Visualization Techniques for Time-Varying Volume Data

Kwan-Liu Ma *
University of California, Davis

Abstract

Visualizations of time-varying volume data sets, which may
be obtained from numerical simulations or sensing instru-
ments, provide scientists insights into the detailed dynamics
of the phenomenon under study. This paper is concerned
with efficient representation and rendering of time-varying
volume data. We studied the characteristics of typical time-
varying data sets and derived a flexible representation for the
data to facilitate visualization and rendering calculations. A
variety of time-varying volume data sets were used for our
study. In many cases over 90% reduction in both storage
space and inter-frame delay were achieved by exploiting the
high level of spatial and temperal coherence in the data set.

1 Introduction

The ability to study time-varying phenomena helps scien-
tists understand complex problems. The size of time-varying
data sets not only demands excessive storage space but also
presents difficult problems for both data analysis and vi-
sualization. For example, a relatively small, single-variable
time-varying volume data set consisting of one hundred time
steps each of which stores 256 x256 x 256 floating point num-
bers already requires 6.4 gigabytes storage space.

This paper discusses strategies integrating compression
and rendering techniques to achieve flexible and efficient
rendering of time-varying volume data. Although volume
data compression has been studied by many researchers [1,
11, 2, 3, 7], very few have considered the additional dimen-
sion of time-varying data. With our strategy, compression
is achieved using scalar quantization along with an octree
and difference encoding. By exploiting spatial and temporal
coherence in the data, neighboring voxels may be fused into
macro voxels if they have similar values, and two subtrees at
consecutive time steps may be merged if they are identical.

A ray-casting volume renderer was restructured to effi-
ciently render the encoded data. With the tree representa-
tion it is possible to perform selective rendering, and when
appropriate to distribute both the data and rendering cal-
culations to multiple workstations to achieve desirable inter-
action.

Four time-varying volume data sets were used for our
study. We show how some of the data sets may be encoded
according to data statistics or user’s knowledge to achieve
better space and rendering efficiency. We also discuss how
to eliminate or hide various overheads introduced by using
the tree representation. Our test results show that in gen-

*Department of Computer Science, University of California,
One Shields Avenue, Davis, CA, 95616, ma@cs.ucdavis.edu.

tDepartment of Computer and Information Science, the Ohio
State University, 2015 Neil Avenue, Columbus, OH 43210,
hwshen@cis.ohio-state.edu.

Han-Wei Shen 1
Ohio State University

eral the amount of savings we can obtain in storage space as
well as in rendering time justifies our approach.

2 Related Work

The previous work most closely related to ours is the thor-
ough study done by Wilhelms and Van Gelder [14] on the
design of hierarchical data structures for controlled com-
pression and volume rendering. They extend octrees and
a branch-on-need (BON) subdivision strategy [13] to handle
multi-dimensional data. The basis of their work is a hierar-
chical data model which is well described in their paper. The
resulting multi-dimensional tree stores a model of the data
and evaluation information about the error of the model as
well as importance of the data to control compression rate
and image quality. They also propose eight evaluation met-
rics for performing selective traversal and visualization of the
encoded data. Among the nine data sets used for their study,
seven are three-dimensional data and two are time-varying
data.

Another closely related work is the ray-cast rendering
strategy introduced by Shen and Johnson [10] which they
call differential volume rendering. By exploiting the data
coherency between consecutive time steps, they are able
to reduce not only the rendering time but also the storage
space by 90% or more for their two test data sets which are
highly temporally correlated and contain spatially coherent
byte data. Differential volume rendering is potentially paral-
lelizable and a caching technique [6] may be integrated into
the renderer to avoid recalculations for visualizing irregular
data.

Based on similar concepts, Westermann [12] performs
wavelet encoding of each time step separately to generate
a compressed multiscale tree structure. Feature extraction
and tracking as well as further compression can be obtained
by examining the resulting multiscale tree structures and
wavelet coefficients. Using wavelet transform offers an un-
derlying analysis model to characterize time-varying data.

In contrast to Whilhelms and Van Gelder’s work, our main
focus is on time-varying volume data (i.e. four-dimensional
data), even though we also use octree encoding and error
evaluation for selective traversal. Furthermore, While their
model treats all dimensions the same way, we apply differ-
ence encoding to the time domain. We especially pay at-
tention to the quantization step and investigate how quan-
tization may assist subsequent compression and rendering
steps, and influence the visualization results. We develop a
rendering strategy taking advantage of a tree representation
of the time-varying data. Examination of the encoded data
identifies partial images built from subtrees which have not
changed and therefore may be reused in the following time
steps. In contrast to Shen and Johnson’s work, we use data
sets with distinct properties which are not all highly spa-
tially and temporally coherent in order to perform a more

Table 1: Four Test Data sets.

[data set | time steps | spatial resolution |
Turbutlent Vortex Flow | 100 1283 float
Thermal Convection 101 1283 float
Turbulent Jets 150 1283 float
Turbulent Shear Flow 81 1283 float

Turbulent Vortex Flow Thermal Convection

Turbulent Shear Flow Turbulent Jet Flow

(uselog scale for y)

Figure 1: Histograms of the data sets. Each plot shows the
distribution of data values in the whole data set.

general study. Finally, while Westermann’s approach is the-
oretically sound, there are many computational cost issues
needed to be further investigated before his approach can be
utilized in practice.

3 Test Data Sets

Four data sets were used for our study. Table 1 lists the name
and size of each data set. We chose small data sets due to
the large number of tests we needed to perform. The vortex
flow data set was obtained from pseudo-spectral simulations
of coherent turbulent vortex structures. The second data
set derived from a parallel three-dimensional thermal con-
vective model and it represents the normalized temperature
distribution in a closed environment when one side of the
volume is heated by a constant heat source. The turbulent
jets data set was generated from the modeling of naturally
developing and forced jets with rectangular cross-section and
different inlet conditions. The turbulent shear flow data set
was obtained from a study of the generation and evolution
of turbulent structures in shear flows.

Figure 1 presents histograms generated from the four data
sets. In each plot, z axis is data value and y axis is the num-
ber of voxels. These plots showing the distribution of data
values help the following discussions. Figure 2 shows one
selected frame from each corresponding data set in Figure 1.
Note that the use of different transfer functions would lead
to very different visualization results.

4 Encoding and Rendering

How to efficiently encode a time-varying data set is an inter-
esting research problem. We would like to compress the data

Tur bul ent Vortex Fl ow Thermal Convection

Tur bul ent Jet Fl ow

Tur bul ent Shear Fl ow

Figure 2: One selected frame for each data set.

set as much as possible while retaining the most relevant in-
formation in both the temporal and spatial domains of the
data. To design a representation, we should also take into
account the needed operations (i.e. visualization/rendering
calculations) on the representation.

Data compression continues to be an important research
topic because of its relevance to multimedia and web applica-
tions. Many compression techniques have been well studied
and may be applied to new applications according to data
characteristics and certain requirements. There are lossless
and lossy compression methods. Popular compression tech-
niques include huffman coding, scalar/vector quantization,
differential encoding, subband coding, and transform cod-
ing [9].

Frequently, scientists demand lossless methods to preserve
the accuracy of their original results. However, when per-
forming data visualization, limited by the display technology
and the implementation of rendering algorithms, degrada-
tion in image quality cannot be totally avoided. The ques-
tions are then: how lossy can the compressed data be to
generate the highest possible accuracy in the visualization
results with the given rendering and display technology; and
how can the errors due to compression be quantified in the
data and the resulting visualization?

Volume data generally come with 8-, 16-, or 32-bit voxels.
Most volume renderer implementations use table lookup for
color and opacity mapping. Color values are represented
by red, green, and blue components, each of which is an
8-bit value. The color table thus typically consists of 256
entries of RGB values. For voxels represented with more
than eight bits, quantization must be done which results
in lossy compression. How quantization is done determines
what in the data can be visualized.

4.1 Quantization

Quantization is the simplest lossy compression method. The
idea of quantization is to use a limited number of bits to rep-
resent a much large number of distinct raw data values. The
class of data sets we consider are typically generated from
numerical simulations and quantization of the data results
in a compression ratio of 4 : 1 by representing 32-bit data
with only 8 bits. Quantization is a well studied area. How-
ever, the impact of data quantization to volume rendering
has not been carefully studied.

There are uniform, non-uniform and adaptive quantizers
designed according to the characteristics of the source
data. For the simplest case, that is uniform quantization of
uniformly distributed source data values z, the quantization
error may be measured as the mean squared error, which is

y e [P %—1 .,
=) (@ - =5 (1)
i—1 Y (i-1)¢

where M is the number of quantization levels, @ = (Tmas —
xmm) /M and f(x) the probability density functlon which is
P—— for uniformly distributed source data. While the
general principle of quantization is to reduce this data distor-
tion error, for visualization tasks, an even more important
criterion is to preserve and enhance particular features in
the data. Data values outside the range of interest and the
corresponding distortion error can be ignored. With a given
number of quantization levels, enhancement can be achieved
by allocating more levels to a particular range of the source
data values. While most renderers use uniform quantiza-
tion by default, non-uniform and adaptive quantization can
more effectively minimize distortion error and enhance data
for detecting features. For volume rendering to also include
an error measure for the importance of data values, Equa-
tion 1 becomes

ML %—1
2 22— 2
D5 IR (2)
i—1 Y (i—-1)¢

where f(z) characterizes a general source data distribution
and a(z) is the importance function which in this case is the
opacity transfer function provided by the user.

For example, a simple non-uniform quantizer may use a
logarithmic function for source data values spreading in a
wide dynamic range. A more elaborate quantizer may take
source data statistics (e.g. the probability density function)
into consideration and set quantization levels adaptively.
Figure 3 plots the maximum and minimum values for each
time step of two data sets. The left one shows values of a
turbulence flow data set that consists of 81 time steps. Such
a data set must be quantized with care; otherwise, many im-
portant features in later time steps would become invisible
due to the extremely wide dynamic range. The other data
set shown on the right behaves very differently so it can be
quantized in a straightforward manner.

4.2 Octree Encoding

After quantizing, each time step of the quantized data is
then organized hierarchically in its spatial domain using oc-
tree encoding. Octrees are a family of data structures that
represents spatial data using recursive subdivision. They
have wide application to many graphics and visualization
problems for faster searching, data packing, and algorithmic

11000 T T T 14
12 +

gl
max value max value
5000 ¢ minvalue - 6r min value -~
4
2|
1000 0
0 -2
0 21 41 61 81 0 25 50 75 100
Time Step Time Step

Figure 3: Left: maximum and minimum values at each time
step of a data set from the study of the generation and evolu-
tion of turbulent structures in shear flows. Early time steps
contain values in a very large dynamic range which makes
quantization more difficult. Right: maximum and minimum
values at each time step of a data set from the study of
coherent turbulent vortex structures. This data set has a
small dynamic range and the distribution of values is quite
uniform which makes quantization straightforward.

optimization. Levoy [5] used a binary octree to skip trans-
parent voxels for efficient volume ray casting. Laur and Han-
rahan [4] implemented a hierarchical splatting renderer using
octrees. Wilhelms and Van Gelder [13] used octrees with a
branch-on-need (BON) strategy for faster isosurface genera-
tion, and later extended their octrees and BON strategy for
k dimensions [14] of volume data for controlled compression
and rendering, as we described previously in Section 2.

It is thus possible to use octree encoding for controlling
compression, rendering, and image quality of time-varying
volume data. With octree encoding, immediate neighboring
voxels with identical values may be fused to form a macro
voxel. This fusing process is performed recursively either
in a top-down or a bottom-up manner until no more voxels
or macro voxels can be merged. For an N-time-step vol-
ume data set, the results are N octrees. The amount of
compression that can be achieved with octree encoding is
data dependent. A data set containing many large, coherent
structures usually can be effectively compressed. However,
for 8-bit data, we found that further fusing of voxels based on
some error tolerance produced images generally not accept-
able for visualization. Some error control issues are discussed
in [4, 14]

When using octree encoding, a bottom-up algorithm is
more computationally efficient since it only visits each data
value one time and avoids recalculating evaluation data. Ac-
cording to our test results, the bottom-up method is about
two times faster than the top-down method. The space over-
head of the octree encoding is generally acceptable as long as
many large macro voxels are created. The maximum over-
head is only about % where v is the total number of voxels
in the data and b is the number of bytes used to store infor-
mation about each internal tree node. Using a linear octree,
it takes as few as 1 bit for each node to indicate if it is a leaf
node or not. It is also needed to store values such as the min-
imum, maximum and mean data values which characterize
the data and can be used to optimize rendering.

4.3 Difference Encoding

Like video and speech data, time-varying volume data are
highly correlated from time step to time step. Difference en-
coding uses this fact to predict each sample based on its past,
and to encode and transmit the differences between the pre-

B 7R

i
\o
@% i

Figure 4: Merging Encoded Trees. Trees at consecutive time
steps contain identical subtrees so the second time step only
stores a pointer to the first time step for that subtree (red).

diction and the sample value. Further compression is built
around this premise. In essence, each individually octree en-
coded volume may be partially merged with the one in the
previous time step using difference encoding. The merging
is incremental over the time dimension. Figure 4 shows how
a subtree which has not changed may be represented by the
one from the previous time step to save storage space.

The most interesting use of the tree structure is that when
animating in the temporal domain we can waive the render-
ing of a subtree that has been rendered in previous time
step. The image corresponding to the subtree is retrieved
from the previous time step and composited into the final
image of the current time step. The associativity of the over
operation [8] for compositing guarantees the correctness of
the composited results.

4.4 Encoding of the Test Data sets

Table 2 summarizes the encoded results due to different
quantizations. The percentage of savings shown here is rel-
ative to the quantized data, not the raw data. The vortex
data set does not include every time step of the simulation.
In addition, the data values spread across the spatial domain
quite uniformly. Uniform quantization brings out most fea-
tures in the data. However, there is very little temporal
and spatial coherence in the data set and consequently the
compression rate is low. Enhancing a subset of the data val-
ues such as the high values with non-uniform quantization
increases the compression rate.

In contrast, uniform quantization does not work very well
for the thermal data set to discern fine features in the data.
Two nonuniform quantizations focusing on different ranges
of values lead to very different compression performance.
We have also experimented with an adaptive quantization
method which decomposes the spatial domain into subdo-
mains and performs local quantization first to encourage
voxel fusing based on local data statistics. We believe this
approach will work well for some data sets, though no dra-
matic improvement on compression rates were obtained for
our test data sets. For the shear flow data set, although
the second nonuniform quantization method only achieves
40% saving, it helps bring out the most relevant structures
in the data. Finally, the jets data set is best encoded with
the uniform quantization which not only gives the highest
compression rates but also brings out most features in the
data.

We found that the quantization error as calculated by
Equation 2 is less than 1% for all of our data sets. The
corresponding computational cost for encoding is acceptable.
For the test data sets, it takes on average about 0.5 seconds

Table 2: Compression rates derived from different quantiza-
tions.

Quantization Compression
Data set | Method Percentage
Uniform 18
Vortex NonUniform I 71
Adaptive 19
Uniform 43
Thermal | NonUniform I 28
NonUniform IT 98
Adaptive 50
Uniform 91
Shear NonUniform I -7
NonUniform IT 40
Jets Uniform 98

per time step to quantize and 3-5 seconds to perform octree-
difference encoding on a SUN Ultra Sparc. For a data set
containing 100 time steps, it takes about 5-10 minutes to
encode the whole data set.

4.5 Rendering

The compression scheme leads naturally to a rendering strat-
egy in which only modified data are rendered. To assess
the performance, we have implemented a ray casting vol-
ume renderer, tvvd-renderer, which takes as input a sequence
of trees, renders the first tree completely and then in subse-
quent timesteps renders only the modified subtrees. This re-
quires that partial images representing the unmodified data
must be retained and composited together with the partial
images created from the modified data to create the final im-
age at each time step. We do this by creating a compositing
tree. The compositing tree is a pointer based octree which
has the same structure as the compressed octree. Each leaf
of the compositing tree contains a partial image rendered
directly from the data represented by the corresponding leaf
in the compressed tree. Each interior node contains a partial
image which is the composite of all of its children’s images.
At each time step, modified subtrees in the compressed oc-
tree are identified. A new compositing branch is created to
represent the data and spliced into the compositing tree, re-
placing the old branch. The image at the top of the new
branch is composited with its siblings and all of the ances-
tors are recomposited to reflect the changes. The image at
the root of the tree is the complete image.

Rendering only the modified data accounts for the largest
savings in the time domain. Much less data (i.e. only the
difference between consecutive time steps) is rendered as a
result of tree merging which produces the most significant
amount of savings in rendering cost. In addition, the time
to read the encoded data is reduced in proportion to the
compression rate.

However, rendering from the tree structure instead of di-
rectly the volume data incurs certain overhead. To offset this
overhead, we use several optimizations, some of which have
been discussed in [8]. First, we implemented front-to-back
rendering to promote early ray termination. This optimiza-
tion has been typically implemented for general ray-casting
volume rendering, though the result is highly data and trans-
fer function dependent. To reduce excessive matrix multi-
plication operations, we cache the coordinates of each ray in
the object space. We also take advantage of the information
provided by the octree structure to advance past transparent

Total Rendering Cost
6.0 T T T

5.0 -

Baseline Renderer

—— TVVD-Renderer without Octree Optimizations
30 I TVVD-Renderer with Octree Optimizations

Time in Seconds

20 -

10 +

00 Il Il Il Il Il
0.0 5.0 10.0 15.0 20.0 25.0 30.0

Time Step

Figure 5: Rendering cost for turbulent jets data set. The
time is the total time to process, including reading encoded
data from disk, unencoding when necessary, calculating gra-
dient, rendering and compositing. Overall performance gain
is mostly due to tree merging while octree optimization does
achieve some improvement.

space without rendering.

The rendering optimization is based on a fixed viewing
position. Changing the viewing position requires that the
entire compositing tree be regenerated. On the other hand,
to allow the viewer to move randomly through the temporal
domain of the data, a complete tree must be saved at regular
intervals.

As expected, in many cases the rendering rate for a time-
varying sequence can be greatly improved by using the com-
pressed data. All of the timings presented are for an image
size of 128 128. In this section, when we talk of rendering
times, we are referring to the total cost of processing one im-
age. That includes the time to read the data, to uncompress
the data values when necessary, to calculate the gradient,
update the compositing tree, render and composite.

The turbulent jet flow data set achieved the highest com-
pression rate and the highest increase in rendering rate. For
the turbulent jet flow data set, the tvvd-renderer renders
the first image in 2.65 seconds and the subsequent images at
an average of 0.55 seconds, which represents an increase of
80% in the rendering rate between the first and consecutive
images and an 88% increase in the overall rendering rate.

Figure 5 shows three renderings of the turbulent jet flow
data set. The baseline renderer renders the full data set
from the volume data at each time step. The tvvd-renderer
uses all of the aforementioned optimizations. The tvvd-
renderer without octree optimizations uses the encoded data
and builds the compositing tree, however it renders transpar-
ent space and uniform space as if they were nonuniform. Due
to the transfer functions used, the turbulent jet low data set
has large regions of transparent space and also large blocks
of non-transparent uniform space. This is the best case for
octree optimization, but the figure shows that while some of
the speedup is a result of using the octree optimizations, the
majority of the speedup occurs because of the tree merging.

While the rendering rate increases dramatically when the
compression rate is high, it is dependent upon the number of

Total Rendering Cost

20.0 T T
Baseline Renderer — Uniform Quantization
—— TVVD-Renderer - Uniform Quantization
Baseline Renderer — NonUniform Quantization
15.0 —— TVVD-Renderer — NonUniform Quantization
(%)
=}
o
Q
o
Q
® 10.0
£
(4]
=
[
5.0
0.0
0.0 20 0 40 0 60.0
Time Step

Figure 6: Rendering results for the turbulent shear flow data
set.

Turbulent Shear Uniform Turbulent Shear Non—Uniform

—— 1 Voxel Block
—— 8 Voxel Block
64 Voxel Block
—— 512 Voxel Block
4096 Voxel Block

o L \32768 Voxel Block |, « N /
«“

Number of Blocks

. L, 100 L . . Jawal
0.0 200 40.0 60.0 0.0 20.0 40.0 60.0
Time Step Time Step

Figure 7: Number of blocks in turbulent shear flow data set.

large blocks (4096 voxels or larger) which can be compressed.
When a single voxel changes, the surrounding voxels are re-
rendered. Thus, compression resulting from merging 1 voxel
blocks or 8-voxel blocks is not useful at all in the render-
ing. Compression resulting from merging 64- and 512-voxel
blocks has some effect, but the types of data sets which have
many small matching blocks and few large matching blocks
typically require more overhead to use the octree than can
be gained by using the compression information.

An example of this is the turbulent shear data set. Fig-
ure 6 shows the rendering times for this data set using two
different forms of quantization. Figure 7 shows the number
of large matching blocks at each time step. Notice that at
time step 30 in the uniform quantization method, the num-
ber of 32768-voxel blocks increases and there is an immedi-
ate response in the rendering time. The compression using
the nonuniform quantization method is the result of a large
number of small matching blocks, not a small number of
large matching blocks. The renderer cannot take advantage
of the compression, and the rendering rate is consistently
lower. Generally, if the data are compressed by less than
50% in the time domain, unless many large subtrees were
merged, little rendering performance gain can be obtained.
This is consistent with the results reported in [10].

Total Rendering Cost

15.0 T T
—— TVVD-Renderer - Uniform
—— TVVD-Renderer - NonUniform Low Data Range
TVVD-Renderer — NonUniform High Data Range
» 100 F 1
=}
o
Q
o
Q
n
£
[}
£
F oso0r 8
0 0 Il Il
0.0 10.0 20.0 30.0

Time Step

Figure 8: Rendering results Thermal Convection data set.

Quantization can be used effectively to focus on different
features in the data and can affect the number of matching
blocks at each time step. By choosing the area of interest
carefully, a scientist is able to control not only the level of
feature enhancement but also the compression and render-
ing times of the data. The thermal convection data set has
interesting features which can be emphasized by nonuniform
quantization. Figure 8 shows the effects of different methods
of quantization on the rendering time.

The vortex data set can also be compressed well with
non-uniform quantization, but the compression results from
many small voxel blocks and not any larger blocks. There-
fore, although the data set is compressed, the rendering time
increases.

The core rendering code for the baseline volume renderer
is the same as that used for the tvvd-renderer. It is a very
basic renderer with few optimizations. Replacing the core
code with a more optimized renderer will increase the ren-
dering rate of both renderers. The tvvd-renderer can be
configured to stop at any depth in the tree and render im-
mediately. The minimum number of nodes which may be
rendered is an 8-voxel block. Increasing the minimum num-
ber of nodes decreases the overhead associated with the oc-
tree but also decreases the number of matching blocks which
do not have to be rerendered. The optimizations which we
have incorporated into the octree renderer such as moving
past transparent blocks without rendering and using front
to back rendering to encourage early termination of rays are
highly dependent upon the opacity maps. Using different
opacity maps can dramatically change the rendering times.
Rendering at 256 X256 required approximately two to three
times as long. For larger image size or higher interaction,
the tree branches can be distributed to multiple processors
to be rendered.

5 A Refined Design:
tioning Tree

Time-Space Parti-

Based on our findings, we determine that a better design ...

6 Conclusions

Visualization of time-varying data will continue to be im-
portant and challenging. We have investigated how time-
varying volume data may be organized to facilitate direct
volume rendering and demonstrated some promising results.
In general, the selection of encoding and rendering strategies
should depend very much on data resolution, statistics and
visualization requirements.

We found that in many cases the amount of savings in
storage space and rendering time can be tremendous while
the resulting visualization results stay visually indistinguish-
able from high-resolution ones. This suggests that unless the
display resolution and visualization requirements are high,
we should take advantage of compression and multiresolu-
tion rendering to increase visualization efficiency. The sav-
ings in storage space also reduces the I/O required by the
renderer. With large data sets over long intervals of time,
this reduction can be a significant part of the overall savings.

Our goal is to increase the users interaction with the data.
This requires that the images be presented to the user as
rapidly as possible. Although we do not see large savings
when the cost of quantization and rendering are combined,
by preprocessing we can achieve near interactive viewing
rates.

Future work includes the development of application-
specific techniques and taking the grid structures (curvilin-
ear, unstructured, etc.) into consideration. We will inves-
tigate how the order of encoding calculations would impact
the overall compression and rendering performance. In ad-
dition, we will study the characteristics of time-varying com-
putational fluid dynamics data sets and continue developing
appropriate compression and rendering methods.

7 Acknowledgments

The authors would like to thank Peggy Li, John Shebalin,
Deborah Silver and Robert Wilson for the test data sets.

References

[1] CuiveH, T. Z., YANG, C. K., HE, T., PFISTER, H.,
AND KAUFMAN, A. Integrated Volume Compression
and Visualization. In Proceedings of the Visualization
’97 Conference (October 1997), pp. 329-336.

[2] FOWLER, J. E., AND YAGEL, R. Lossless Compression
of Volume Data. In Proceedings of the 1994 Symposium
on Volume Visualization (October 1994).

[3] FREUND, J., AND SLOAN, K. Accelerated volume ren-
dering using homogeneous region encoding. In Pro-
ceedings of the Visualization ’97 Conference (October
1997), pp. 191-196.

[4] LAUR, D., AND HANRAHAN, P. Hierarchical Splatting:
A Processive Refinement Algorithm for Volume Ren-
dering. In Proceedings of SIGGRAPH ’91 (1991).

[6] LEvoy, M. Efficient Ray Tracing of Volume Data.
ACM Transactions on Graphics 9, 3 (July 1990).

[6] MaA, K.-L., COHEN, M., AND PAINTER, J. Volume
Seeds: A Volume Exploration Technique. The Jour-
nal of Visualization and Computer Animation 2 (1991),
135-140.

[7]

NiING, P., AND HESSELINK, L. Vector Quantization for
Volume Rendering. In Proceedings of the Visualization
’98 Conference (October 1993).

PORTER, T., AND DUFF, T. Compositing Digital Im-
ages. Proceedings of SIGGRAPH ’84 18, 3 (July 1984).

Savoop, K. Introduction to Data Compression. Mor-
gan Kaufmann Publishers, Inc., 1996.

SHEN, H.-W., AND JOHNSON, C. Differential Volume
Rendering: A Fast Volume Visualization Technique for
Flow Animation. In Proceedings of the Visualization
’94 Conference (October 1994), pp. 180-187.

WESTERMANN, R. A Multiresolution Framework for
Volume Rendering. In Proceedings of the 1994 Sympo-
situm on Volume Visualization (October 1994).

WESTERMANN, R. Compression time rendering of time-
resolved volume data. In Proceedings of the Visualiza-
tion ’95 Conference (1995), pp. 168-174.

WILHELMS, J., AND VAN GELDER, A. Octrees for
Faster Isosurface Generation. ACM Transactions on
Graphics 11, 3 (July 1992).

WILHELMS, J., AND VAN GELDER, A. Multi-
Dimensional Trees for Controlled Volume Rendering
and Compression. In Proceedings of the 1994 Sympo-
stum on Volume Visualization (October 1994).

