
Hierarchical LIC for Vector Field Visualization

Udeepta Bordoloi and Han-Wei Shen
Department of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

E-mail: bordoloi@cis.ohio-state.edu and hwshen@cis.ohio-state.edu

Abstract

This paper presents a hierarchical algorithm to accelerate 2D LIC
computation. A quadtree data structure, combined with vector field
simplification metrics, are employed to provide the capability of
selective LIC approximation. In the algorithm, each node of the
quadtree is associated with a measure of “complexity” correspond-
ing to the local flow field. At run time, a threshold is provided by
the user to determine the degree of approximation. We report work
in progress aiming to solve two fundamental problems: (1) Find an
appropriate metric as a measure of the degree of vector field com-
plexity. (2) Develop an approximate LIC algorithm to produce an
image that gives a faithful representation of the vector field, i.e., it
should have as much information as a normal LIC image.

1 Introduction

One of the most popular methods for vector field visualization is
Line Integral Convolution, or LIC [1]. Since this method was first
introduced in 1993, researchers have proposed many extensions to
improve the computation speed [2, 3], to produce better LIC im-
ages [4, 5, 6], and to apply LIC to both steady and unsteady flow
fields [7, 8, 9]. The popularity of LIC mainly comes from its ef-
fectiveness in depicting the flow directions everywhere in a dense
vector field. The disadvantage of LIC, however, is that it is compu-
tationally expensive. Even though computing power has increased
significantly in the last decade, the amount of data generated from
numerical simulations has also increased by many orders of magni-
tude. In this paper, we present an algorithm that utilizes a hierarchi-
cal scheme to accelerate LIC computation, and to make interesting
features of a vector field stand out against the relatively uninterest-
ing background.

The main cost of computing LIC images is streamline advec-
tion. To reduce the computation time, previously Stalling and Hege
have proposed a fast-LIC method [2] which performs convolution
incrementally for pixels along a streamline to reduce the overall
number of streamlines being computed. In addition, adaptive step
size control for a Runge-Kutta numerical integration method is also
employed by the fast-LIC method to further speed up the computa-
tion. In contrast with the fast-LIC method, the technique presented
in this paper adopts a different approach. Instead of computing ac-
curate streamlines everywhere to cover the entire field, streamlines
are computed approximately and selectively based on the underly-
ing vector field features. In parts of the vector field where the flow
directions are fairly straight or similar across a local region, only
one streamline is computed and the same streamline is used by the
points in the entire neighborhood to perform convolution. Our goal
is to reduce the number of streamlines computed and simplify the
LIC computation, and thus reduce the total computation cost.

To make the algorithm suitable for applications that have dif-
ferent visual quality and interactivity requirements, it is very im-
portant that different levels of approximations to be provided and

controlled. To achieve this goal, we use aquadtreehierarchical
data structure to provide the capability of selective approximation
when computing 2D LIC images. In our algorithm, each node of the
quadtree is associated with a measure of “complexity” correspond-
ing to the local flow field. At run time, the user provides a threshold
to specify the minimum complexity level to displayed. If the mea-
sure associated with a given node is lower than the user supplied
value, the corresponding flow field region is simplified and approx-
imate LIC is performed in the region. Otherwise, the algorithm
subdivides the region into smaller parts and performs the same test
recursively. To make possible such a hierarchical LIC computation,
two key issues need to be addressed:
(1) Find an appropriate metric as a measure of the degree of com-

plexity for the local areas of the underlying vector field.

(2) Develop an approximate LIC algorithm to produce an image
that gives a faithful representation of the vector field, i.e., it
should have as much information as a normal LIC image.

In the following, we present our hierarchical LIC algorithm ad-
dressing the above two problems. We first briefly overview the LIC
algorithms. We then describe the error metrics that are used in the
quadtree hierarchical data structure. Two approximate methods for
LIC computation are discussed, and experimental results demon-
strating both the image quality and computational speed of the al-
gorithm are presented.

1.1 Related Work

The Line Integral Convolution method is a texture synthesis tech-
nique that can be used to visualize two-dimensional vector field
data. Taking as the input a vector field and a white noise image
with the same resolution as the vector field, LIC computes convo-
lution of the input noise image using the following algorithm: For
each pixel, streamlines in both the positive and negative directions
are first calculated. The pixel’s convolution result is computed by
weighted-averaging the image values of the pixels along the stream-
line paths. As a result, the intensity values of the pixels along each
streamline are strongly correlated so the directions of the flow field
can be clearly visualized.

While LIC is effective in visualizing 2D vector fields, it is quite
computationally expensive. Stalling and Hege proposed an exten-
sion to speed up the process [2]. Their work is based on two key
observations. First, a streamline starting from any point in the do-
main actually passes through many pixels. For those pixels, only
one rasterized streamline is sufficient to produce the convolution
and thus redundant numerical integrations can be avoided. The sec-
ond observation is that adjacent pixels along the same streamline
use very similar sets of pixel values for the convolution. Therefore,
the LIC value computed for one pixel can be reused by its neigh-
bors with small modifications to accelerate the convolutions. By
reducing the number of streamlines computed and speeding up the
LIC convolution, Stalling and Hege’s new method can gain a great
saving in computing the LIC.



The main idea of this paper is to further speed up the LIC com-
putation by adopting vector field simplification methods and hier-
archical data structures [10, 11]. While the remaining of the paper
discusses our algorithm for accelerating the standard LIC method,
we believe that combining our algorithm with the fast-LIC algo-
rithm can be very effective.

1.2 Measure for simplification

To allow different levels of approximations, we need to provide er-
ror measures to characterize the degree ofcomplexityin the regions
of the vector field. We use the term “complexity” to measure the
parallelism between the streamlines, i.e., how the flow directions in
a local region are similar to each other. We have implemented two
measures to represent the complexity of the vector field. One is the
magnitude ofcurl, and the other is the metric proposed by Heckel
et al.[10]. Our goal is to make regions with features like vortices
and saddle points have a high degree of complexity. Uninteresting
parts such as straight flows, on the other hand, are considered to
have a low degree of complexity.

The measures are calculated for each point in the field at a pre-
processing stage, and a quadtree is built out of the information.
During the actual LIC image computation stage, we traverse the
quadtree in a depth first manner. We adopt the convention that a
low value of the measure implies that the region can be simplified,
and a high value suggests that there might be interesting features
in the region, and we should subdivide the region further, i.e., go
down the current quadtree level. Thus the measure we are using
denotes ’complexity’. We do not simplify a region even if only one
point within it has a ’complexity’ value higher than the user defined
threshold. This is achieved by keeping track of the maximum value
of ’complexity’ for each region, and it is this value that is kept at
each node of the quadtree.

1.2.1 Curl

The curl at a point in a vector field is defined as the cross product
between the divergence of the vector field at that point and the
vector given by the field at that point. Mathematically, it has the
form:

Curl(x; y) = (
dFy

dx
�

dFx

dy
)z

whereFx andFy are the x and y components of the vector. A in-
tuitive geometrical interpretation of curl at a point would be that
it gives a measure of how much the vector field curls around that
point. Thus the magnitude of curl at the center of a whirlpool would
be very high, and that of a point in the middle of a straight flow
would be zero. The quadtree preprocessing for curl is straightfor-
ward. We first calculate the magnitude of curl for each point in the
vector field, and then build the quadtree over the vector field in a
bottom up fashion. Each node of the tree stores the maximum value
of curl in the region the node represents.

The magnitude of curl represents a local measure of complexity
for the flow, as only the vectors from a point’s adjacent points are
used in the calculation. A very low curl at a point means that the
flow is almost parallel at that point. But it would not necessarily
mean that the flow is parallel some distance from the point. Poten-
tially, this nature of locality can become problematic when simpli-
fying the LIC computation as the streamline convolution path orig-
inating from each point has a much wider span. Some experimental
results are presented and discussed in the result section.

1.2.2 Streamline Distance Error

Another flow complexity measure that we chose to use was pro-
posed by Heckleet al.[10]. For each point, the metric represents the

X

Streamline at X

translated to Y
Streamline of X

Streamline at Y

Y

Figure 1: Streamline distance error metric

difference between the accurate and the approximate streamlines
originating form the point in question. More specifically, the error
is measured as the sum of distances of the corresponding points on
the two streamlines, as shown in Figure 1.

Generating a quadtree out of this measure is slightly different
from the maximum quadtree method that we use for the curl metric.
At the lowest level of the quadtree, say a2� 2 block, we calculate
the error at each point as the distance between the actual streamline
originating from that point and the approximate streamline, which
is a translated streamline computed form the center of the2 � 2
block. The leaves store the maximum of the error distances of the
four points in the 2x2 block. For the next level, we follow the same
steps for the 4x4 region a node represents. This time, the value at
the node is the maximum of the error distances of the sixteen points
in the region, and the error distances are computed with respect
to the streamline of the center point of this region. Note that this
center point is different from any of the center points of the 2x2
sub-regions of this region.

To approximate a LIC image, this metric is believed to be more
intuitive if we are to translate an approximate streamline across a
region to perform the convolution. If the translated streamline does
not model the actual streamline well, the distance would be high
and thus we need to use a finer level of quadtree approximation.
Before we present the approximation result using this metric, we
first we discuss our LIC approximation methods in the next section.

1.3 Approximating LIC

For a region that has a low complexity measure, we intend to limit
the calculation of streamlines as much as possible, i.e., use only one
(or possibly a few) streamline to approximate the flow directions
for the whole region. In the following we describe two methods
for approximating LIC using the quadtree-based hierarchical vector
field simplification measure that we have discussed.

1.3.1 Streamline Translation

Our first method is to translate an approximate streamline to each
point of a local region and use the approximate streamline trajec-
tory as the LIC convolution path. For a region that is determined to



for point X

Approximate streamline
for Y is the streamline

Y

at X translated one
unit to the left

Streamline calculated

X

Figure 2: LIC approximation using streamline translation

be simplified, we select one point, near the center of the region, and
calculate the actual streamline originating from this point and per-
form rasterization of the streamline. To calculate LIC for any other
point in the region, we translate the rasterized streamline from the
center point by a displacement vector (the vector from the central
point to the current point that we are approximating the streamline
for), and use it to perform the same convolution as the standard LIC.

Figure 2 shows an example of our algorithm. Consider the grid
point that is to the left of the current point. Since we assume that
the shape of the streamlines is similar, we just translate the current
streamline one unit to the left to get the approximate streamline for
the new point.

1.3.2 Pseudo LIC

We have also experimented with Pseudo LIC (PLIC) proposed by
Vermaet al.[12], which uses texture mapping to generate LIC-like
textures. PLIC places seed points for streamlines on a uniform grid,
which might be sparser than the grid of the output image. (Com-
pare this to the traditional method of LIC, in which seed points for
streamlines are pixels of the output image). To generate flow tex-
tures, a rectangular LIC texture of a straight field is warped and
texture mapped onto the streamline. The quality of PLIC output
depends on how sparse the seed points are, and how wide and how
long the rectangular patch used for texture map is. More details can
be found in [12].

In our algorithm, the streamline is calculated at the central point
of the region to be simplified. Instead of performing regular LIC
convolution for each point in the region, we texture map a rectan-
gular patch from a previously calculated LIC image of a straight
vector field onto the streamline. The catch is that the seed points
are no longer uniformly spaced, and we need to calculate a proper
width and length for the rectangular patch depending on the size of
the region we are simplifying.

2 Results and Discussion

In the following, we first give qualitative assessments on the merits
and demerits of the metrics we use, and then discuss the speedups
and the result images.

We have applied our algorithm to a400 � 400 two dimensional
vector field with three vortices and two saddle points. Figures 3-6
show results using the streamline translation method for LIC ap-
proximation with the curl and the streamline distance as the error
metrics. Figures 7-10 were generated using PLIC approximation
with the same set of error metrics. Figure 11 is the traditional
LIC image for comparison. The streamline distance error metric
is calculated using a streamline advected to a length of 40 units.
The images generated using the streamline translation method use
a convolution length of 40 units, while the Pseudo LIC images are
convolved to 20 units.

From the figures we note that when the curl is used as a metric,
the image begins to show noticeable artifacts around the vortices.
The reason for this can be better understood from the image of the
magnitude of the curl of the vector field in Figure 12. The curl is
very high at the saddle points and also at the centers of the vortices.
But as we move away from the vortex centers, the curl falls to levels
that are comparable to areas with a straight flow. This happens
because curl is calculated locally, while the streamline calculated
for generating the LIC images spans a much greater region. Thus
one of the drawbacks of curl is that it fails to capture the global
features to the field.

The streamline distance error metric is very well suited for the
translation method of approximating streamlines. Since the error is
calculated using the same translated streamline that is later used for
approximation, it tells us exactly how good or bad the approxima-
tion is. The effects of simplification when using the streamline dis-
tance error metric, however, start to appear near the saddle points.
From the images of the various levels of the distance error in Fig
13 and 14, we notice that the error is high for the vortices but really
low around the saddle points.

Based on the above observations, neither curl nor the streamline
distance error appear to be the perfect metric for vector field sim-
plification on their own right. It is likely that a combination of both
the curl and the streamline distance would prove to be much more
faithful in representing the ’complexity’ of regions of vector fields.

Using either of the LIC approximation methods, appreciable
speedup can be achieved (see Figure captions) with different de-
grees of convolution artifacts. The tradeoff between image qual-
ity and computation speed is controlled by the user. The stream-
line translation method produces artifacts as the coherence becomes
weaker between the pixels that are adjacent to each other but in dif-
ferent regions of the quadtree simplification. In addition, the cor-
relation between the pixels in the region that is simplified is also
disturbed as the convolution paths for the pixels that are along the
same streamline in the original field now become slightly differ-
ent as a result of the streamline approximation. However, for the
flow regions that have low complexity, the differences are small
in general. Pseudo LIC seems to be a much better candidate for
approximation. We do not see discontinuity along the boundaries
of the regions that are simplified. In the original Pseudo LIC al-
gorithm, streamlines are uniformly spaced. For our purposes, we
have to place them according to the quadtree traversal, which re-
sults in non-uniform placement. This causes different parts of the
final image to have different intensities because they have different
amounts of texture mapped values deposited on them. We solve this
problem by starting new streamlines from points which do not have
a minimum number of texture mapped deposits on them.

3 Future Work

There is scope for more work on both the error metrics and the
LIC approximation methods. We believe we can produce a better
metric by combining more than one property of the vector field, in
this case the curl and the streamline distance. As far as approxima-
tion is concerned, we can use concepts of fast-LIC in our algorithm



to achieve higher speedups. Finally, the use of a hierarchical al-
gorithm should prove very useful for producing three dimensional
LIC images, where the challenge is both computational speed and
selective display of information.

Acknowledgments

This work was supported by The Ohio State University Research
Foundation Seed Grant. We would like to thank Ravi Samtaney
for providing the test data sets and Dr. Roger Crawfis for useful
comments.

References

[1] B. Cabral and C. Leedom. Imaging vector fields using line
integral convolution. InProceedings of SIGGRAPH 93, pages
263–270. ACM SIGGRAPH, 1993.

[2] D. Stalling and H.-C. Hege. Fast and resolution independent
line integral convolution. InProceedings of SIGGRAPH 95,
pages 249–256. ACM SIGGRAPH, 1995.

[3] M. Zöckler, D. Stalling, and H.-C. Hege. Parallel line inte-
gral convolution. InProceedings of First Eurographics Work-
shop on Parallel Graphics and Visualisation, pages 111–128,
September 1996.

[4] M.-H. Kiu and D. Banks. Multi-frequency noise for LIC. In
Proceedings of Visualization ’96, pages 121–126. IEEE Com-
puter Society Press, Los Alamitos, CA, 1996.

[5] H.-W. Shen, C.R. Johnson, and K.-L. Ma. Visualizing vec-
tor fields using line integral convolution and dye advection.
In Proceedings of 1996 Symposium on Volume Visualization,
pages 63–70. IEEE Computer Society Press, Los Alamitos,
CA, 1996.

[6] V. Interrante and C. Grosch. Strategies for effectively visual-
izing 3d flow with volume lic. InProceedings of Visualiza-
tion ’97, pages 421–424. IEEE Computer Society Press, Los
Alamitos, CA, 1997.

[7] L.K. Forssell and S.D. Cohen. Using line integral convolu-
tion for flow visualization: Curvilinear grids, variable-speed
animation, and unsteady flows.IEEE Transactions on Visual-
ization and Computer Graphics, 1(2):133–141, 1995.

[8] A. Okada and D. L. Kao. Enhanced line integral convolu-
tion with flow feature detection. InProceedings of IS&T/SPIE
Electronic Imaging ’97, pages 206–217, 1997.

[9] H.-W. Shen and D.L Kao. A new line integral convolution al-
gorithm for visualizing time-varying flow fields.IEEE Trans-
actions on Visualization and Computer Graphics, 4(2), 1998.

[10] B. Heckel, G. Weber, B Hamann, and K. Joy. Construction of
vector field hierarchies. InProceedings of Visualization ’99,
pages 19–25. IEEE Computer Society Press, Los Alamitos,
CA, 1999.

[11] A. Telea and J. van Wijk. Simplified representation of vector
fields. InProceedings of Visualization ’99, pages 35–42. IEEE
Computer Society Press, Los Alamitos, CA, 1999.

[12] V.. Verma, D. Kao, and A. Pang. Plic: Bridging the gap be-
tween streamlines and lic. InProceedings of Visualization ’99,
pages 341–348. IEEE Computer Society Press, Los Alamitos,
CA, 1999.



Fig4. Streamline Translation, 
metric:curl, speedup:50.3%

Fig3. Streamline Translation, 
metric:curl, speedup:21.2%

Fig5. Streamline Translation, 
metric:distance, speedup:34.1%

Fig6. Streamline Translation, 
metric:distance, speedup:52.6%

Fig7. Pseudo LIC,
metric:curl, speedup:23.6%

Fig8. Pseudo LIC,
metric:curl, speedup:43.3%



Fig9. Pseudo LIC,
metric:distance, speedup:25.3%

Fig11. Original LIC algorithm
Time: 33.6s

Fig12. Magnitude of curl shown 
as a gray scale image

Fig13. Streamline distance error 
for the level 2x2

Fig14. Streamline distance error 
for the level 4x4

Fig10. Pseudo LIC,
metric:distance, speedup:47.5%


