
Interactive Exploration of Remote Isosurfaces with Point-Based
Non-Photorealistic Rendering

Guangfeng Ji∗, Han-Wei Shen†and Jinzhu Gao
Department of Computer Science and Engineering

The Ohio State University
Columbus, Ohio 43210

ABSTRACT

We present a non-photorealistic rendering technique for interactive
exploration of isosurfaces generated from remote volumetric data.
Instead of relying on the conventional smooth shading technique to
render the isosurfaces, a point-based technique is used to represent
and render the isosurfaces in a remote client-server environment.
The non-photorealistic nature of the proposed rendering method
enables the server to transmit only the essential surface features,
which substantially reduces the network traffic. The algorithm also
utilizes frame coherence and efficiently encodes the isosurface con-
figuration inside each voxel cell to further minimize the network
overhead. Finally, our algorithm can adjust the point distributions
using different illumination settings to adapt to different network
speeds.

Keywords: Point based rendering, non-photorealistic rendering,
visibility, remote visualization

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques

1 INTRODUCTION

Although an increasing number of visualization tasks can be pro-
cessed on today’s low cost desktop or portable computers, those
machines are limited by their smaller memory and disk space, and
relatively slower processor speed. For this reason, visualization of
large scale data sets is still heavily relying on high-end graphics
workstations. Unfortunately, not everyone can access those ma-
chines conveniently. The need of high-end workstations also dis-
courages remote collaboration between researchers who live in ge-
ographically dispersed regions.

To overcome the limitations, researchers have proposed various
algorithms [5, 9, 4, 6] to facilitate remote data visualization. Re-
mote visualization typically involves visualization servers which
are responsible for retrieving data and computing visualization re-
sults, and visualization clients which share the load of visualization
computations and display the final images. Designing efficient re-
mote visualization algorithms for large scale data sets is challeng-
ing because the amount of information, including data, geometry,
or images, to be transmitted from the server to the client can be
quite large. As a result, the high network transmission cost often
becomes the processing bottleneck.

This paper presents an algorithm for interactive visualization
of isosurfaces in a remote client-server environment. Unlike the
conventional visualization methods which scan convert smooth or
flat shaded polygons to render the isosurfaces, we propose a non-

∗E-mail: ji.15@osu.edu. Now with Vital Images, Inc.
†E-mail: hwshen@cse.ohio-state.edu

photorealistic rendering (NPR) technique that can effectively con-
vey the shapes of the isosurface to the remote client without send-
ing a complete isosurface geometry from the server. In our algo-
rithm, the server computes the isosurface interactively, and extracts
important isosurface features such as silhouettes and illuminations
on the fly. The surface features are transmitted to the client in a
compact form. On the client site, based on the received informa-
tion, a point-based shading algorithm is used to produce a non-
photorealistic rendering of the remote isosurfaces. Our algorithm
can significantly reduce the communication overhead, and is highly
adaptable to different network speeds. Our method differs from
the conventional geometry compression and streaming approaches
for remote visualization in that the isosurfaces to be visualized are
not pre-generated. Instead, our focus is on dynamic exploration of
remote data where isosurfaces are computed, transmitted, and ren-
dered at an interactive speed.

The rest of the paper is organized as follows. In section 2, we
review different remote visualization strategies, as well as the use
of non-photorealistic rendering for scientific visualization. In sec-
tion 3, we describe our technique in detail, which includes the non-
photorealistic rendering of isosurfaces, and the implementation of
the NPR technique in a client-server environment. Section 4 shows
experimental results. Section 5 concludes this paper and provides
future research directions.

2 BACKGROUND

Generally speaking, existing remote visualization techniques can be
classified into three categories based on the nature of the network
messages. The first one is to have the server responsible for the en-
tire visualization computation and send only the final images to the
client for display [22]. The advantage of this approach is that the
remote message size is independent of the data set size, which is an
attractive feature for visualizing very large data sets. The drawback
of this approach, however, is that the client can not change the view
without having the server resend a new image even when the update
is very small. The second type of remote visualization techniques
is to send intermediate visualization objects such as isosurfaces or
particle traces to the client for rendering [1]. The advantage of this
approach is that the visualization objects can be rendered at an ar-
bitrary scales or viewing angles by the client without requiring any
communication. The main challenge for this type of techniques is
that the size of the visualization objects is dependent on the un-
derlying data size, so can be quite large. The third type of remote
visualization techniques is to transmit the raw or subsampled data
from the server to the client [6]. Compared to the first two types
of techniques, sending data requires fast networks since the size of
data to be visualized can be potentially very large.

Although not directly related to remote visualization, there has
been an increasing number of non-photorealistic techniques for sci-
entific visualization applications. Ebert and Rheingans applied var-
ious NPR techniques such as silhouette enhancement, tone shading,
and oriented fading to volume rendering and received very impres-
sive results [3]. Lu et.al. developed a direct volume illustration sys-



Figure 1: The examples show that a combination of simple tones and empty space can effectively illustrate the shapes of the objects. [8]

(a) (b)

Figure 2: Two images generated using different surface representations and rendering techniques (a) Using the standard Gouraud shading
technique (b) Using the proposed technique

tem that simulated traditional stipple drawing and applied several
feature enhancement techniques to render complex volume datasets
in a concise, meaningful, and illustrative manner [15]. Nguyen
et.al. proposed an interactive non-photorealistic rendering system
that performs feature extraction in both image and object space,
and the system performs a two-step rendering process to achieve
various styles [17]. Yuan and Chen [25] developed a framework
for illustrating surfaces in a volume without occluding or cluttering
each other, where surfaces are illustrated non-photorealistically by
drawing only feature lines, and embedded in volume renderings. In-
terrante [10] applied Line Integral Convolution following principle
line directions to illustrate the shapes of semi-transparent surfaces.
Kirby, Marmanis, and Laidlaw [11] utilized concepts from oil paint-
ing and applied brush strokes in layers to visualize multivariate data
for 2D incompressible flows. In this paper, we demonstrate that
non-photorealistic rendering can assist remote visualization. Our
method falls into the second category of the remote visualization
methods mentioned above, i.e., sending intermediate geometry to
the client. We use a point-based technique to illustrate important
surface features and show that it is possible to completely avoid
sending isosurface meshes across the network. As a result, the net-
work traffic is reduced significantly.

3 REMOTE NON-PHOTOREALISTIC RENDERING OF ISO-
SURFACES

Our work is motivated by the observation that in pen-and-ink or
pencil drawing artwork, the artist rarely needs to shade the entire
surface to convey its shape. Frequently, empty space is used to
depict highly illuminated regions, while darker tones are used for
areas that face away from the light. It is also not uncommon for the
artist to use only a small number of tones to distinguish different
illuminations. Figure 1 shows several sketch examples.

Images generated by the traditional computer graphics tech-
niques, on the other hand, show very different characteristics.
When Gouraud shading is used, for example, every pixel in the
surface projection area is shaded, and a complete surface geom-
etry is required. For remote isosurface visualization applications,
however, transmitting the geometry over the network can become a
major bottleneck. This is because the number of triangles computed
from the marching cubes algorithm [14] is often quite large. To re-
duce the size of the geometry, researchers have proposed various
approaches such as surface decimation [20] and view-dependent
methods [13, 18]. In general, surface decimation is mostly per-
formed at a post-processing step and thus is not suitable for dy-
namic isosurface exploration. View-dependent methods can reduce
the geometry size considerably. However, even the visible portion
of the isosurface can be still quite large.

Inspired by the idea of artistic sketching, this paper presents a
new approach for visualizing remote isosurfaces aiming to reduce
the communication overhead. Instead of transmitting surface ge-
ometry, the server computes the essential features such as silhou-
ettes and illuminations from the visible portion of the isosurface,
and transmits a compact form of those information to the client.
A NPR technique is used by the client to reconstruct and render
the surface, and generate images resembling point stippling. The
client is allowed to select arbitrary isosurfaces dynamically, and
receives interactive feedback from the server. The client can also
freely zoom in and out the isosurfaces without incurring any net-
work traffic. When the view changes, the server only needs to pro-
vide differential information for the client to update the rendering.
Compared to transmitting a complete or visible portion of the iso-
surface geometry, our algorithm can reduce the network traffic sig-
nificantly when visualizing remote isosurfaces. Figure 2 compares
the Gouraud shading image of an isosurface (Figure 2(a)) with the



image generated by our NPR technique (Figure 2(b)).
In the following, we describe our algorithm in detail. We first

describe the technique that is used to produce non-photorealistic
rendering of isosurfaces. We then discuss the client-server remote
visualization algorithm.

3.1 Non-Photorealistic Rendering of Isosurfaces

Two of the most important visual cues to convey the shape of a sur-
face are silhouettes and shading. Silhouettes are used to depict the
surface outlines, while shading provides cues to depict the surface
orientations. For a polygonal mesh, silhouettes are edges that are
shared by back faces and front faces. For parametric surfaces,sil-
houettes consist of the points whose normals are perpendicular to
the eye direction. That is,

ni .(xi −C) = 0 (1)

whereni is the normal of the surface point,xi is the position of the
point, andC is the camera center. To compute silhouettes for an
isosurface, finding edges that are shared by front and back faces
is difficult. This is because edge-face adjacency information is not
readily available for isosurfaces generated by the marching cubes
algorithm [14]. We compute silhouettes for an isosurface by first
identifying silhouette triangles. This is done by evaluating equa-
tion 1 for each of the three vertices of an isosurface triangle and
checking their signs. The normalni for each vertex is the gradient
computed from the volume data. If all three vertices have the same
sign, which means all three vertices lie in a front face or a back
face, the triangle contains no silhouette. Otherwise, the triangle is
a silhouette triangle and the silhouette line can be computed with
linear interpolations to find the two end points on the triangle edges
that have zero dot product value.

Shading is typically illustrated using different tone colors.
Artists often convey various tones with strokes of different densi-
ties or by varying the pressure of the pencil point. Unlike most of
the NPR techniques which use strokes or precomputed textures to
display different tones [24, 19, 12], we use a point-based shading
algorithm to avoid sending the triangular meshes over the network.

In our point-based shading algorithm, points with different den-
sities convey different tones over a surface. Tone refers to the
amount of visible light reflected toward the observer from a given
area on the surface. Thus, the density of points over a given area
should be inversely proportional to the illumination intensity of the
area, that is, areas that are highly illuminated should display less
points while areas in dark should display more points. Further-
more, point density should not change abruptly across the whole
surface. It should vary gradually from the maximum density in the
darkest area to zero density in the highlight area. Notice any illu-
mination model can be used to calculate the tone over a surface. In
our algorithm, we adopt the Phong illumination model.

The following formulas are used to implement the above idea:

Coe f f= ((Threshold−Tone)/Threshold)Power (2)

NumPoints= Area×Coe f f (3)

whereTone, NumPointsandArea are the tone, number of points
and the screen projection size of a given area, respectively.Power
controls how fast the point density varies across the surface areas
with different tones. The biggerPower is, the quicker the points
drop from the maximum density in the zero tone area to zero density
in the highly illuminated area.Thresholdis a user specified shading
threshold. If the tone of a given area is greater thanThreshold, the
area is considered as highly illuminated and therefore no points will
be assigned. This corresponds to the empty space in the sketches
shown in Figure 1. In our remote visualization algorithm, we use
Thresholdto control the network traffic. WhenThresholdis small,

(a) (b)

Figure 4: Hipip images to show the effect of different shading power
(a) power=1.0; (b) power=2.0

(a) (b)

Figure 5: Delta wing images to show the adaptive change of point
density when the user zooms in or out

a larger area of surface will receive zero point. For those regions,
the server does not need to send any information to the client. This
can effectively reduce the amount of information required to rep-
resent the surface. Figure 3 shows the effect of different shading
thresholds in our point-based rendering algorithm. Figure 4 illus-
trates the effect of using different values forPower.

The point density should also be proportional to the screen pro-
jection size of the surface. It should increase when the user zooms
in and decrease when zooming out. Figure 5 illustrates how point
density varies when the user zooms in and out.

3.2 Remote Visualization of NPR Isosurfaces
In this section, we describe in detail the remote algorithm that im-
plements the above non-photorealistic rendering technique. We first
provide an overview of the remote method. We then elaborate the
important components of our algorithm in details.

3.2.1 Remote Algorithm Overview

Our assumption is that only the server has a direct access to the
data set since it is too large to be transmitted over the network. It
is therefore the server’s responsibility to provide the client with the
information necessary to produce a non-photorealistic rendering of
isosurfaces. Specifically, the tasks that the server has to perform
include:

• Extract the isosurfaces: We assume that the server has
enough computation power to extract isosurfaces at an inter-
active rate. Many efficient algorithms [2, 21, 23] can be used
to accomplish this goal. In our implementation, we use a sim-
ple Branch-On-Need Octree[23] to compute the isosurfaces.

• Extract silhouettes: This operation is performed on a per
view basis. In essence, the server will go through each iso-
surface triangle to evaluate equation 1 to detect triangles that



(a) (b) (c)

Figure 3: Hipip images to show the effect of different shading threshold (a) threshold=0.3; (b) threshold=0.6; (c) threshold=0.9

contain silhouettes. We assume that the gradients of the vol-
ume are pre-computed, and thus vertex normals of the isosur-
face triangles can be quickly computed by interpolation.

• Compute the point density for surface tones: This is
achieved by evaluating equation 2 and equation 3 to deter-
mine the number of points to be drawn within each isosurface
triangle. If a triangle is highly illuminated and thus does not
receive any points, the server can completely discard the tri-
angle and does not send any information about the triangle to
the client.

• Compute the visibility of the surface features: Visibility
test plays a crucial role in our algorithm for two reasons: First,
in order to minimize the communication cost, we do not want
to send the surface features (silhouettes, surface tones) that are
not visible to the client. Second, since the highly illuminated
triangles in the visible isosurface are not available, the client
cannot perform a complete visibility test using graphics hard-
ware to occlude invisible features. Therefore, the visibility
test needs to be performed by the server.

• View-dependent updates: If we assume parallel light sources
positioned at infinity and ignore the specular illumina-
tion component, theCoe f f in equation 2 is then view-
independent, which implies that onceCoe f f of a surface is
computed, it can be reused from frame to frame when the sur-
face is transformed. This allows us to utilize frame coherence.
More specifically, when the view of the client is changed, the
server only needs to inform the client the shading information
for the newly visible surfaces, and the IDs of those surfaces
that become invisible. The client can then quickly update the
rendering.

The actual non-photorealistic rendering of isosurfaces is per-
formed by the client. At each view, the server updates the clients
with new silhouette and shading information. To render the sur-
faces, the client needs to have the following information:

• Positions of visible silhouettes

• Positions of visible surfaces

• Coe f f for each visible surface

After getting all the necessary information, the client then draws
silhouettes, calculatesNumPointsinside each visible surface and
stochastically generates and renders points for all the surfaces. A
brute-force way to provide the client with those information is to
have the server send the exact silhouettes and visible surfaces posi-
tions andCoe f f of each visible surface across the network. How-
ever, the message size can be very large since every point position
requires three floats (12 bytes for most of the hardware platforms)
and so does theCoe f f of each surface. In the following, we de-
scribe the optimization technique used to address this problem.

3.2.2 Communication Optimization

Shading Points: One way to inform the client of the shading infor-
mation is to have the server send the precise positions of shading
points to the client. But this will incur very high communication
overhead. We adopt a better approach, which is to have the client
compute the point positions autonomously. To allow this, the client
needs to know the positions of the triangles that will receive shad-
ing points, and their tone coefficients computed by equation 2. For
the triangle positions, since the underlying isosurface is produced
by the marching cubes algorithm, they can be predicted if the IDs
of the voxel cells containing the triangles and the corresponding
marching cubes geometry cases are known. To avoid sending the
vertex offsets along the isosurface cell edges, we can approximate
the triangle vertex positions by the center points of the edges [16].
Based on this idea, in our algorithm the server sends only the iso-
surface cell ids (4 bytes each), the corresponding marching cubes
case numbers (1 byte each) to specify the triangle positions. We
quantize the tones of the triangles within each isosurface cell into
two bytes in total. Using the cell id, the client can quickly compute
the cell location, and then uses the marching cubes case number to
perform a quick table lookup to determine the triangle positions.
The client then computes the number of points inside each triangle
using equation 2 and equation 3, and stochastically generates and
renders the points within each triangle.

It is noteworthy that although the positions of the isosurface tri-
angles available to the client are only approximation, we are able
to achieve a smooth shading effect because accurate vertex normals
are used by the server to evaluate the triangle’s tone. Just like in
bump mapping, the normal, and thus the illumination, has a much
larger effect to the perception of geometry shape than the actual ver-
tex position. Figure 6 compares the effects of the NPR rendering
using the approximate and the exact isosurface geometry.

Silhouettes: Silhouettes can also consume a large amount of net-



(a) (b)

Figure 6: Brain examples to show that the image generated by approximate isosurface geometry is similar to that by exact isosurface geometry
(a) approximate isosurface geometry (b) exact isosurface geometry

work bandwidth. This is because each silhouette line consists of
two end points, and each point requires three floats (12 bytes in
most of hardware platforms) worth of data. To reduce the commu-
nication cost, the client approximates the silhouette lines by placing
a high number of points inside the silhouette triangle. With this ap-
proximation, for each silhouette line, the server only needs to pass
the cell id that contains the silhouettes (4 bytes), the marching cubes
case number (1 byte), and silhouette triangle index (1 byte) to the
client. Here the triangle index is a unique index assigned to each of
the triangles in each marching cube case.

Bucketization: To further reduce the communication cost, the
server sends the silhouettes or point shaded cells in different batches
based on the marching cubes case number. That is, the server buck-
etizes the cells based on the marching cubes case number so that
all the cells of the same case are sent at the same time to save one
byte per cell. We note that without applying any data compression
techniques, the total amount of message is already much smaller
compared to sending the triangle vertices or silhouette lines to the
client. We anticipate that the message size can be further reduced
by applying existing compression techniques.

3.2.3 Visibility Determination

As mentioned previously, visibility plays a crucial role in our
algorithm because the server only sends the visible cells that
contain silhouettes or shading points to the clients. We have
implemented two methods in our algorithm to determine the
visibility of isosurfaces:

Progressive Visibility Culling
Progressive visibility culling extracts only the visible part of the

isosurfaces and saves the isosurface extraction time. The algorithm
performs a progressive visibility culling method similar to [7] on
the server to cull away most of the invisible isosurface triangles,
and perform a two-pass rendering on the client to perform further
visibility culling to ensure the rendering correctness. In this section,
we describe the main idea of our algorithm. Implementation details
about the progressive visibility culling algorithm can be found in
[7].

In our algorithm, an octree data structure is used for a front-
to-back depth order traversal. Hereafter we use the termisosur-
face blocksto refer to the octree leave nodes that contain isosurface
patches, andvisible isosurface blocksto refer to the nodes that are
not completely occluded by the isosurface patches extracted from

other nodes. The main idea of our algorithm is to first use the oc-
tree nodes’ bounding boxes to roughly estimate the visibility of the
isosurface blocks, and then use the actual isosurface extracted pro-
gressively to perform a more accurate culling. Specifically, our iso-
surface visibility culling algorithm is based on the following two
principles:

(1) An isosurface block can be safely culled away if its bounding
box is occluded by the already extracted isosurface.

(2) An isosurface block is visible if its bounding box is not oc-
cluded by either other isosurface blocks’ bounding boxes, or
the already extracted isosurface.

Obviously, it is impossible to cull away any isosurface blocks with-
out first extracting some portion of the isosurface patches. To solve
this problem, we devise an algorithm to cull away the invisible iso-
surface blocks in multiple passes. In each pass, the bounding box of
each isosurface block that has not been culled is projected onto the
screen, and the visibility of the block is decided based on whether
the projection area has already been occupied by the previously ren-
dered surface patches or bounding boxes. If the projection area
of the bounding box is completely behind the previously extracted
surface, we can discard this block according to the first principle
mentioned above. If some of the pixels in the bounding box pro-
jection area are visible, based on the second principle, this block
is a visible block. We should extract the isosurface patches within
the block. For the blocks that do not satisfy either conditions, we
defer the decision of visibility to the next pass. We repeat the pro-
cess progressively until no isosurface blocks are left. To speed up
the visibility determination, we use graphics hardware on the server
machine to perform all the cell projection and rendering for the best
performance.

The visibility determination is done at the block level. If a block
contains more than one voxel, triangles inside a visible isosurface
block can still be invisible. To ensure a correct rendering result,
the client needs to performs a two pass rendering. In the first pass,
the OpenGL depth test is enabled, and the approximate triangles
are rendered. We mask the frame buffer so that the rendering result
will not be seen. In the second pass, we use the depth buffer result
from the first pass, and render the silhouettes and shading points.
In this way, all the points that are occluded by the visible triangles
will not be seen in the final image. Since the number of triangles to
be rendered by the client is relatively small, our experiments show



Shading
threshold 0.9 0.7 0.5 0.3 0.1
Silhouette 3556 3556 3556 3556 3556
Shading 5238 3431 1802 1031 380

Empty cells 1522 998 549 314 129
Bits/face 1.72 1.33 0.99 0.82 0.68

Table 1: A list of message sizes(in bytes) when the shading threshold
decreases from 0.9 to 0.1 using the delta wing dataset with isovalue
0.94. The last row shows the average bits per face. The isosurface
contains 47781 triangles.

Shading
threshold 0.9 0.7 0.5 0.3 0.1
Silhouette 7767 7767 7767 7767 7767
Shading 12843 10822 6656 3364 1255

Empty cells 3075 2632 1674 855 335
Bits/face 1.03 0.92 0.70 0.52 0.41

Table 2: A list of message sizes(in bytes) when the shading threshold
decreases from 0.9 to 0.1 using the small brain dataset with isovalue
30. The last row shows the average bits per face. The isosurface
contains 184580 triangles.

that the two pass rendering does not slow down the client speed.

Visibility Determination by OpenGL
Visibility can also be determined by using OpenGL back buffer.

This is done by having the server extract isosurfaces and render
them into the back buffer, with the triangle color encoded uniquely
by the triangle ID. The visibility of each triangle can then be re-
trieved immediately from colors in the back buffer.

During our implementation, we noticed that if the data set is not
very large, the overhead of progressive visibility culling can be no-
ticeable. In this case the simple OpenGL visibility determination
algorithm performs better.

4 RESULTS AND DISCUSSION

We have tested our remote isosurface visualization algorithm using
three data sets, a 111×126×51 delta wing data set, a 128×128×
72 small UNC brain data set, and a 256×256×145 big UNC brain
data set. The server is a 2.0GHz Pentium IV PC with an NVIDIA
Quadro2 Pro graphics card and 1.0GB memory, and the client is a
1.4GHz Pentium IV PC with a GeForce4 Ti 4600 graphics card and
768MB memory. The network connection between the client and
server is a 10Mbps Ethernet.

Table 1, Table 2 and Table 3 show the effect of different shading
thresholds to the network message size for the delta wing, small
UNC brain and big UNC brain data sets respectively. Shown in
these tables are the size of silhouette message (Silhouette), incre-
mental shading message (Shading) which carries shading informa-
tion for the newly visible non-empty cells, and incremental empty
cell ID message (Empty cells) which informs the client of which
cells become invisible. The average bits per face information,
which is calculated by the total size of all three types of message
divided by the number of triangles contained in the isosurfaces, is
also shown. We gathered the results using an automatic script which
followed the following procedure. First the isosurfaces were rotated
around Y axis by five degrees at each frame. After the isosurfaces
had been rotated 360 degrees and returned to the original position,
they were then rotated around X axis with the same constant rate
and stopped at 360 degrees. The message sizes shown in the tables
are the average size for all the frames. Note that we did not perform

Shading
threshold 0.9 0.7 0.5 0.3 0.1
Silhouette 18160 18160 18160 18160 18160
Shading 99727 77933 43695 20683 7075

Empty cells 23446 19428 11784 5588 2104
Bits/face 1.01 0.83 0.53 0.32 0.20

Table 3: A list of message sizes(in bytes) when the shading threshold
decreases from 0.9 to 0.1 using the big brain dataset with isovalue
30. The last row shows the average bits per face. The isosurface
contains 1116870 triangles.

Figure 7: The effect of shading threshold on the message size(in
bytes) using delta wing and small UNC brain datasets

zooming since it can be processed by the client locally without in-
curring any network traffic. Figure 7 and Figure 8 plot the effect
of different shading thresholds on the message size. As discussed
previously, we use the shading threshold to control the illumina-
tion. When the shading threshold decreases, the area occupied by
the highly illuminated regions (empty space) grows, and thus the
message size decreases. The average bits per face also decreases
as the shading threshold decreases. It can be seen that less than 1
bit per triangle is needed to transmit the isosurfaces over the net-
work. Figure 9 shows the small UNC brain images using shading
threshold 0.7, 0.5 and 0.3 respectively.

Table 4 and Table 5 show the message sizes at different rota-
tion rates. We show the results for 180, 60, 30, 10 and 1 rota-
tion degrees between two consecutive frames. This is to test how
the frame coherence can affect the network traffic. It can be seen
that the size of silhouette messages almost stays constant, due to its
view dependent characteristic while the size of shading and empty-
cells messages decreases when more frame coherence exists, i.e.,
smaller incremental rotation angle is used, since the smaller the ro-
tation angle is, the less previous invisible triangles become visible
and visible triangles become invisible.

Our algorithm allows the client to freely zoom-in, zoom-out and
translate the transmitted NPR isosurfaces without the need to com-
municate with the server. Under such circumstances, the client can
adaptively adjust the point density according to the screen projec-
tion size of each triangle using equation 3. The computation of the
point density for each triangle and the point rendering speed are
all very fast. For instance, we can achieve more than 40 frames
per second (fps) for the big UNC brain, more than 50 fps for the
small UNC Brain dataset, and more than 100 fps for the Delta Wing
dataset.



(a) (b) (c)

Figure 9: Small UNC brain images with different shading threshold (a) threshold=0.7; (b) threshold=0.5; (c) threshold=0.3

Figure 8: The effect of shading threshold on the message size(in
bytes) using big UNC brain dataset

In our testing client-server remote visualization environment, we
can achieve 2 fps for the big UNC brain data set, 4 fps for the small
brain data set, and 5 fps for the data wing data set when the client
requests arbitrary isosurfaces. The network delay is still noticeable,
although it is much faster than sending the entire visible portion of
isosurface triangles.

5 CONCLUSION AND FUTURE WORK

This paper presents a non-photorealistic rendering technique for re-
mote visualization of isosurfaces. Unlike the conventional visual-
ization methods which scan convert smooth or flat shaded polygons
to render isosurfaces, we propose a point-based rendering tech-
nique which can significantly reduces the network traffic between
the client and the server. The server extracts important isosurface
features such as surface silhouettes and illuminations, and transmits
only a minimum amount of information to convey those features to
the client. On the client site, based on the information received, a
point-based shading system is used to produce non-photorealistic
rendering that resembles point stippling of the isosurface. Our al-
gorithm can significantly reduce the communication cost required
to visualize remote isosurfaces, and is highly adaptable to the net-
work speed. When the network speed becomes slow, our algorithm

Rotation
degree 180 60 30 10 1

Silhouette 13246 17235 17506 17843 18636
Shading 111994 107276 98893 82232 68117

Empty cells 52000 46582 34707 22147 14692

Table 4: This table shows the message size(in bytes) when the iso-
surface of the big UNC brain rotated with different incremental de-
gree. The slower it rotated, the more the frame coherence it had.

Rotation
degree 180 60 30 10 1

Silhouette 7680 7821 7553 7646 8215
Shading 47275 35627 23738 13738 8407

Empty cells 22175 15885 9296 3993 1610

Table 5: This table shows the message size (in bytes) when the iso-
surface of the small UNC brain rotated with different incremental de-
gree. The slower it rotated, the more the frame coherence it had.

can reduce the amount of data to be transmitted by changing the
shading threshold without significantly affecting the quality of vi-
sualization.

Future work includes investigating the use of various compres-
sion techniques to reduce the network message size even further,
since network delay is still noticeable in our experiments. We will
also investigate combining our NPR technique with mesh simpli-
fication algorithms so that higher message reduction rate can be
achieved. Finally, we will experiment with other NPR rendering
techniques to visualize isosurfaces.

REFERENCES

[1] VRML 97, international specification iso/iec is 14772-1. 1997.
[2] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speed-

ing up isosurface extraction using interval trees.IEEE Transactions
on Visualization and Computer Graphics, 3(2):158–170, 1997.

[3] D. Ebert and P. Rheingans. Volume illustration: Non-photorealistic
rendering of volume models. InProceedings of Visualization ’2000,
pages 1951–202. IEEE Computer Society Press, Los Alamitos, CA,
2000.



[4] K. Engel and T. Ertl. A texture-based volume visualization for mul-
tiple users on the world wide web. InProceedings of Eurographics
Workshop on Virtual Environment 1999, 1999.

[5] K. Engel, O. Sommer, and T. Ertl. A framework for interactivehard-
ware accelerated remote 3d-visualization. InProceedings of Vissym
2000, 2000.

[6] L. Freitag and R. Loy. Comparison of remote visualization strategies
for interactive exploration of large data sets. InProceedings of IPDPS
2001, 2001.

[7] J. Gao, H.W. Shen, and A. Garcia. Parallel view dependentisosurface
extraction for large scale data visualization. InProceedings of the
Tenth SIAM Conference on Parallel Processing for ScientificComput-
ing 2001. SIAM Activity Group on Supercomputing, 2001.

[8] J. Hamm. Drawing scenery: Landscapes and seascapes. 1982.
[9] O. Hendin, N. John, and O. Shochet. Medical volume rendering on

the www using vrml and java. InProceedings of MMVR’97, 1997.
[10] V. Interrante. Illustrating surface shape in volume data via principle

direction-driven 3d line integral convolution. InProceedings of SIG-
GRAPH 97, pages 109–116. ACM SIGGRAPH, 1997.

[11] R. Kirby, H. Marmanis, and D. Laidlaw. Visualizing multivalued data
from 2d incompressible flows using concepts from painting. InPro-
ceedings of Visualization ’2000, pages 333–340. IEEE Computer So-
ciety Press, Los Alamitos, CA, 2000.

[12] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Stylized render-
ing techniques for scalable real-time 3d animation. InProceedings of
NPAR 2000, pages 13–20, 2000.

[13] Y. Livnat and C. Hansen. View dependent isosurface extraction. In
Proceedings of Visualization ’98, pages 175–180. IEEE Computer So-
ciety Press, Los Alamitos, CA, 1998.

[14] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm.Computer Graphics, 21(4):163–169,
July 1987.

[15] A. Lu, C.J. Morris, D.S. Ebert, P. Rheingans, and C.D. Hansen. Non-
photorealistic volume rendering using stippling techniques. In Pro-
ceedings of IEEE Visualization 2002, pages 211–218, 2002.

[16] C. Montani, R. Scateni, and R. Scopigno. Discretized marching cubes.
In Proceedings of Visualization ’94, pages 281–287. IEEE Computer
Society Press, Los Alamitos, CA, 1994.

[17] M.X. Nguyen, H. Xu, X. Yuan, and B. Chen. Inspire: An interactive
image assisted non-photorealistic rendering system. InProceedings
of the Pacific Conference of Graphics and Applications 2003, pages
472–476, 2003.

[18] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. Interactive
ray tracing for isosurface rendering. InProceedings of Visualization
’98, pages 233–238. IEEE Computer Society Press, Los Alamitos,
CA, 1998.

[19] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatching.
In Proceedings of SIGGRAPH 2001. ACM SIGGRAPH, 2001.

[20] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen. Decimation of trian-
gle meshes.Computer Graphics, 26(2):65–70, 1992.

[21] H.W Shen, C.D. Hansen, Y. Livnat, and C.R. Johnson. Isosurfacing
in span space with utmost efficiency (ISSUE). InProceedings of Vi-
sualization ’96, pages 287–294. IEEE Computer Society Press, Los
Alamitos, CA, 1996.

[22] D. Stredney. Interactive medical data on demand: A high-performance
image-based approach across heterogeneous environments. InPro-
ceedings of MMVR 2000. IOS Press, 2000.

[23] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface genera-
tion. ACM Transactions on Graphics, 11(3):201–227, 1992.

[24] G. Winkenbach and D.H. Salesin. Computer-generated pen-and-ink
illustration. InProceedings of SIGGRAPH 94, pages 91–100. ACM
SIGGRAPH, 1994.

[25] X. Yuan and B. Chen. Illustrating surfaces in volume. InProceedings
of Vissym 2004, pages 9–16, 337, 2004.


