available functionality in the graphics pipeline. Cell projec-
tion methods [ST90] [RKE00] [CICS05] [WMFC02] submit
the cells to the pipeline one at a time and use the hardware
to interpolate values across cell faces. Raycasting methods
[WKME03] [WMKE04] store the grid onto textures and use
shader programs to traverse the cells. Plane methods (slic-
ing or sweeping) [YRL∗96] [Wes01] [BG05] operate over
groups of cells as the sweep plane traverses the data.

All direct volume rendering approaches for unstructured
grids must overcome two computational bottlenecks, i.e. cell
ordering and per cell processing, both of which are not easily
solved or accelerated in graphics hardware. Since the set of
available hardware primitives are limited to polygons only,
with no direct support for polyhedra, the grid cells are usu-
ally decomposed into their cell faces. Most approaches as-

c© The Eurographics Association 2006.

N. Shareef et al. / An Image-Based Modelling Approach To GPU-based Unstructured Grid Volume Rendering

sume that the grid has been tessellated into tetrahedrons in
order to leverage efficient processing on a per triangle basis.
The drawback is that their performance does not scale well
with the tetrahedron count due to both of the aforementioned
bottlenecks. Also, grids with a mix of cell types usually ex-
perience a substantial increase in their cell count when de-
composed into tetrahedrons. To alleviate the problem, one
solution is to apply a grid simplification algorithm in order
to reduce the cell count. These methods utilize coherency
found in the scalar field, but introduce approximation errors
in the process. Another solution is to resample the unstruc-
tured grid into a regular grid and then use a fast hardware-
accelerated approach for rendering, such as 3D texture vol-
ume rendering. This can introduce a significantly larger sam-
ple count when compared to the original data sample count
as well as approximation errors. With limited texture mem-
ory continuing to be an issue, the size of the regular grid
volume usually needs to be reduced.

The idea behind our approach comes from the area of
image-based modelling and rendering where a large and
complex scene is re-represented with view-dependent infor-
mation. The simpler representation allows for fast rendering
on graphics hardware. We construct a data structure that is
similar to the Layered Depth Image (LDI) [SGHS98], which
is used to represent polygonal scenes. The LDI is a point-
based representation, where samples are collected at ray-
polygon intersections on sampling rays cast into the scene
from a chosen view direction. The rays are allowed to en-
ter and exit the scene so that each sampling ray can collect
all ray-polygon intersections along its path, which are then
stored in depth order in the final data structure. The scene
may then be rendered from other view directions much faster
than rendering directly from the original scene. In addition,
the semi-regular organization of the data samples allows for
efficient storage and retrieval of the data.

We present a data structure called the Pixel Ray Image
(PRI). Parallel sampling rays are projected into the unstruc-
tured grid volume and samples are located and collected into
the final data structure. In addition to the location of a sam-
ple, a reconstructed scalar value is computed and stored as
well. The list of samples on a sampling ray define a 1D scalar
function, represented as a linear spline. The flexibility of
placing samples allows for easy resampling of a grid with a
mix of cell types. In addition, far fewer samples are needed
than with a regular resampling of the grid. Scalar coherency
found in many scalar fields can be used to further reduce
the sample count. The PRI is easily rendered with a slicing
approach using only 2D textures.

2. Related Work

One of the first algorithms to render unstructured grid data
on traditional graphics hardware is the well known Projected
Tetrahedra (PT) approach [ST90]. For each view, the tetra-
hedrons are sorted and then projected to the screen one at a

time. The first version of the algorithm assumes a preclassi-
fication of the volume data with a color stored at each grid
vertex. The rasterization hardware interpolates these colors
across the triangle faces. Roettger [RKE00] was able to im-
prove on this with new hardware functionality by interpo-
lating scalars and using pre-integrated transfer functions.
To address the bottleneck due to projection and tetrahedron
classification, Wylie et al [WMFC02] uses the vertex shader
to perform these operations. Weiler et al [WKME03] also
move operations to the shader program and are able to make
use of display lists and vertex arrays. Work by Callahan et
al [CICS05] addresses the bottleneck due to depth sorting
by computing a partial ordering of the tetrahedrons on the
CPU and then use the GPU to help finish the sort. Ray-
casting approaches [WKME03] [WMKE04] store the grid
in texture memory and perform cell traversal for each ray in
the shader program. Limited texture memory only allows for
the rendering of small grids since geometry as well as cell
connectivity information consume a good amount of stor-
age. Slice-based methods [YRL∗96] [Wes01] [BG05] sweep
the grid with a plane and process the cells that intersect the
plane. Extra data structures are usually needed to hold infor-
mation about which cells intersect the plane in the current
iteration [YRL∗96] [BG05]. Grid simplification [CCM∗00]
[UBF∗05] reduces the number of cells in the grid using edge
collapse operations or other cell merging techniques based
upon coherency in the scalar field. Cignoni et al. [CFM∗04]
compute a level-of-detail (LOD) representation over a hier-
archy of simplified grids in order to render large grids. Of
course, all of these methods tradeoff approximation error
with faster rendering.

An alternative approach to render the unstructured grid on
graphics hardware is to resample the grid into a regular grid.
The sample spacing is determined by the size of the smallest
cell in order to sufficiently resample the dataset. This can
cause a large increase in the number of samples. Wester-
mann [Wes01] stores the samples computed from slicing the
unstructured grid and then renders the volume as a regular
grid. Leven et al [LCCK02] use an LOD approach by con-
structing a hierarchy of simplified regular grids and use 3D
texture volume rendering on a chosen level.

Our approach stems from image-based and view-
dependent techniques popular in traditional polygonal
scene rendering. For example, the approaches by [OB99]
[PZvBG00] use three LDI oriented to be perpendicular to
each other to ensure a sufficient sampling of the polygo-
nal scene. In the context of volume rendering, Srivastava
[SCM03] pre-compute and store regularly spaced samples
computed from a software raycasting of a regular grid vol-
ume, where each sample holds its location on the ray and
a reconstructed scalar value. Their data structure allows for
fast transfer function changes at a fixed viewpoint on the
CPU if the sample count is small. To reduce the sample count
for storage purposes, consecutive runs of samples that ap-
proximate a line in the scalar domain are collected into lin-

c© The Eurographics Association 2006.

N. Shareef et al. / An Image-Based Modelling Approach To GPU-based Unstructured Grid Volume Rendering

Figure 1: Our three step PRI rendering pipeline. In the pre-
processing phase, the volume grid is resampled onto sam-
pling rays (step 1), which are reduced in size using a linear
approximation (step 2). The resulting PRI is stored onto tex-
tures and rendered from arbitrary viewpoints on the GPU
(step 3).

ear segments using a spline construction approach based on
a greedy algorithm that may insert new samples into the final
linear spline.

3. The Pixel Ray Image (PRI)

The PRI is a data structure that consists of two components.
The first is a 2D image plane, called asampling plane, that
has finite dimensions and is defined in space using camera
parameters: 1) a position outside the unstructured grid, 2) an
orientation with an up vector, and 3) a view direction that
points towards the grid. A 2D coordinate system is defined
on the plane where the origin is located at the lower left cor-
ner. The plane is pixelized with a regular grid of pixel centers
that are located at integer offsets from the origin.

The second component is a collection of 1D scalar func-
tions, one function per sampling plane pixel. Lets assume the
unstructured grid is convex. If a pixel ray, called asampling
ray, intersects the grid, it will enter and exit the grid at two
boundary faces. The intersection of a ray with the volume
defines a 1D scalar function,{∀(tenter≤ t ≤ texit)|((f (t) =
s)}, wheretenter is the entry location of the ray into the grid,
texit is the exit location,t is the distance of a point on the ray
from the sampling plane, ands is the reconstructed scalar
value at locationt. The function is represented as a linear
spline with two knots located at thetenter andtexit locations
plus zero or more knots between them. If the scalar field is
assumed to be linear within the grid cells, then knots may be
located at the intersections between the sampling ray and cell
faces. Otherwise, samples can be located uniformly along

Dataset Size time #k/spl
Blunt Fin 187395 29.20 80
Combustor 215040 86.04 63
Liquid Oxygen Post 513375 32.84 85
SPX 12936 4.39 27

Table 1: Test datasets with their sizes in number of
tetradrons and initial PRI construction time (seconds) using
depth peeling. The PRIs all have a pixel resolution of 256
× 256. The last column reports the average number of knots
per spline.

the ray, as is typically done in raycasting, and the scalar field
is reconstructed within the cell using an appropriate recon-
struction filter. Thus, each knot is defined by the value pair
(s, t), wheres is a scalar value andt is the knot‘s distance to
the sampling plane. A segment of a spline is defined by two
consecutive knots(sk, tk) and(sk+1, tk+1), wheretk < tk+1,
and the scalar field is assumed to change linearly over the
segment. All knots on a particular sampling ray are main-
tained in a single list. For a non-convex unstructured grid,
a sampling ray may enter and exit the grid more than once.
In order to define the regions outside the volume along the
sampling ray, we introduce an additional knot at those knots
located at the boundary of the grid. If a knot, say(sb, tb),
lies on the boundary of the grid then an additional knot is in-
serted into the knot list with knot value(0, tb). Thus, portions
of the ray that lie outside the grid are bounded by consecu-
tive pairs of knots with a multiplicity of two.

The PRI replaces the original unstructured grid volume.
Our rendering pipeline consists of three steps, shown in Fig.
1, where the first two steps are done once as a preprocessing
step to construct the PRI. The first step resamples the grid
onto the sampling rays. In order to obtain a sufficient resam-
pling of the grid, the pixel resolution of the sampling plane
should be chosen so that multiple rays pierce every cell face.
In the second step, the knot count is reduced on a per spline
basis using a linear spline simplification algorithm. In the
third step the entire collection of splines are packed onto a
2D texture and rendered on the GPU. We describe each step
in the following sections.

4. Spline Construction

There are many choices for the location and sampling di-
rection of the PRI about the volume dataset. We restrict our
space of candidate view choices to those whose sampling
directions point towards the center of the grid. We define
a tight axis-aligned bounding box around the volume and
choose one of the box faces as the sampling plane and use
the associated axial direction as the sampling direction.

Since we assume the scalar field is linear within grid cells,
we locate knots on each sampling ray at the ray-cell face in-
tersections. This process can be accomplished with a soft-

c© The Eurographics Association 2006.

N. Shareef et al. / An Image-Based Modelling Approach To GPU-based Unstructured Grid Volume Rendering

Initial Sampling Post Simplification

Figure 2: Let V be an unstructured grid and P be the sam-
pling plane of the PRI. The PRI is constructed by first defin-
ing samples on the intersections between a ray and the grid
cell faces (left). Spline simplification is used to reduce the
knot count by identifying spans of nearly linear scalar val-
ues (right).

ware raycaster that projects a sampling ray from each pixel.
When the ray intersects any grid cell face along its path,
the raycaster computes the distance,t, from the originating
pixel to the intersection location and reconstructs the scalar
field, s, across the cell face. The resulting value pair,(s, t) is
inserted into the knot list associated with the spline. Alter-
natively, we use depth peeling to quickly compute the knot
values on graphics hardware. It is a multi-pass approach that
renders layers of cell faces in depth sorted order. Table1
shows spline construction times over a variety of volume
datasets and the average number of splines per PRI com-
puted for each dataset.

5. Data Reduction

The number of samples defined in the initial construction
step will be greater than the number of samples in the orig-
inal unstructured grid but less than the number of samples
that would be defined in a resampling of the unstructured
grid onto a regular grid. The linear spline representation
provides flexibility in the placement of the knots that de-
fine a 1D scalar function. Many volume datasets contain
scalar fields with regions that are nearly homogeneous and
that change smoothly. Since these smooth regions may span
across groups of grid cells, many of the sampled knots may
be redundant. We identify scalar coherency on each linear
spline as a run of consecutive knots whose scalar values are
nearly collinear.

In order to reduce the total knot count after the initial
spline construction step, spline simplification is used to iden-
tify spans of nearly collinear runs of scalar values within
a defined error threshold in order to remove the redundant
internal samples and preserve those at the endpoints of the
run, illustrated in Fig.2. We use a knot removal algorithm
with the desirable property that the resulting list of knots is
a subset of the original list. It is an iterative approach that is
based on a 1D version of the mesh simplification algorithm
for terrain data by Duchaineau [DWS∗97]. At each iteration

the algorithm considers all consecutive and non-overlapping
pairs of linear spline segments. For each segment pair, it will
merge the two segments into a larger single segment by re-
moving the middle knot if each knot from the original spline
that lie within the span of the pair of segments is within a
pre-chosen vertical distance, i.e. the scalar domain, away
from the candidate segment. The simplified spline that re-
sults at the end a particular iteration contains the same knots
in the previous iteration with at most half of them removed
by the merges. The algorithm stops when none of the spline
segment pairs can be merged anymore.

Since the PRI is a resampling of the unstructured grid, call
it V, we measure the approximation error of the PRI, call it
P. Using an approach similar to [CCM∗00], the sampling
error is computed by evaluating vertices from gridV in PRI
P. We compute the peak signal to noise ratio (PSNR) using
the following equation for the mean square error (MSE):

MSE(V,P) = ∑∀t∈V εP(t)2|t|
∑∀t∈V |t|

wheret is a tetrahedron inV, the value|t| is the volume of
tetrahedront, and

εP(t) = max∀v∈t |S(v)−SP(v)|.

The error functionεP(t), computed over all four vertices of
tetrahedront, is the maximal residual error on tetrahedron
t. The valueS(v) is the scalar value atv in the original grid
and valueSP(v) is reconstructed from PRIP by trilinear in-
terpolation, as described in Section6.2. Table2 shows the
average numbers of knots per spline after the simplificaiton
algorithm is run on four error threshold values, where scalar
values are in the range [0 ... 1]. Note that an error threshold
of 0.0 results in the removal of superfluous knots. These may
represent samples that lie in a constant or linearly changing
region in the scalar field.

Fig.3 shows plots of the PSNR under six error thresholds,
i.e. .05, .04, .03, .02, .01, and 0.0, where each result is plotted
as an icon in the figure from left to right, respectively. The
horizontal axis represents the fraction of the average number
of knots per spline in the PRI between pre and post spline
simplification. The graphs illustrate a sharp rise in the error
cost as the error threshold is relaxed, i.e. from right to left.
As a result, a suitable tradeoff between error cost and data
size may be easily determined.

6. Rendering

In this section, we present how the PRI is stored onto tex-
tures and then present a rendering approach using slice-
based rendering and trilinear interpolation to compute the
volume integral using post-classification. A trilinearly inter-
polated sample can be computed in a straightforward manner
from the PRI in a shader program, yet this implementation is
expensive on current GPU technology due to costly searches

c© The Eurographics Association 2006.

N. Shareef et al. / An Image-Based Modelling Approach To GPU-based Unstructured Grid Volume Rendering

Dataset / Threshold 0.00 0.01 0.02 0.03
Blunt Fin 49 9 6 6
Combustor 53 15 11 10
Liquid Oxygen Post 55 9 7 7
SPX 20 7 5 4

Table 2: The average number of knots per spline over differ-
ent simplification thresholds.

Figure 3: The plots show PSNR comparisons between the
unstructured grid and the PRI over different error thresholds
and different PRI sampling resolutions.

and interpolation. We present two acceleration schemes to
overcome these bottlenecks.

6.1. Texture Formats

The PRI is represented in texture form as two 2D textures:
a 2D array of index values called theindex texturethat
references to another 2D texture called theknots texture,
which holds the entire collection of per-pixel splines. Us-
ing a pre-determined traversal of the pixels in the sampling
plane of the PRI, e.g. row-order or column-order, the per-
pixel splines are laid out onto the knots texture in a packed
fashion.

Each texel in the index texture holds an index into the
knots texture that references the first knot in the linear spline
associated with the corresponding pixel in the sampling
plane. Thus, the index texture has the same resolution as the
PRI pixel plane. Each texel plane maps to the following in-
formation:(r,g,b,a)=>(s′, t′,#knots,depth), where the first
two channels hold the two dimensional address of the first
spline knot, channelb holds the number of knots in the
spline, and the alpha channel holds the normalized distance
of the last knot of the spline from the sampling plane. Texels
with a zero value for channelb correspond to sampling rays
that do not intersect the grid. Thus, a pixel fragment on a

slicing plane can be quickly identified to lie outside the un-
structured grid with two checks: 1) itsz location overlaps a
spline with zero knots, i.e. the sampling ray does not enter
the volume grid, or 2) its distance to the sampling plane is
less than the distance to the first knot or greater than the dis-
tance to the last knot of the spline. In our implementation,
the knots texture is stored as two separate textures with float
format to ensure high precision, where one holds the scalar
values and the other holds the distance values of the knots.

6.2. A Basic Slice-based Rendering Algorithm

We use a slice-based approach to compute renderings at arbi-
trary views. A stack of parallel quads are textured with scalar
information and, after classification, the fragments are com-
posited in depth order,front-to-backor back-to-front, to the
final image. In an axis-aligned scheme, the stack of slices are
positioned to be perpendicular to the sampling direction of
the PRI. In a view-aligned scheme, the stack is positioned to
be always parallel to the image plane. In either case, a scalar
value must be reconstructed from the PRI at each pixel frag-
ment. Take a pixel fragment whose location is(x,y,z) in the
coordinate space of the PRI construction. Three steps are re-
quired to reconstruct a trilinearly interpolated scalar value at
this location:

Step 1: Parallel project the position of the pixel fragment
to the PRI‘s sampling plane by dropping thez coordinate
and identify the four pixels on the sampling plane that sur-
round the projection point(x,y), i.e. the projection point‘s
four nearest neighbors, as shown in Fig.4, right.

Step 2: Search each of the four linear splines associated
with the neighborhood of pixels in Step 1 to find the spline
segment that overlaps the pixel fragment‘sz location.

Step 3: Trilinear interpolation is performed by four linear
interpolations in thez direction using the four spline seg-
ments found in Step 2, followed by bilinear interpolation in
thex andy directions.

In an axis-aligned slicing scenario, at least three PRI‘s are
needed to allow for rendering from arbitrary views. Three
PRI‘s may be constructed such that their sampling directions
are oriented to be perpendicular to each other. A single PRI
is chosen, the one that is most parallel with the user’s view
direction, to compute a rendering. On the other hand, in a
view-aligned slicing scenario, at least one PRI is required to
be able to render from arbitrary views.

A basic rendering algorithm to perform either axis- or
view-aligned slicing is to perform reconstruction, classifica-
tion, and alpha blending in the shader program. To perform
Step 1 in an axis-aligned slicing scenario, the index texture is
texture mapped to each rendering slice. The texture coordi-
nates at the four corners of each slice are set to(0,0), (0,h),
(w,h), and(w,0), wherew andh are the pixel dimensions of
the index texture. This avoids the need to inverse map a pixel

c© The Eurographics Association 2006.

N. Shareef et al. / An Image-Based Modelling Approach To GPU-based Unstructured Grid Volume Rendering

Figure 4: A pixel fragment at (x, y, z), shown in black on
the left, is reconstructed from the PRI by first projecting the
point to the sampling plane. The projection point will map to
four neighboring pixels, whose associated splines are used
to compute a trilinearly interpolated scalar value.

fragment from eye space to object space. In a view-aligned
slicing scheme, the inverse mapping is done with OpenGL‘s
TexGenoperation, similar to shadow mapping. The shader
program retrieves the four nearest texels in the index texture
and accesses each associated linear spline in the knots tex-
ture via dependent texturing. Since the knots of each spline
are sorted in depth, the search for the spline segment in a
spline whose span includes the pixel fragment’sz location is
performed with a binary search. Finally, the shader program
computes the trilinear interpolation in Step 3. We ran this al-
gorithm on a current GPU platform and found that the search
time contributed to a considerable computational bottleneck.
With current performance trends in GPU technology, this ap-
proach could be viable on future graphics cards. In the fol-
lowing section, we present an approach to overcome this cost
that requires at least three PRIs whether using either of the
axis- or view-aligned slicing paradigms. Thus, the main ad-
vantage of this straightforward approach is that only a single
PRI is needed at a minimum when using view-aligned slic-
ing.

6.3. Accelerating Search With An Index Texture Cache

The basic algorithm requires four spline searches per pixel
fragment to compute a trilinearly interpolated scalar value.
We assume afront-to-backtraversal of the slice stack in our
discussion, but the method we present here also applies to
theback-to-frontcase as well. To address this computational
bottleneck we use an incremental traversal of all the splines
in the PRI by progressively advancing the rendering slices.
The spline segments that are required to reconstruct the pixel
fragments in the current slice will either be the same spline
segments used to reconstruct pixel fragments in the previ-
ous slice or spline segments that are at a further distance
away from these segments. Thus, the spline segments are
processed in depth order. If the next slice requires a spline
segment not used in the previous slice, then a linear search
will quickly find the required segment by starting from the

segment processed in the previous slice. If locations of spline
segments used in a previous slice are cached, then determin-
ing spline segments needed for the next slice will not require
a search from scratch.

We implement this cache with a 2D texture called the
cache index texture, which has the same resolution as the
PRI‘s pixelized sampling plane. The cache index texture is
initialized with the contents of the index texture in order to
cache the first knots of each spline. Each slice in the render-
ing stack is then rendered with a two-pass approach. In the
first pass, the cache index texture is updated with the knot in-
dexes that are correct for the current slice. The camera is set
to coincide with the PRI and the cache index texture is speci-
fied as a rendering target. The cache index texture is mapped
to the slice via projective texture mapping using orthogonal
projection and in the sampling direction of the PRI. Linear
search is applied at each texel to find the appropriate spline
segment. In order to accomplish this, two textures are used
to performping pong rendering. In the second pass, the up-
dated cache index texture is used to render the slice from the
user’s view using dependent texturing as described before.

6.4. Accelerating Search For Large Screen Resolutions

When the user‘s screen resolution exceeds the PRI‘s sam-
pling plane resolution, a block of pixel fragments on a ren-
dering slice will fall within the same neighborhood of four
splines when projected to the PRI‘s sampling plane. If the re-
constructed scalar values at the four neighboring splines are
available, then the scalar values for all the projected frag-
ments within this neighborhood can be computed more ef-
ficiently via bilinear interpolation. The magnification filter
available in the standard graphics pipeline provides this op-
eration. To accomplish this we introduce an additional tex-
ture, called theinterpolation texture, which stores a recon-
structed scalar value per spline after applying just linear in-
terpolation on a segment in thez direction. This is easily
added to the two-pass algorithm presented in the previous
section. In the first pass, after the cache index texture is
computed for the current slice, it is rendered to the inter-
polation texture, defined as a rendering target. Thez dis-
tance of the slice fragment is used to access the correspond-
ing spline segment indexed by the cache index texture and
also to compute linear interpolation across the segment. This
value is rendered to the interpolation texture. In the second
pass, the interpolation texture is texture mapped to the ren-
dering slice and rendered to the screen. In the axis-aligned
slicing case, this operation computes an accurate reconstruc-
tion of the slice from the PRI because the fragments of a
slice lie on a plane that is always perpendicular to the sam-
pling rays, i.e. all the fragments have the samez value, sim-
ilar to the shear warp approach [LL94]. In the view-aligned
slicing case, there is the possibility that fragments may be re-
constructed from incorrect splines, as shown in Fig.5. This

c© The Eurographics Association 2006.

N. Shareef et al. / An Image-Based Modelling Approach To GPU-based Unstructured Grid Volume Rendering

axis-aligned view-aligned

Figure 5: Trilinear interpolation may be computed faster
for pixel fragments (gray) on a rendering slice that fall be-
tween the same neighboring splines, e.g. pixels i and i+ 1
(in 2D), if the reconstructed scalar values in the z direction
are cached and then re-used in a bilinear interpolation in the
x and y direction. The figure on the left illustrates that this
is correct for axis-aligned slicing. The figure on the right il-
lustrates a case where inaccurate interpolation values may
be computed in view-aligned slicing if the slice orientation
causes the slice to coincide with an incorrect spline segment.

introduces a small approximation error in exchange for a no-
ticeable speedup.

7. Results

We show results of our rendering algorithm using a PC with
an Intel P4 1.99 GHz CPU, 768 MB of system memory,
and a nVidia GeForce 6600 GT graphics card. For all re-
sults shown, the PRI sampling resolution is 128× 128 with
no spline simplification. The renderings are computed using
view-aligned slicing with a stack of 128 slices.

Fig. 6 shows rendering times of our algorithms on the
four test datasets over increasing screen resolutions. The top
left graph shows rendering times using the basic algorithm,
while the remaining three graphs show rendering times using
the interpolation texture and then with and without acceler-
ation due to the cache index texture. In either case, a consid-
erable speedup is achieved compared to the basic algorithm.
Fig.7 shows the rendering times for PRIs with different sam-
pling resolutions. The benefit of the acceleration method of
Sec.6.4decreases when the sampling resolution approaches
the screen resolution.

We show renderings of our test datasets in Figs.8, 9 and
10. To illustrate the importance of correct scalar interpola-
tion, we render theBlunt Fin dataset in Fig.8, using nearest
neighbor interpolation (left) where only the closest spline
is used to renconstruct at a pixel fragment. The basic and
the hardware-accelerated algorithms drastically lower alias-
ing artifacts due to trilinear interpolation. Fig.9 illustrates
the difference in image quality over different sampling res-
olutions in the PRI. The smooth transition in image quality
suggests that the PRI may be useful in the context of a LOD
representation. To illustrate the effectiveness of our empty

Figure 6: The top left graph shows rendering times using
the basic algorithm. The other three graphs show speedups
using our two acceleration methods.

Figure 7: The effect of the acceleration method of section
6.4 with a screen resolution of 512× 512 on PRI sampling
resolutions of 64× 64, 128× 128, and 256× 256.

region identification scheme, Fig.10shows theSPXdataset,
which contains a hole in the grid, rendered without the ex-
tra knots to indicated empty regions (left) and with the knots
(right). Note that the renderings of theCombustorandSPX
datasets are rendered at views that are off the sampling di-
rection.

8. Conclusion

We presented a novel data structure to resample and replace
the cumbersome unstructured grid volume. The semi-regular
nature of the data structure allows for flexible sample place-
ment and, similar to grid simplification, a reduction in the
sample count according to coherency in the scalar field. The
data structure is easily stored onto 2D textures and rendered
using sliced-based volume rendering. The results presented
here illustrate the advantages of this approach in terms of a
compact data size and rendering speed.

In future work, we would like to address a number of is-
sues. We used a straightforward way to determine the sam-
pling direction for the PRI. Other sampling directions may
be better candidates in terms of sampling accuracy, data size,
and scalar coherency. We will explore ways to identify op-

c© The Eurographics Association 2006.

N. Shareef et al. / An Image-Based Modelling Approach To GPU-based Unstructured Grid Volume Rendering

timal sampling direction(s) for a dataset. A multi-resolution
scheme may be introduced to the data structure to provide a
LOD to tradeoff image quality versus rendering speed. We
are also interested in how to leverage scalar coherency across
sampling rays. We are exploring the use of function quanti-
zation to represent the splines in a codebook of functions.
The data structure also lends itself to a common framework
in which time-varying grids whose structure may change
across time steps can be re-represented and rendered effi-
ciently under a single paradigm.

9. Acknowledgement

This work was supported by NSF CAREER grant ACI-
0093157, NSF-ITR grant ACI-0325934, DOE Early Career
Principal Investigator Award DE-FG02-03ER25572, NSF
Career Award CCF-0346883 and NSF RI CNS-0403342.
The authors would like to thank the reviewers for their help-
ful comments.

References

[BG05] BENOLKEN P., GRAF H.: Direct volume render-
ing of unstructured grids in a pc based vr environment. In
The Journal of WSCG(2005), vol. 13, pp. 25–32.

[CCM∗00] CIGNONI P., COSTANZA D., MONTANI C.,
ROCCHINI C., SCOPIGNOR.: Simplification of tetrahe-
dral meshes with accurate error evaluation. InIEEE Visu-
alization ‘00(2000).

[CFM∗04] CIGNONI P., FLORIANI L. D., MAGILLO P.,
PUPPO E., SCOPIGNO R.: Selective refinement queries
for volume rendering of unstructured tetrahedral meshes.
In IEEE Transactions on Visualization and Computer
Graphics(2004), vol. 10, pp. 29–45.

[CICS05] CALLAHAN S. P., IKITS M., COMBA J. L. D.,
SILVA C. T.: Hardware-assisted visibility sorting for un-
structured volume rendering. InIEEE Transactions on
Visualization and Computer Graphics(2005), vol. 11,
pp. 285–295.

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI

D., ALDRICH C., MINEEV M.: Roaming terrain: Real-
time optimally adapting mesh. InIEEE Visualization ‘97
(1997).

[LCCK02] LEVEN J., CORSOJ., COHEN J., KUMAR S.:
Interactive visualization of unstructured grids using hier-
archical 3d textures. InProc. of Symp. on Volume Visual-
ization ‘02(2002), pp. 37–44.

[LL94] LACROUTEP., LEVOY M.: Fast volume rendering
using a shear-warp factorization of the viewing transfor-
mation. InACM SIGGRAPH ‘94(1994).

[OB99] OLIVEIRA M., BISHOPG.: Image-based objects.
In Proc. of Symp. on Interactive 3D Graphics(1999),
pp. 191–198.

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J.,
GROSSM.: Surfels: Surface elements as rendering prim-
itives. InACM SIGGRAPH ’00(2000).

[RKE00] ROETTGER S., KRAUS M., ERTL T.:
Hardware-accelerated volume and isosurface render-
ing based on cell-projection. InIEEE Visualization ‘00
(2000).

[SCM03] SRIVASTAVA V., CHEBROLU U., MUELLER

K.: Intractive transfer function modification for volume
rendering using compressed sample runs. InComputer
Graphics International 2003(2003), pp. 8–13.

[SGHS98] SHADE J., GORTLER S. J., HE L.-W.,
SZELISKI R.: Layered depth images. InACM SIG-
GRAPH ‘98(1998).

[ST90] SHIRLEY P., TUCHMAN A.: A polygonal approx-
imation to direct scalar volume rendering. InProc. of San
Diego Workshop on Volume Visualization(1990), pp. 63–
70.

[UBF∗05] UESU D., BAVOIL L., FLEISHMAN S., SHEP-
HERD J., SILVA C. T.: Simplification of unstructured
tetrahedral meshes by point- sampling. InProc. of In-
ternational Workshop on Volume Graphics 2005(2005),
pp. 157–165.

[Wes01] WESTERMANN R.: The rendering of unstruc-
tured grids revisited. InProc. of Symp. on Volume Vi-
sualization ‘01(2001).

[WKME03] WEILER M., KRAUS M., MERZ M., ERTL

T.: Hardware-based ray casting for tetrahedral meshes.
In IEEE Visualization ‘03(2003).

[WMFC02] WYLIE B., MORELAND K., FISK L. A.,
CROSSNOP.: Tetrahedral projection using vertex shaders.
In Proc. of IEEE Volume Visualization and Graphics Sym-
posium 2002(2002), pp. 7–12.

[WMKE04] WEILER M., MALLON P. N., KRAUS M.,
ERTL T.: Texture-encoded tetrahedral strips. InProc.
of Symp. on Volume Visualization ‘04(2004), pp. 71–78.

[YRL∗96] YAGEL R., REED D. M., LAW A., SHIH P.-
W., SHAREEF N.: Hardware-assisted volume rendering
of unstructured grids by incremental slicing. InProc. of
Symp. on Volume Visualization 1996(1996).

c© The Eurographics Association 2006.

N. Shareef et al. / An Image-Based Modelling Approach To GPU-based Unstructured Grid Volume Rendering

Figure 8: The bluntfin dataset rendered using three interpolation schemes: nearest neighbor interpolation, trilinear interpola-
tion, and the hardware-accelerated bilinear interpolation to show the differences in image quality.

Figure 9: The Combustor and Liquid Oxygen Post datasets rendered using sampling resolutions:642, 1282 and2562.

Figure 10: Two renderings of the SPX dataset without multiple knots to indicate empty regions (left) vs. with them (right). The
hole inside the dataset is apparent in the right image.

c© The Eurographics Association 2006.

