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Abstract

This paper describes a new hardware volume rendering algorithm
for time-varying data. The algorithm uses the Time-Space Parti-
tioning (TSP) tree data structure to identify regions within the data
that have spatial or temporal coherence. By using this coherence,
the rendering algorithm can improve performance when the volume
data are larger than the texture memory capacity by decreasing the
amount of textures required. This coherence can also allow im-
proved speed by appropriately rendering flat-shaded polygons in-
stead of textured polygons, and by not rendering transparent re-
gions. To reduce the polygonization overhead caused by the use of
the hierarchical data structure, we use a fast incremental polygon
slicing algorithm. The paper also introduces new color-based er-
ror metrics, which more accurately identify coherent regions com-
pared to the earlier scalar-based metrics. By showing experimental
results from runs using different data sets and error metrics, we
demonstrate that the new methods give substantial improvements
in volume rendering performance.

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation - Display Algorithms
Additional Keywords: scalar field visualization, volume visual-
ization, volume rendering, time-varying fields, graphics hardware.

1 Introduction

Time-varying data sets are common, and are often difficult to vi-
sualize using volume rendering because of their size. Volume ren-
dering can be accelerated by using 3D texture mapping on standard
graphics hardware. The volume rendering algorithm for these ac-
celerators loads the volume data into texture memory, and textures
a series of polygons as part of the volume rendering process. Most
3D texturing hardware uses dedicated memory to hold the texture
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data. While many accelerators can render using textures that are
larger than the dedicated memory, the rendering is at reduced per-
formance because the texture data must be moved from main mem-
ory to the accelerator memory. This limitation particularly affects
time-varying volumes since they tend to be large.

Better use of the dedicated volume memory would increase the
amount of volume data that can be rendered at full speed. Many
volumes have portions that do not vary, or are coherent, in certain
regions. Time-varying volumes often have regions that also do not
vary within a series of time steps. These spatial and temporal re-
gions of coherence can be exploited by using a data structure intro-
duced by Shen et al. [1], the Time-Space Partitioning (TSP) tree.
By using this data structure along with a new rendering algorithm,
we will show that regions that have spatial coherence can instead
be rendered using untextured polygons, and the associated texture
memory freed. The data structure will also detect regions that are
entirely transparent, which can be skipped during rendering. Re-
gions with temporal coherence can be shared between two or more
time steps, thus also saving texture memory. In addition, the reduc-
tion in memory means that smaller amounts of textures need to be
created, speeding up the texture creation process.

The decision to use untextured polygons or to share regions of
volume memory is made by computing error metrics for a hierarchy
of regions, or subvolumes, that indicate the amount of spatial and
temporal coherence. At runtime, the user specifies spatial and tem-
poral error tolerances. Regions with error tolerances greater than
the error metrics are rendered using flat-shaded polygons or voxels
from a previous time step. Specifying zero error tolerances result
in renderings using data equal to the actual data, but will still result
in a smaller memory requirement in many cases.

The error metrics described in the earlier TSP paper [1] were
based on the scalar values of the voxels. Since the scalars are
mapped into colors using a transfer function, the amount of coher-
ence in the scalar values can be unrelated to the amount of coher-
ence in the colors. This paper introduces color-based error metrics
that improve the selection of texture volumes to be loaded into tex-
ture memory. Two color-based error metrics are described. One
uses the same statistics as the earlier paper but based on the voxel’s
color values. The second metric uses metrics that are approxima-
tions to the first metric. The first metric is quite slow, taking a few
to many minutes to compute, but is included to show that the sec-
ond metric performs similarly even though it is an approximation.
The second metric takes a fraction of a second to compute, which
allows interactive modification of the transfer function.

The remainder of the paper is structured as follows. Section 2
reviews related work, Section 3 provides a review of the TSP tree
data structure and algorithm, and Section 4 describes how TSP trees
can be used for hardware volume rendering. Section 5 discusses the
error metrics considered, and the last sections cover the experiments
performed, the results, and the conclusions.
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Figure 1: The TSP tree’s skeleton is an octree, and each of the TSP
tree nodes is a binary time tree. In the example here, the time-
varyingfield has four time steps.

2 Related Work

Several earlier efforts have used data coherence to accelerate vol-
ume rendering. In general, two types of coherence can be usually
observed in a time-varying volume data set. One is calledspatial
coherence, which refers to the fact that voxels in adjacent regions
tend to have values that are very close to each other. The other is
temporal coherence, which refers to the fact that voxels tend not
to change drastically from one time step to the next. In the past,
researchers have proposed the use of hierarchical data structures to
exploit the coherence for speeding up the rendering of steady-state
volumes [1, 2, 3, 4]. Laur and Hanrahan proposed a Hierarchical
Splatting algorithm [3], where a pyramid data structure is used to
store the voxels’ mean value and the standard deviation in differ-
ent subvolumes. Given a user-supplied error tolerance, an octree is
fit to the pyramid, and the traversal of the octree allows different
regions in the volume to be drawn in different resolutions. Shen
et al. proposed a hierarchical data structure called theTime-Space
Partitioning (TSP) tree that decouples the characterizations of tem-
poral and spatial coherence, and allows efficient rendering of time-
varying volume data. This work is discussed in more detail in the
next section.

Another approach that can significantly speed up volume ren-
dering is to use 3D texture hardware [5, 6, 7, 8]. In essence, 3D
texture hardware can be used to perform volume rendering byfirst
generating a sequence of slicing planes perpendicular to the view-
ing direction, and then use 3D texture hardware to map colors and
opacities based on the underlying data attributes to these planes.
The sequence of parallel planes are then composited together in
a back-to-front visibility order to generate thefinal image. Yagel
et al. [9] proposed an algorithm that can efficiently generate the
slicing planes based on incremental slicing. LaMaret al. [10] pro-
posed using texture hierarchies and spherical shells to render very
large data sets. Both of the methods allow fast volume rendering of
large data sets. However, the rendering of time-varying data, which
requires fast texture animation, was not discussed.

3 Time-Space Partitioning Trees

This paper uses the Time-Space Partitioning (TSP) tree data struc-
ture and algorithm,first proposed by Shenet al. [1], for capturing
both the temporal and spatial coherence in time-varying data. The
skeleton of a TSP tree is a standard complete octree, which recur-
sively subdivides the volume spatially until the size of the subvol-
ume is less than a predefined threshold. At each node of the octree
skeleton, there is a binary time tree, which recursively bisects the
time-varying data set’s time span. Figure 1 depicts a two dimen-
sional version of TSP tree and one of its tree nodes in the form of a
binary time tree.

The nodes of the binary time tree store both the temporal and
spatial error metrics. Our TSP tree implementation also includes

void octree_traverse()
{
TimeSpan span = time_tree_root.timetree_traverse();
if (span == Failed)

add_to_list(subvolume(current_octree_node), span);
else if (is_leaf(current_octree_node))

add_to_list(subvolume(current_octree_node),
curr_time_step)

else for (each octree_child under current_octree_node)
octree_child.octree_traverse()

}

TimeSpan timetree_traverse()
{
if (time_tree_node.temporal_error <= temporal_tol) {

if (is_leaf(current_octree_node))
return current_timetree_node.time_span;

else if (time_tree_node.spatial_error <= spatial_tol)
return current_timetree_node.time_span;

else if (is_leaf(current_timetree_node))
return Failed;

else
return child_for_curr_timestep().timetree_traverse();

}
else if (is_leaf(current_timetree_node))

return Failed;
else

return child_for_curr_timestep().timetree_traverse();
}

Figure 2: TSP tree traversal algorithm.

statistics about the corresponding subvolume and time span: the
mean, minimum, and maximum scalar values as well as the stan-
dard deviation. The earlier work’s spatial error metric was the co-
efficient of variation, which is a normalized standard deviation of
the voxels. To quantify a subvolume’s temporal error in a given
time span, the mean of the individual voxels’ coefficients of varia-
tion over time was used. This temporal error measurement is more
effective in capturing those subvolumes that do not change dramat-
ically even with the presence of high spatial variation [1].

For a time-varying volume data set, the TSP tree can be con-
structed once and then updated whenever the data used by the error
metric calculations changes. Once the tree has been constructed or
updated, it can be used repeatedly. The TSP tree traversal algo-
rithm traverses both the TSP tree’s octree skeleton and the binary
time tree associated with each encountered octree node, as shown
in Figure 2. When rendering a frame, the TSP tree is traversed to
identify a set of subvolumes that cover the entire volume. Each
subvolume is chosen to cover the largest spatial and temporal ex-
tent and also satisfy the user-supplied spatial and temporal error
tolerances. The tolerance for the spatial error provides a stopping
criterion for the octree and time tree traversal. The traversalfirst
descends the octree skeleton, checking if the error tolerance allows
the subvolume corresponding to the current node to be added to the
subvolume list. The octree traversal is different from the time tree
traversal: the octree traversal descends until the entire volume is
covered, while the time tree traversal only follows the time spans
enclosing the current time step.

Shenet al. use the TSP tree data structure to accelerate a soft-
ware ray casting algorithm for time-varying data [1]. Their render-
ing algorithmfirst collects the subvolumes that meet the specified
spatial or error tolerance. Then, it renders each of these subvolumes
independently into a partial image. Thefinal image is constructed
by compositing the colors and opacities of the partial images. In
this implementation, partial images for those subvolumes that have
high temporal coherence are cached. The time span for each subim-
age is also saved. When the user chooses to render the volume at
a different time step, the tree traversal process is performed again.
During traversals when the viewing parameters remain the same, if
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a subvolume that has high temporal coherence is encountered and
the subimage cached previously is re-usable, then the cached image
is directly used, and the re-rendering of the subvolume is entirely
skipped. From the experimental studies in [1], the utilization of
previously cached images due to high temporal coherence can sig-
nificantly reduce both the rendering time and I/O overhead.

4 Using TSP Trees for Hardware Volume
Rendering

The rendering algorithm described above for a ray-casting imple-
mentation must be modified when it is used for hardware volume
rendering using 3D texture mapping. The TSP tree construction al-
gorithm does not need to be changed, nor does the initial traversal
algorithm need to be changed. Like before, the TSP tree is tra-
versed at rendering time to gather a list of subvolumes to be ren-
dered. These subvolumes may have a larger spatial extent than the
octree leaf nodes if the spatial error tolerance caused the traversal
algorithm to terminate early. Or, the subvolumes may represent
several time steps if the temporal error tolerance caused early ter-
mination.

Once the list of subvolumes has been collected, the subvolumes
can be rendered. Subvolumes that meet the spatial error toler-
ance are rendered usingflat-shaded polygons. This is an advan-
tage because many graphics systems renderflat-shaded polygons
faster than 3D textured polygons, and because the associated tex-
ture memory is saved. The time to load the volume data into tex-
ture memory is also saved. Other subvolumes are rendered using
3D textured polygons. However, if a subvolume meets the tempo-
ral error tolerance and represents a time span, then that subvolume
uses the texture defined for thefirst time step in the span. This is the
mechanism that causes textures to be shared between time steps.

When using TSP trees, the standard 3D-texture-based volume
rendering algorithm must be changed in two ways. Thefirst change
is that the volume data are rendered a subvolume at a time, with
each subvolume using its own set of slicing polygons to allow both
the flat-shaded versus textured polygon decision and the texture
sharing decision to be made on a per-subvolume basis. This can
be done by using the standard hardware volume rendering algo-
rithm but slicing a single subvolume instead the entire data set. The
second major change is that an order must be defined among the
subvolumes so that the subvolumes are rendered in back to front
order. The order can be determined during the octree traversal by
selecting the correct traversal order for the children of the node.
Fanget al. [11] have devised a solution for parallel projections that
examines the signs of components of the view direction vector and
from them chooses from eightfixed orderings.

4.1 Algorithm Overhead

While using TSP trees with hardware volume rendering has several
important performance benefits, it also has some additional costs.
One cost is the overhead of traversing the octree data structure, but
this cost is minimal since there are typically only tens or hundreds
of octree nodes. A second cost is the increased number of dupli-
cated voxels at the subvolume boundaries. Most hardware volume
rendering algorithms only divide the volume data into subvolumes
if the data are larger than texture memory. These algorithms only
create large subvolumes, which have only a small fraction of du-
plicated voxels at the boundaries. The TSP-tree algorithm uses
small subvolumes, which increases the fraction of duplicated vox-
els. Subvolumes with16 � 16 � 16 voxels duplicate 18% of the
voxels, and32 � 32 � 32 subvolumes duplicate 9% of the voxels.

4.2 Slicing Polygons

The third, and largest, additional cost of to the TSP algorithm is the
increased number of slicing polygons. There are more slicing poly-
gons compared to the number used with the single-volume hard-
ware rendering algorithms since each of the single-volume poly-
gons is broken up along the subvolume boundaries in our algorithm.
The additional polygons require more time to calculate, which must
be done whenever the view direction changes. Also, the additional
polygons may also take additional rendering time since the poly-
gons must be sent to the graphics system and transformed. How-
ever, the additional polygons do not change the number of pixels
that must be rendered because the per-subvolume slicing polygons
could be merged to form the slicing polygons for an unsubdivided
volume.

The cost of generating the additional polygons can be reduced
using several methods. One approach would be to save the poly-
gons between frames, and to only generate them when the view
direction changes. This will improve the performance during time
animations that do not also have viewpoint changes. A second ap-
proach would be to reuse the calculated polygons for several sub-
volumes. This approach would generate a set of slicing polygons
for each of the different subvolume sizes, and then reuse this set
of polygons for each subvolume of the same size by translating the
polygons to the actual location of the subvolume. The approach
requires the fewest calculations, but introduces artifacts because
the single-subvolume polygons do not match up at the subvolume
boundaries. The artifacts can be significant for some viewpoints.

We use a third approach which uses a fast, incremental slicing
algorithm to reduce the cost of calculating the slicing polygons.
Our algorithm is quite similar to the incremental tetrahedra slicing
algorithm developed by Yagelet al. [9], and has several similarities
to the standard scan-line polygon rasterization algorithm. Figure 3
shows the high-level pseudocode for the algorithm.

The slicing algorithm computes the slicing polygons for one sub-
volume at a time. This allows most of the data structures to be al-
located statically or on the stack. It outputs slicing polygons that
have between three and six vertices, which reduces the number of
polygon vertices that must be sent to the graphics system compared
to generating triangles. The key part of the algorithm is that it main-
tains an active edge list, which is a list of the edges that intersect
the current slice. Each edge in the list stores the intersection be-
tween the edge and the current slice; that intersection is a vertex in
the current slicing polygon. The active edge list is ordered so that
a traversal of the list’s edges encounters the edges’ stored intersec-
tion vertices in the same order as they occur in the current slicing
polygon. This avoids the need to compute the convex hull for the
three- to six-vertex polygons.

The algorithm also maintains an array of subvolume vertex lists.
The array has one more than the number of slices. Thefirst element
holds the list of subvolume vertices before thefirst slice, and the
last element holds the vertices after the last slice. The middle ele-
ments holds the lists of vertices that are between the element’s cor-
responding pair of slices. The subvolume vertices in each slice’s list
are sorted by decreasing distance from the view plane (decreasing
z). If this sorting was omitted, the algorithm could try to process
a vertex which has edges that have no connection to the existing
active edge list. Vertices with equalz values must be ordered as
well. The algorithm sorts the subvolume vertices usingfirst one of
the original subvolume axes that is the most perpendicular to the
viewing direction, and then by the second most perpendicular sub-
volume axis.

The algorithm starts by computing the slopes for each edge once
per frame. Then, for each subvolume, it computes thez value for
the eight subvolume vertices, calculates the number of slices, and
allocates the slice bucket headers and the storage for the output
polygons. Enough polygon storage is allocated to allow six vertices
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initslicer() // called once per frame
{

Calculate slope of each edge
}
calcslices() // called once per subvolume
{

Compute z value for each vertex, and zmin and zmax
Calculate number of slices using zmin and zmax
Allocate storage for vertex buckets and slice output
Clear buckets
Clear active edge list
Add each vertex to the vertex buckets, sorting
vertices in each bucket by z

for each slice {
for each vertex in bucket {

Calculate slice intersection for unprocessed edges

// update active edge list
switch (number of unprocessed edges)
case 3: // first vertex => edge list is empty

Add all three edges to active edge list
break

case 2:
Replace processed edge with 2 unprocessed edges
break

case 1:
Replace 2 processed edges with 1 unprocessed edge
break

case 0: // processing last vertex
Delete active edge list

}
}

Copy slice to output memory using active edge list
Increment slice intersection for each active edge

}
}

Figure 3: High-level polygon slicing pseudocode.

for each slicing polygon. Memory is reused between subvolumes if
the previously-allocated memory is sufficient.

The algorithm then loops for each slice. In each iteration, the
algorithm processes the subvolume vertices that are between the
current slice and the previous slice. Each vertex’s edges are initial-
ized if the edge is not in the current active edge list, and then the
active edge list is updated. Different cases handle different numbers
of edges that have not been previously placed in the active edge list.
The cases handling one or two new edges replace the old edges in
the active edge list with the new edge or edges. This avoids having
to traverse the edge list tofind the location to insert the edge. This
edge processing uses a static list of each subvolume vertex’s edges.
These edges are listed so they are in counterclockwise order when
looking at the vertex from outside the subvolume. This allows the
edges to be inserted into the active edge list in the correct order.

After the vertices are processed, the active edge list holds the ver-
tices of the current slicing polygon. The slicing polygon’s vertices
are copied into the output polygon list. Then, each edge’s intersec-
tion point is advanced to the next slice by adding the edge slope to
the current points, and the algorithm starts the processing for the
next slice.

Our current polygon slicing implementation is fast enough so
that polygons can be recomputed for each frame without making
the CPU time the bottleneck. The polygon slicing could become the
bottleneck if the subvolumes were smaller, or if the algorithm was
run on a system with a CPU that is slower relative to the graphics
system.
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Figure 4: Slicing algorithm data structure.

4.3 Texture Caching

Our algorithm has another optimization that reduces the rendering
time. We use the OpenGL function glBindTextureExt that allows
the textures to be loaded into texture memory and retained when a
time step is first displayed. By not deleting a time step’s textures
when the algorithm displays later time steps, the time required to
display the time step is reduced when it is shown the second and
subsequent times. However, this texture caching requires additional
logic when the transfer function or error tolerances are changed.
When these values are changed, some previously-created textures
may no longer be needed, and should be deleted. The texture gen-
eration code must maintain data structures so that this texture man-
agement can be done correctly.

4.4 Choosing the Subvolume Size

TSP tree algorithms have one important parameter: the minimum
subvolume size. Smaller subvolumes allow smaller regions of co-
herence to be exploited without reducing image quality. If the entire
subvolume has high spatial or temporal coherence, the image qual-
ity will not be significantly reducing if it, respectively, is replaced
with flat-shaded polygons or uses another time step’s volume data.
Larger subvolumes are less likely have spatial or temporal coher-
ence throughout the subvolume, which means that the TSP tree op-
timizations cannot be done without reducing image quality.

However, smaller subvolumes have associated costs. One cost is
a further increase in the number of slicing polygons, as described
above. A second cost is increased overhead in managing textures.
We did not expect this to be a large cost, but our OpenGL im-
plementation has shown greatly reduced performance when using
more than 4096 textures. Sloanet al. [12] have seen similar limita-
tions. Because of this limit on the total number of textures, we were
unable to get good results when using16 � 16 � 16 subvolumes.
Instead, we present results using32 � 32� 32 subvolumes.

5 Error Metrics

The TSP tree algorithm uses two types of error metrics. Spatial er-
ror metrics indicate the amount of coherence within a subvolume,
and determine which subvolumes should be rendered without tex-
tures. Temporal error metrics indicate the amount of coherence
within a series of subvolumes, and determine which subvolumes
should share textures between time steps. This section describes
three methods for calculating both types of error metrics. The first
method for calculating error metrics bases the metrics on the vox-
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els’ scalar values, and are calledscalar-based error metrics. The
second two methods arecolor-based error metrics, and are based
on the actual color of the voxels. Although the description of the
error metrics in this section assumes that they are used for hard-
ware volume rendering, the error metrics could also be used with
the ray-casting implementation by Shenet al. [1].

5.1 Scalar-Based Error Metrics

The scalar-based error metrics are the same ones used in the first
TSP tree paper [1]. The metrics calculate the coefficient of variation
(COV), which is the standard deviation divided by the mean. The
COV can be thought of as a normalized version of the standard
deviation. The scalar-based spatial error metricess is calculated
by computing the coefficient of variation of scalars for the voxels
in the subvolume and time steps in question, and is given by the
following formulas:

�v =
1

N

X
i;t

vi;t (1)

� =

s
1

N

X
i;t

(vi;t � �v)2 (2)

ess =
�

�v
(3)

wherevi;t is the value of voxeli at time stept,N is the total number
of voxels in the subvolume across the time steps,�v is the voxel’s
mean, and� is the voxel’s standard deviation.

The temporal error metric is calculated by first computing a COV
for each voxel position within the subvolume for all the voxels in
the desired time span [t1, t2]. The scalar temporal error metricest
is the average of the per-voxel COV’s, as shown below:
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�i
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wheren is the number of voxels in the subvolume,�vi is the per-
voxel mean, and�i is the per-voxel standard deviation. If this error
metric seems similar to the previous spatial error metric, note that
the spatial error metric calculates a single COV for all the voxels
in the subvolume across the time series, while the temporal error
metric calculates COV for each voxel in the subvolume, and then
averages the COV’s across the time series.

If implemented na¨ıvely, these error metrics would require two
passes over the voxels, one to compute the mean and a second to
compute the standard deviation. However, the formulas can be re-
arranged so that they only require the sum of all the voxel’s values
and the square of all the values, as shown in many statistics texts.
Because the scalar-based metrics only depend on the data, they can
be precomputed and saved in the octree file.

5.2 Reference Color-Based Error Metrics

The color-based error metrics are more accurate because they are
based on the color of the voxel, which is more closely related to the
image than the scalar value. Their disadvantage is that they must be
recomputed when the transfer function is changed, which is often
done interactively.

The first color-based error metrics compute statistics based on
each voxel’s color, much like the scalar-based metrics compute
statistics based on each voxel’s scalar value. Because the equa-
tions are quite similar, we call these error metrics the reference er-
ror metrics. Since the standard deviation is not defined for vector
quantities such as colors, we instead compute the squared distance
in RGB� space between each voxel’s color and the mean color
of the set of voxels in question. We compute distances in RGB
space for higher performance; in the future, we may try comput-
ing distances in a more a perceptually uniform color space such as
L*u*v* [15]. The squared distance in RGB space is weighted by the
opacity of the voxel because low-opacity voxels have a smaller con-
tribution to the final image than high-opacity voxels. The squared
distance functiond takes two color vectorsc1 = (r1; g1; b1; �1)
andc2 = (r2; g2; b2; �2), and is:

d(c1; c2) = �1[(r1�r2)
2+(g1�g2)

2+(b1�b2)
2]+(�1��2)

2

(7)
wherer, g, b, and� have been normalized to the range [0,1]. We
weight only by�1 becausec2 is usually an average color or zero.
The mean color values�r, �g, �b, and�� are computed with equations
similar to equation 1. We combine them by computing the square
root of d(�c; �0), the alpha-weighted distance between the average
color �c = (�r, �g, �b, and ��) and the origin. The color-based mean
analoguê� is:

�̂ =
p

d(�c; �0) =
p

��(�r2 + �g2 +�b2) + ��2 (8)

We can create the color-based standard deviation analogue�̂ by
replacing the squared difference betweenvi;t and�v in equation 2
by the distance equation 7. The reference color-based spatial er-
ror ercs is the mean replacement divided by the standard deviation
analogue. The formulas are:
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N

X
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d(ci;t;�c) (9)

encs =
�̂

�̂
(10)

The reference color temporal error equation also computes a per-
voxel COV like the scalar-based spatial temporal error equation (6).
The analogue to the per-voxel mean value is, like before,d(�ci; �0),
where�ci = (�ri; �gi;�bi; ��i)). Each of the mean values are computed
using equations similar to equation 4. The equations for the stan-
dard deviation analog and the reference color-based temporal error
metric are modified versions of equations 5 and 6 with the scalar
value difference replaced by the distance equation. The equations
are:
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p

��i(�r2i + �g2i +
�b2i ) + ��2i (11)
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sPt=t2
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(12)
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1

n

X
i

�̂i
�̂i

(13)

The reference color-based error metrics have one large draw-
back: they are very slow. They are slow because every voxel must
have its color computed, and then have equations 8 to 13 evaluated
using the voxel color. The time to compute the error metric for the
three data sets ranged from 4 to 25 minutes; see Table 2 for more
details. The computation can be accelerated by optimizing the cal-
culation so it can be made in one pass. Another optimization is to
not recalculate the metrics for subvolumes that do not use any part
of the lookup table that was changed in the editing operation. This
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second optimization can be done efficiently by precomputing the
minimum and maximum scalar values for each subvolume. How-
ever, these optimizations cannot speed up the calculations so they
will run at interactive rates for typical large data sets.

5.3 Approximate Color-Based Error Metrics

This section describes approximations to the reference color-based
error metrics that can be computed quickly. As will be shown in the
results section, they can be computed in a fraction of a second for
reasonably large data sets, and give similar results.

The approximation uses the fact that, if the frequency of occur-
rencefk for every unique valuexk is known, the generic standard
deviation equation� =

p
1=n
P

i
(xi � �x)2 can be rewritten as

� =
p

1=n
P

k
fk(xk � �x)2. Our approximation does not actu-

ally count the frequency of appearances of the colors in the popu-
lation, but instead assumes that the counts are normally distributed.
We precompute and store in the TSP tree the parameters for each
subvolume’s distribution, which are the mean and standard devia-
tion of the scalar values in the subvolume. The population distribu-
tion uses a distribution equation that only gives a population esti-
mate for every transfer function entryj because the later equations
iterate over the entries. The population equation is:

p(j) = exp(�
(x(j)� �v)2

2�2
) (14)

where the mean�v and standard deviation� are from equations 1
and 2 in the scalar-based error metric section, andx(j) is the scalar
value corresponding to the center of transfer function entryj. Next,
we define the total estimated population of a subvolumeptot as:

ptot =

jmaxX
j=jmin

p(j) (15)

wherejmin andjmax are the transfer function entries correspond-
ing to the minimum and maximum scalar values of the subvolume.
That is, we only iterate here, and in the following equations, over
the transfer functions used by the subvolume.

The error metric computes the difference between each transfer
function entry and the estimated mean color values. The mean val-
ues are computed by multiplying each transfer function entry by the
fraction of the population that is expected to use each transfer func-
tion entry,p(j)=ptot, and summing the products. The estimated
mean red value�rest is :

�rest =

jmaxX
j=jmin

p(j)

ptot
r(j) (16)

wherer(j) is the red value of color entryj. The equations for�gest,
�best, and��est are similar.

The final steps in computing the approximate spatial color-based
error metric are to compute the approximate mean and deviation
values. The mean~� is a combination of the average color val-
ues as shown in equation 8. The deviation value~� uses the dis-
tance function defined earlier to compute the distance between
each transfer function entryc(j) and the average subvolume color
�cest = (�rest; �gest;�best; ��est). The distance for each transfer func-
tion entry is weighted by the population estimatep(j), and summed
as before. The error metriceacs is the deviation divided by the
mean.

~� =
p

d(�cest; �0) =
p

��est(�r2est + �g2est +
�b2est) + ��2est (17)

~� =

vuut jmaxX
j=jmin

p(j)

ptot
d(c(j);�cest) (18)

eacs =
~�

~�
(19)

This error metric can be computed quickly since it at most iter-
ates over the number of transfer function entries, which is 256 in
our implementation. Typical computation times take a fraction of a
second, as shown in Table 2.

We cannot use the population estimate approach for computing
an approximate temporal error because it would require storing (or
recomputing) a mean and standard deviation for every voxel for
every node in the time tree. This would consume more storage than
the original data, and would also be slow to compute. Instead, we
use a more ad-hoc approach that computes a scaling factor to turn
the scalar-based temporal error metricest into a color-based metric.

This scaling factor is a measure of the amount of variation in the
transfer function. The idea is that a large or small amount of varia-
tion will magnify or minimize the amount of deviation computed by
the scalar-based error metric, The variation measure calculates the
distance between the colors in successive transfer function entries;
the total scale factor is the square root of the sum of the distances
between the entries. The distance measure is the same one used
in earlier equations. No normalization is necessary since the color
components have been normalized to the range[0; 1]. The equation
for the approximate color-based temporal error metriceact is:

eact = est

sX
j

d(c(j); c(j + 1) (20)

where the summation is over the transfer function entries excluding
the last entry. This error metric can be very quickly computed be-
cause the variation measure is only computed once after the color
table changes. The individual subvolume error metrics can then be
computed by multiplying the precomputedest for each subvolume
by the variation measure.

6 Implementation and Results

We have implemented the TSP tree algorithm using the three sets
of error metrics. We also have a non-TSP-tree reference imple-
mentation based on the SGI Volumizer subroutine library [13]. Our
TSP tree implementation does not use the Volumizer library. We
have run experiments to compare the performance with and with-
out TSP trees, and also to show the improved performance of the
color-based error metrics. Other experiments show how the error
tolerances give the user a tradeoff between image quality and per-
formance.

6.1 Experimental Design

We ran the implementations on three regular, structured grid data
sets. Two data sets, Delta and F18, are CFD computations that were
originally computed on a curvilinear grid. Because we had access
to only one native regular data set, we resampled these data sets’
density values onto a regular grid for our experiments. The Delta
data set shows a delta wing aircraft flying at a high angle of attack,
and was performed on a single curvilinear grid. We resampled the
data set at two different resolutions so we could explore the effect
of data set size. The data set’s main feature is the vortex flow over
the wings. The F18 data set was computed using multiple over-
lapping curvilinear grids. The density values from the data show a
vortex structure over the leading-edge extension that breaks up as it
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Num.
Num. Texture Sub-
Time Size Volumes

Data Set Steps Dimensions (MB) (leaf/all)
Small Delta 30 111 � 126 � 51 20.4 40/49
Large Delta 12 222 � 253 � 103 66.2 288/337
F18 12 402 � 135 � 103 64.0 260/313
Shock 25 512� 64� 64 50.0 153/200

Table 1: Experimental data sets.

passes over the wing. The third data set, Shock, was computed on
a regular grid, and is a simulation of the unsteady interaction of a
planar shockwavewith a randomly-perturbed contact discontinuity
[14]. The data sets are shown in Figures 10 through 13 as well as
in animations of the data sets on the conference CD-ROM. Table 1
gives some statistics about the data. The texture sizes in this table
are for one byte per voxel; the original data files use 4-byte float-
ing point values. The sizes in the table do not include the effect of
duplicated pixels at subvolume boundaries.

The Delta and F18 data sets were run with asparse transfer func-
tion that makes many of the voxels transparent, and reveals the main
features of the data. In addition, we ran experiments with the Delta
and Shock data set with afilled transfer function that makes most
of the voxels have a positive opacity. The function shows the slow
variations in the data and thus makes it less likely that the spatial er-
ror metric will classify a subvolume as coherent. As shown below,
the filled transfer function makes it more difficult for our algorithm
to improve performance. Fortunately, most volume visualizations
use fairly sparse transfer functions.

The experiments were run using OpenGL on a SGI Onyx2 work-
station using one of four 195 MHz MIPS R10000 processors, 1GB
of main memory, and InfiniteReality2 graphics with 64MB of tex-
ture memory and one RM7 Raster Manager. All of the runs used
a minimum subvolume size of 32� 32 � 32 voxels (except for
boundary subvolumes), and were rendered at a resolution of 640�

480. The slicing plane spacing was half the voxel size (the Nyquist
frequency). The experimental runs used the same viewpoint for all
the frames, as shown in Figures 10 through 13. However, we no-
ticed informally that the frame times do not vary appreciably when
the data sets are rotated.

We measured runs with three error tolerances: a zero error toler-
ance, aslight error tolerance that showed barely noticeable artifacts,
and amoderate error tolerance that showed small but noticeable ar-
tifacts. Figure 14 shows the images with slight and moderate error
tolerances for the Delta data set with the filled transfer function.
The effects of temporal error can be seen in animations on the con-
ference CD-ROM.

When using non-zero error tolerances, we used error tolerances
for the three types of error metrics that gave the same image qual-
ity. This was complicated by the fact that using the same error tol-
erance with different error metrics produces images with different
amounts of error, which meant that we had to make multiple runs
to search for the correct error tolerances. We measured image qual-
ity by computing the average distance between images with zero
error tolerance and the ones with some error allowed. The distance
was defined as the distance in L*u*v* color space, a perceptually
uniform color space [15, 16]. The RGB to L*u*v* conversions as-
sumed a D65 white point.

6.2 Results

Overall, the TSP tree algorithm using the color-based error metrics
had higher rendering performance than the non-TSP-tree SGI Vo-
lumizer implementation, and also higher performance than the TSP
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Figure 5: Average rendering times for three error metrics with an
error tolerance of zero, and without texture caching.
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Figure 6: Average rendering times for three error metrics with an
error tolerance of zero and texture caching.
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Figure 7: Average rendering times for the large Delta data set using
a zero error tolerance and the filled transfer function.

tree algorithm using scalar based error metrics. Tables 3 and 4 show
the average time required to render all of each data set’s time steps
for a number of different configurations. Some of this data is shown
graphically in Figures 5 to 8.

Table 5 and Figure 9 contain statistics about the average amount
of coherence exploited by the algorithm. The table’s first two
columns for each error metric show the fraction of subvolumes that
pass the spatial error tolerance test so that they can either be not
rendered, if the mean opacity was zero, or rendered as polygons.
The values are given as percentages of all the voxels to avoid pos-
sible distortions caused by over weighting the small subvolumes at
the edges of the volume. The third column for each error metric
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Figure 8: Average rendering times for three error tolerances without
using texture caching.
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Figure 9: Voxel statistics for the small Delta and the sparse transfer
function for three error tolerances.

gives a temporal coherence statistic, the percentage of voxels that
were in subvolumes that were reused from an earlier time step. The
last column gives the balance of the voxels, the ones in subvolumes
that correspond to the current time step.

Non-TSP-tree vs. TSP tree with color error metrics. The new
color-based TSP tree algorithm can be compared to the previous
non-TSP-tree algorithm by specifying a zero error tolerance. The
results are shown in Table 3, and Figures 5 and 7. When textures
are being created (non-cached values), the results are mixed. The
non-TSP-tree algorithm has higher performance with the smaller
data sets, small Delta and Shock. Because the data sets’ voxels fit
into texture memory, the TSP tree’s overhead of more numerous
textures and duplicated voxels at subvolume boundaries outweighs
the small savings from subvolumes that do not need to be created.
The non-cached performance of the TSP tree algorithm is higher
with the large data sets, large Delta and F18, because the subvol-
ume size is smaller relative to the data set size. This causes a larger
fraction of the subvolumes to be completely filled with transparent
voxels, which do not need to be loaded into texture memory. Fi-
nally, the zero-error TSP tree performance with the large Delta and
the filled transfer function is quite low. The TSP tree only finds a
small amount of texture memory savings in this case (see Table 5),
so the TSP tree algorithm’s overhead increases the time. The per-

Transfer Ref. Appr.
Data Set Function Scalar Color Color

Small Delta sparse 21 248 0.21
filled 21 312 0.21

Large Delta sparse 170 916 0.33
filled 175 1117 0.33

F18 sparse 161 887 0.23
Shock filled 160 1481 0.24

Table 2: Build time in seconds. The scalar metrics are built once,
while the color metrics must be built after each transfer function
change.

formance increases when a moderate amount of error is allowed:
the time decreases from 7594 ms to 602 ms for the TSP tree algo-
rithm, which is less than the non-TSP-tree time of 726 ms.

The performance is excellent with the TSP tree algorithm and
color-based error metrics once the textures have been created and
cached. As shown in Table 3, and Figures 6 and 7, the TSP tree
algorithm is nearly always the same speed or faster than the non-
TSP-tree algorithm. The best performance with a sparse transfer
function is seen with the large data sets, the large Delta and the F18.
For example, the rendering time of the F18 decreases from 638 ms
to 58 ms when the TSP tree algorithm is used. The exception is
with the large Delta and the filled transfer function, where there are
no texture savings with a zero error tolerance. The large Delta has
better performance when moderate error is allowed, since the TSP
tree algorithm can reduce the texture memory requirement so that
the frame time is 141 ms instead of the non-TSP-tree’s 726 ms.

Scalar-based vs. color-based error metrics. Runs using the
color-based error metrics equal or surpass the performance of ones
that use the earlier scalar-based error metrics introduced by Shen
et al. [1]. In some cases, the rendering runs using scalar error
metrics took so much time that the times could not be included in
Figures 5 and 6 because they would distort the graphs. The rela-
tively low performance happens because the scalar error metric is
not based on the actual colors, and thus in order to have the same
image quality a larger fraction of the subvolumes must be rendered
using textures. For example, Table 5 shows that the scalar error
metric required all of the subvolumes to be textured when a zero
error tolerance is specified for a data set that is being rendered us-
ing a sparse transfer function. The color error metrics located the
transparent subvolumes, which meant that textures did not need to
be created for them. In addition, the transparent subvolumes were
skipped during rendering. When a filled transfer function is used,
the runs using scalar error metrics were more comparable to the
color error metric runs, but the scalar metric runs were not faster.

Effect of increasing error tolerance. By increasing the error
tolerance, the user can trade image quality for speed. Figure 8
shows how the non-cached performance increases as the error tol-
erance increases. The performance increases because the total size
of the textures to be loaded decreases, as shown in Figure 9. In this
figure, the New Textures box is the fraction of the overall number
of voxels that must be loaded.

The cached performance is different than the non-cached perfor-
mance. When more error is allowed, the cached performance does
not increase in most cases because increasing the amount of error
does not decrease the number of subvolumes that is not rendered.
When the texture memory is sufficient, not rendering polygons (ei-
ther textured or flat shaded) is the only way to increase the perfor-
mance on the InfiniteReality2 graphics subsystem because the sub-
system renders flat shaded and tri-linearly interpolated polygons at
the same rate [17]. However, the cached performance does increase
with the large Delta and the filled transfer function. Here, the av-
erage rendering time with the approximate color error metric de-
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Sparse Transfer Function Filled Transfer Function
Non-TSP Scalar Ref. Color App. Color Non-TSP Scalar Ref. Color App. Color

Model NC C NC C NC C NC C NC C NC C NC C NC C
Small Delta 111 88 379 88 221 59 218 59 110 87 378 88 380 88 378 88
Large Delta 685 726 9060 4580 537 65 555 65 702 726 9080 4596 7585 3974 7594 3976
F18 657 638 8278 3734 447 56 496 58 — — — — — — — —
Shock — — — — — — — — 296 216 1049 1307 461 60 470 59

Table 3: Rendering times, averaged over all the time steps, with a zero error tolerance specified. The columns give times, in milliseconds,
when using the scalar, reference color, and approximate color error metrics for when textures are cached (C) and not cached (NC).

Sparse Transfer Function Filled Transfer Function
Error Scalar Ref. Color App. Color Scalar Ref. Color App. Color

Model Tolerance NC C NC C NC C NC C NC C NC C
Small slight 214 88 185 59 189 59 216 88 214 88 218 87
Delta moderate 181 88 156 59 153 59 180 87 180 88 180 88
Large slight 2508 1985 517 63 513 64 2630 2079 1105 1502 885 1481
Delta moderate 591 142 495 64 425 64 570 153 525 156 602 141

F18 slight 2819 2056 367 57 384 57 — — — — — —
moderate 666 156 273 57 280 57 — — — — — —

Shock slight — — — — — — 458 59 265 60 241 51
moderate — — — — — — 356 59 198 60 184 51

Table 4: Average rendering times when some error is allowed. The columns give times, in milliseconds, when using the scalar, reference
color, and approximate color error metrics for when textures are cached (C) and not cached (NC).

Transfer Error Scalar Reference Color Approximate Color
Model Function Tolerance % NR % UP % RT % NT % NR % UP % RT % NT % NR % UP % RT % NT

zero 0 0 0 100 29 0 0 71 29 0 0 71
sparse slight 0 0 40 60 29 0 13 58 29 0 12 59

Small moderate 0 0 60 40 29 0 32 39 29 0 32 39
Delta zero 0 0 0 100 0 0 0 100 0 0 0 100

filled slight 0 0 40 60 0 0 42 58 0 0 40 60
moderate 0 0 60 40 0 0 63 37 0 0 60 40
zero 0 0 0 100 66 0 0 34 66 0 0 34

sparse slight 0 0 42 58 65 0 2 33 65 0 2 32
Large moderate 12 0 56 32 66 0 7 27 64 0 8 26
Delta zero 0 0 0 100 0 9 0 91 0 9 0 91

filled slight 0 22 18 59 0 16 42 42 0 42 16 42
moderate 0 22 47 31 0 15 59 26 0 42 25 33
zero 0 0 0 100 61 0 4 33 62 0 0 38

F18 sparse slight 0 0 40 60 61 0 11 26 62 0 10 28
moderate 3 0 60 37 60 0 20 18 62 0 20 18
zero 0 31 0 69 0 44 1 55 0 43 0 57

Shock filled slight 0 31 17 51 0 36 37 27 0 63 11 27
moderate 0 30 30 40 0 36 46 18 0 61 21 18

Table 5: Statistics on how subvolumes were rendered, given as a percentage of voxels in each case. Key: % NR = not rendered, subvolume
was transparent; % UP = rendered as untextured polygons; % RT = rendered using reused textures, from an earlier timestep; % NT = rendered
using new textures, textures loaded specifically for the current time step.

creases from 3976 ms to 141 ms when moderate error is allowed.
This happens because the increased texture coherence used reduces
the texture memory requirements to be less than the texture memory
capacity.

Texture caching. Retaining textures increases the performance
in most cases. Texture caching increases the performance dramat-
ically with nearly all of the TSP tree runs. For example, the small
Delta rendering time with the approximate color error metric de-
creases from 218 ms to 59 ms after the textures are cached. The
time decreases by a factor of 8 for the large data sets, the large
Delta and F18. More cases can be seen by comparing the color er-
ror metric values between Figures 5 and 6. However, in a few cases,

the cached time is higher than the non-cached time. We believe that
this occurs when the total size of the textures is only slightly larger
than the texture memory. When a texture is to be loaded into a
graphics subsystem that has no free texture memory, the textures
resident in memory may need to be moved so that there is enough
contiguous memory available for the new texture. This can make
the initial texture loading faster because loading textures into free
texture memory is faster. In these cases, better performance would
be achieved by disabling texture caching. For the larger number of
cases where texture caching is effective, the use of texture caching
dramatically speeds up the animation of time-varying data sets.

Reference vs. approximate color-based error metrics. Fi-

9



nally, the rendering times and the subvolume statistics are quite
similar for comparable runs using the reference and approximate
color based error metrics. This shows that the approximations used
in the approximate metrics are valid for the data sets tested. The
main differences are seen in the runs using a filled transfer func-
tion and a nonzero error tolerance. In these runs, the reference er-
ror metric causes textures to be reused more than the approximate
color metric (see Table 5), which instead uses untextured polygons.
Even though the two error metrics do use nearly the same fraction
of the overall textures, the texture usage difference causes some dif-
ferences in performance. The texture usage differences happen be-
cause we did not have an effective way to measure perceived spatial
and temporal image quality independently. Instead, our method of
finding error tolerances by only comparing the overall image error
appears to have found error metrics that cause the two error metrics
to perform differently.

The advantage of the approximate error metrics is that they can
be recomputed in at most 0.33 seconds. This time is much less
than the 4 to 25 minutes required for the reference color-based er-
ror metrics. The recomputation times are shown in Table 2. The fast
recomputation is important because it allows the transfer function
to be changed interactively, which is a common operation. Because
the timings in this table give the time to compute the metrics for all
the time steps, the approximate error metrics could allow an even
faster response by only computing the metrics needed for the cur-
rent time step, and computing the other time steps’ metrics later.

7 Conclusions and Future Work

We have presented a fast volume rendering algorithm using 3D
texture hardware for visualizing large-scale time-varying data sets.
Utilizing a hierarchical data structure called the TSP tree, we are
able to exploit the spatial and temporal coherence that exists in
time-varying fields and substantially reduce the amount of texture
memory that is required. The fast volume rendering is achieved
by rendering a combination of flat-shaded and solid-textured poly-
gons, where flat-shaded polygons are used to represent those re-
gions having high spatial coherence, and the solid-textured poly-
gons are used to represent regions having high variation, both in
spatial and temporal domains. We have presented a fast incremen-
tal slicing algorithm that reduces the overhead of generating addi-
tional parallel sample planes due to the use of multiple subvolumes.
In addition, we have developed color-based error metrics that more
accurately identify spatial and temporal coherence compared to the
scalar based error metrics used by most of the existing hierarchical
volume rendering techniques. Our fast approximate color-based er-
ror metric, which is orders of magnitudes faster than a na¨ıve color-
based error metric, enables the user to change the transfer function
interactively. Finally, we have presented results from experimen-
tal studies that show that we can overcome the limitation of texture
memory capacity and significantly speed up the time-varying vol-
ume rendering using 3D texture hardware.

One area of possible future work is improved error metrics. One
possible improvement is to compute color differences in a percep-
tual color space instead of RGB� space. This might give more
accurate error metrics. While the RGB to perceptual color space
conversion adds computation, the additional computation is mini-
mal for the approximate color-based error metrics because only the
transfer function needs to be converted. Other error metric work
includes adding population estimates to the approximate temporal
color-based error metric, and evaluating error metrics that do not
use�-weighting. A second area of future work would be to ex-
plore the effect of the subvolume size. If smaller subvolumes were
used, more coherence would be exposed, but the algorithm would
most likely need to manage texture memory as was done by Sloan

et al. [12]. Finally, there may be advantages to using the color-
based error metrics with a TSP-based ray casting volume renderer.
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Figure 10: Large Delta with zero error tolerance and the sparse
transfer function.

Figure 11: Large Delta with zero error tolerance and the filled
transfer function.

Figure 12: F18 with zero error tolerance. Figure 13: Shock with zero error tolerance.

Figure 14: Large Delta with slight (left) and moderate (right)
error and the filled transfer function, plus contrast-enhanced dif-
ferences from the zero-error-tolerance image.

Figure 15: Large Delta with sparse transfer function and lines
showing the subvolume boundaries. Large subvolumes have high
spatial coherence.
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