
Efficient Rendering of Extrudable Curvilinear Volumes
Steven Martin∗

Ohio State University
Han-Wei Shen†

Ohio State University
Ravi Samtaney‡

Princeton Plasma Physics Laboratory

ABSTRACT

We present a technique for memory-efficient and time-efficient vol-
ume rendering of curvilinear adaptive mesh refinement data defined
within extrudable computational spaces. One of the main chal-
lenges in the ray casting of curvilinear volumes is that a linear view-
ing ray in physical space will typically correspond to a curved ray
in computational space. The proposed method utilizes a specialized
representation of curvilinear space that provides for the compact
representation of parameters for transformations between computa-
tional space and physical space, without requiring extensive prepro-
cessing. By simplifying the representation of computational space
positions using an extrusion of a profile surface, the requisite trans-
formations can be greatly simplified. Our implementation achieves
interactive rates with minimal load time and memory overhead us-
ing commodity graphics hardware with real-world data.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing

1 INTRODUCTION

Ray casting through curvilinear adaptive mesh refinement volumes
requires a large number of transformations between computational
and physical space. While this is trivial for rectilinear computa-
tional spaces, curvilinear computational spaces present additional
challenges. By exploiting the characteristics of a particular class of
curvilinear spaces, we enable volume rendering at interactive frame
rates with minimal preprocessing and memory overhead using com-
modity graphics hardware.

The core contribution of our technique is its representation of
a curvilinear space as an extrusion of a profile surface along a
curve, permitting memory and time-efficient transformations be-
tween physical space and computational space. Our technique ren-
ders the data in blocks, where each block is a curvilinear grid of
cells(for example, a block may be 64x64x64 cells). Blocks can
have different sampling resolutions, and information is passed to
the renderer to permit block hierarchies. The borders of each block
are rendered to the framebuffer using triangles with vertices speci-
fied in computational space. A vertex program is utilized to trans-
form the vertices from computational space to physical space such
that for a given computational space position in any given level, the
physical space position produced is consistent. Ray-casting is per-
formed within the fragment program for every fragment rendered,
stepping the ray simultaneously through both computational space
and physical space. The step size is found by computing intersec-
tions with cell boundaries in computational space then applying a
minimum step length constraint. The physical space step vector
is trivially determined by the direction from the camera origin to
the fragment position, and the computational space step vector is
found by applying a Jacobian matrix, which is easy to derive using

∗e-mail:martinst@cse.ohio-state.edu
†e-mail:hwshen@cse.ohio-state.edu
‡e-mail:samtaney@pppl.gov

our specialized representation, to the physical space step vector.
Several constraints were considered in the design of this method.
Memory-efficiency is of great importance to performance, both be-
cause of limited memory capacity and limited memory bandwidth.
Additionally, any representation of computational space must be
easily traversable without a significant loss in accuracy. Finally, the
inexpensive computational power available on GPUs today must be
exploited, despite its limitations, to be competitive with other tech-
niques.

As data sets from simulations become larger, memory efficiency
of rendering techniques becomes more important. Additionally, as
computational power becomes more densely packaged in devices
such as GPUs, the disparity between computation and memory
performance becomes greater, necessitating the use of techniques
which facilitate efficient cache utilization. Given these constraints,
direct rendering techniques for curvilinear data rather than tech-
niques that resample the data into rectilinear meshes or decompose
the data into tetrahedral meshes make more practical sense.

A potential application of curvilinear adaptive mesh refinement
volume rendering is exhibited in section 3. Section 4 describes
the proposed specialized computational space representation. Then,
section 5 provides details about the rendering process and volume
data structure and details about the ray casting algorithm are de-
scribed in section 5.1. Finally, results are examined examined in
section 6.

Figure 1: Sample volume renderings of data set 1. The left column
shows two views of one data component. The right column shows
two different AMR level ranges for a different component, with the
top image showing levels 0 through 1, the bottom image showing
just level 1.

2 RELATED WORK

Many methods exist for volume rendering of curvilinear data. Many
of them can be adapted to support adaptive mesh refinement data
sets, and some can be easily implemented such that they take advan-
tage of GPU capabilities. Four potential methods are resampling to
rectilinear space, decomposition of curvilinear data into unstruc-
tured tetrahedral data, direct cell projection, and direct ray casting.



A good survey of techniques for volume rendering is provided in
[5].

Techniques for volume rendering of rectilinear data are the most
well-developed and tend to be the most straightforward due to the
simplicity of the mesh. [9] presents a GPU ray casting implemen-
tation for rectilinear data. [11] proposes GPU data structures for
efficient volume rendering of rectilinear AMR data. [4] presents ac-
celeration structures for supporting empty space skipping and early
ray termination for GPU rendering of rectilinear data. Resampling
of the curvilinear data into a rectilinear mesh offers the obvious ad-
vantage of enabling these well-developed techniques at the cost of
introducing extra sampling error, increasing memory consumption,
and reducing potential performance due to memory bandwidth re-
quirements. Additionally, the level of preprocessing required may
be unacceptable for large time-varying datasets.

Decomposition of the curvilinear grid into an unstructured tetra-
hedral mesh is straightforward and enables the usage of the large
body of work on unstructured tetrahedral mesh rendering. [13] pro-
poses a point-based approach for rendering unstructured meshes.
[1] and [8] propose rendering techniques for tetrahedral elements.
[6] presents a technique for rendering unstructured grids using
graphics hardware-assisted incremental slicing. However, in this
process of decomposition, potentially useful data for accelerating
rendering may be lost and, if the decomposition is done as a pre-
processing step, excessive memory consumption may result. Addi-
tionally, unstructured tetrahedral meshes introduce additional chal-
lenges for the evaluation of depth-order-dependent transfer func-
tions.

Curvilinear direct cell projection offers the potential of avoid-
ing preprocessing and utilizing the curvilinear structure of the data
to accelerate sorting and rendering. However, direct cell projec-
tion requires a significant amount of non-localized overdraw which,
when implemented on modern GPUs, can reduce performance due
to memory bandwidth limitations. Additionally, implementation of
direct cell projection requires a significant amount of vertex data to
be manipulated, further increasing the required memory bandwidth
and vertex processing requirements for rendering.

Curvilinear direct ray casting offers the same potential as curvi-
linear direct cell projection for reduced preprocessing and data loss,
while being more adaptable for implementation on modern GPUs.
[12] presents a ray casting technique for direct curvilinear volume
rendering and compares it to resampling to a rectilinear mesh. [3]
and [2] present additional methods utilizing ray casting. [10] pro-
poses using textures for a transformation from physical space to
computational space. Our technique provides a compact represen-
tation of the mesh for transformations from physical space to com-
putational space as well as from computational space to physical
space while reducing the memory required for mesh specification
by 100 times or more. Sorting, for single block non-AMR data sets,
is implied and image quality can be smoothly changed to permit a
user-driven compromise between speed and quality.

3 APPLICATIONS

ITER (“The Way” in Latin), a joint international research and devel-
opment project that aims to demonstrate the scientific and technical
feasibility of fusion power, is now under construction at Cadarache,
France. Refueling of ITER is a practical necessity due to the burn-
ing plasma nature of the experiment, and longer pulse durations
(100 - 1000 seconds). An experimentally proven method of refu-
eling tokamaks is by pellet injection. Pellet injection is currently
seen as the most likely refueling technique for ITER. Thus it is
imperative that pellet injection phenomena be understood via simu-
lations before very expensive experiments are undertaken in ITER.
The emphasis of the present work is to understand the large-scale
macroscopic processes involved in the redistribution of mass into a
tokamak during pellet injection. In particular, it was experimentally

Figure 2: Sample renderings from data set 2. In clockwise direction
from the top left corner are AMR levels 0 through 4, 2 through 4, 3
through 4, and 4.

established that high-field-side (HFS, or inside) pellet lauches are
more effective than low-field-side (LFS or outside) pellet launches.
Arguably, such large scale processes are best understood using
magnetohydrodynamics (MHD) as the mathematical model.

There is a large disparity between the pellet size and device size.
Naive estimates indicate that the number of space-time points re-
quired to resolve the region around the pellet for simulation of
ITER-size parameters can exceed 1019. The large range of spatial
scales and the need to resolve the region around the pellet is some-
what mitigated by the use of Adaptive mesh refinement (AMR). Our
approach is to employ block structured hierarchical meshes using
the Chombo library for AMR developed by the APDEC SciDAC
Center at LBNL.

We use data from simulations performed with an adaptive up-
wind conservative mesh MHD code in generalized curvilinear co-
ordinates. A critical component is the modeling of the highly
anisotropic energy transfer from the background hot plasma to the
pellet ablation cloud via long mean-free-path electrons along mag-
netic field lines. Further details on the approach can be found in
[7].

A primary scientific question is establishing the MHD mech-
anisms responsible for the differences in HFS and LFS pellet
launches. Visualizations of the density field helps identify the ex-
tent of the migration of the ablated pellet mass along the magnetic
field lines and more importantly, the transport across magnetic flux
surfaces in the direction of increasing major radius. In particular
volume rendering of the density field is an effective method to vi-
sualize the global mass distribution in the tokamak during pellet
injection.

4 COMPUTATIONAL SPACE REPRESENTATION

Our technique supports rendering of volumes that can be repre-
sented via an extrusion of a planar profile surface along a curve to
create the physical space grid as a function of computational space.
For example, torus can be represented as planar radially sampled
circle extuded along another circle. A cylinder can be represented
by a radially sampled circle extruded along a line. The tokamak
shape used in the MHD simulation data presented in section 3 is
another potential application.

4.1 Positional transformations

Equation 1 transforms a point from computational space to physi-
cal space. This transformation is needed to derive the Jacobian, as
well as to compute the distance between a given point in physical



space and a point in physical space corresponding to a given point
in computational space.

q̄(i, j,k) = p̄(k)+ su(i, j)[n̂(k)× ŷ]+ sv(i, j)[ŷ] (1)

where

q̄(i, j,k) is the physical space 3D position of a point i, j,k in
computational space.

p̄(k) is a physical space position as a function of k in compu-
tational space that is the origin of each slice plane of the
extruded volume.

n̄(k) is a physical space unit vector as a function of k in computa-
tional space that represents the normal to each “slice” of the
extruded volume.

s̄(i, j) is the planar profile surface.

ȳ is the “up” vector of computational space. All points in p̄(k) lie
within a plane with ȳ as its normal.

The p(k), n(k), and s(i, j) can be either derived from a given
mesh, or user-specified separately. The p(k) and n(k) functions
are represented as one-dimensional sampled data, while s(i, j) is
represented as two-dimensional sampled data. If it is necessary to
derive these functions from a given mesh, the following process is
used:

1. Find p(k) as in equation 2. This is the mean of all given sam-
ple positions in physical space in slice k. It does not matter if
the point is in the exact center of slice, as it is just a reference
point that must lie in the plane of the slice.

2. Find n(k) via numerical methods. This is the normal to the
planar slice. Random triplets of sample points are chosen in
each slice, and two vectors(sharing one of the three points as
a common origin) formed for each triplet. A cross product is
applied on those vectors, the sign of the vector adjusted such
that it faces forward from the slice(using a simple forward or
backward difference reference vector), and the result accumu-
lated into an accumulator vector. The resulting per-slice ac-
cumulated vector is normalized, resulting in an accurate slice
normal.

3. Pick ȳ. All p(k) should lie within a plane with normal ȳ. In our
test data, ȳ was simply the y-axis. If ȳ is not known initially, it
can be found in a manner similarly to n(k), but using the p(k)
values instead of sample positions.

4. Find s(i, j). Any k slice within the volume can be picked to
form this function, and in practice k = 0 is used. A coordinate
system defined by p(k), ȳ and n(k) is defined at each slice,
and the sample points are projected onto the axes of that co-
ordinate system to find s(i, j) positions, as in equation 3.

While the computational to physical space transformation is very
straightforward to implement with this specialized representation,
the physical space to computational space transformation is not.
An analytical inverse to the above function is often impractical,
and producing a 3D sampled volume in physical space mapping
the positions to computational space would impart excessive mem-
ory requirements while potentially introducing inconsistencies at
the edges of the valid data. However, [10] did implement the physi-
cal space to computational space transformation using 3D textures.

Figure 3: Data set 2 volume block bounding wireframes. Each vertex
corresponds to a grid-centered position on the boundary. The wire-
frames demonstrate the curvature and non-uniform cell sizes of the
curvilinear space. Level 0 has 8 distinct blocks, level 1 has 24 distinct
blocks.

The proposed rendering algorithm requires only minor correc-
tions to computational space positions. Thus, Equation 1 can be
applied to find a distance between a given physical space point and a
physical space point corresponding to a given computational space
point which can then be used as a convergence test for a gradient
descent algorithm, obviating the need for a full physical space to
computational space transformation.

For each slice k = 0..Nk−1,

p(k) =
1

NiN j

Ni

∑
i=0

N j

∑
j=0

dphypos(i, j,k) (2)

where

¯Ni jk is the dimensionality of data function dphypos(i, j,k) in i, j,
and k directions

dphypos(i, j,k) is the physical space position of a given point in the
given data.

s(i, j) =
[
[n(k)× ȳ] · [dphypos(i, j,k)− p(k)]

ȳ · [dphypos(i, j,k)− p(k)]

]
(3)

4.2 Jacobian matrices
As a ray is stepped through physical space, a corresponding ray
must be stepped through computational space. Because computa-
tional space is curvilinear, a straight ray in physical space will, in
general, correspond to a curved ray in computational space. While
gradient descent could be applied with the computational space to
physical space transformation to compute corresponding computa-
tional space points, our representation of computational space po-
sitions permits the easy computation of Jacobian matrices to trans-
form physical space vectors to computational space vectors which
can be used to directly transform steps.

Though we need the inverse Jacobian matrix to transform a vec-
tor from physical space to computational space(J−1), that matrix is
hard to directly compute given our representation of computational
space. However, it is easy to compute J then invert that 3x3 matrix.

Equations 4, 5, and 6 form the i, j, and k columns(respectively)
of the Jacobian matrix J as in equation 8. The i and j columns
effectively are dealing with changes within a single slice, where as



Figure 4: Data set 1 volume block bounding wireframes. Each vertex
corresponds to a grid-centered position on the boundary. The left
column shows AMR levels 0 and 1, while the right column shows
AMR level 1. The wireframes demonstrate the curvature and non-
uniform cell sizes of the curvilinear space. Level 0 has 8 distinct
blocks, level 1 has 24 distinct blocks.

the k column deals with changes between multiple slices. Because
ŷ is constant in equation 6, equation 6 can be simplified to 7.

Jpci(i, j,k) = [n̂(k)× ŷ][
δ s(i, j)

δ i
]u + ŷ[

δ s(i, j)
δ i

]v (4)

Jpc j (i, j,k) = [n̂(k)× ŷ][
δ s(i, j)

δ j
]u + ŷ[

δ s(i, j)
δ j

]v (5)

Jpck (i, j,k) =
δ p(k)

δk
+ s(i, j)u

δ [n̂(k)× ŷ]
δk

+ s(i, j)v
δ ŷ
δk

(6)

Jpck (i, j,k) =
δ p(k)

δk
+ s(i, j)u

δ [n̂(k)× ŷ]
δk

(7)

J(i, j,k) =
[

Jpci Jpc j Jpck

]
(8)

J−1(i, j,k) = J(i, j,k)−1 (9)

Because the matrix is a full 3x3 matrix, a general determinant-
based matrix inversion is used to find J−1. Note that the input data
should have well-formed positions, with no two sample points in
computational space lying at the same physical space position, to
guarantee that this matrix is always invertible.

4.3 AMR integration
Adaptive mesh refinement is supported by defining, for a given level
of detail, axis-aligned cuboid regions in computational space that
are said to be owned by a lower level. This enables the ray caster
to easily determine whether a particular sample cell should be ac-
cumulated or not. Because consistency is required in the positional
transformations between levels, the p(k), n(k), and s(i, j) functions
must be defined in a way such that their domain contains the union
of all levels of detail. Because the resolution needs to be uniform
for each of the functions, p(k) and n(k) will need to be specified at
the lowest level of detail in the k direction, and s(i, j) needs to be
defined at the highest available level of detail.

5 RENDERING

The data is stored as a hierarchy of blocks, as can be seen in figures
4 and 3. Each block is an axis-aligned cuboid in computational
space with a 3D uniform grid of sample points. In physical space,

the blocks will tend to be curved as shown in the figures. Asso-
ciated with each block is a set of child blocks, which define their
bounds in computational space. Each one of these blocks can have
the currently selected data component of interest stored into a 3D
texture, with single-component voxels.

Rendering is performed recursively on a per-block basis. The
faces constituting the borders to the block are rendered in com-
putational space via two triangles for each grid centered boundary
cell, using a vertex program to evaluate the computational space
to physical-space transformation for the vertices, and a fragment
program to perform the ray casting. Back face culling eliminates
the rendering of faces not facing the viewer on a per-triangle rather
than per-block-side basis because the blocks may have significant
curvature in physical space. The physical space and approximate
computational space positions are passed to the fragment program,
providing starting points for the ray to be evaluated for every frag-
ment. Additionally, the bounds of child blocks are passed to the
fragment program as well to permit AMR rendering. The depth
buffer is used for tracking evaluated field values for maximum in-
tensity projection.

With this technique, only minimal preprocessing is required. The
following are some use cases and the required processing for each:

Initial load: The textures for the p(k), n(k), s(i, j), δ p(k)
δk , δn(k)

δk ,
δ s(i, j)

δ i , and δ s(i, j)
δ j functions need to be created. If these func-

tions are not already specified as part of the source data, they
will require one full iteration through all data points at the
lowest level of detail, and one full iteration through a single
slice of the data points at the highest level of detail. Addition-
ally, the texture that contains the field data for the currently
selected component needs to be created.

Different data component selected: The single component 3D
texture that contains the field data for each block needs to be
reloaded with the new component.

Data modified, positions left intact: The single component 3D
texture that contains the field data for each block needs to be
reloaded with the new component.

Camera/view change: No re-preprocessing needs to be per-
formed – the scene can simply be re-rendered.

Changing mesh: If the volume data positions are changed in a
way that cannot be represented with a simple affine trans-
formation, but the volume data is not, the p(k), n(k), s(i, j),
δ p(k)

δk , δn(k)
δk , δ s(i, j)

δ i , and δ s(i, j)
δ j functions need to be rebuilt.

However, the 3D volume textures storing the field data do not
need to be modified if that field data is not modified.

The majority of time during rendering is spent executing the
fragment programs that perform ray casting. This creates potential
for effective image-space parallelization.

5.1 Ray Casting
Ray casting is performed for every fragment generated by the bor-
der triangle rasterization. Each of those fragments has associated
physical space and approximate computational space positions in-
terpolated between the vertices by the rasterizer that form the start-
ing point for a ray within a given block. Each fragment program
execution performs ray casting for a single ray through a block.

1. Compute the block-local computational space position.

ploccom =
pcom− pblkmin

pblkmax− pblkmin



Figure 5: Volume renderings for different minimum step lengths. Each row from left to right show step lengths 0.001,0.005,0.010,0.050,and
0.100. The top row shows data set 2 and the bottom row shows data set 1. A larger minimum step length decreases required computational
time while increasing error.

2. Compute the global unscaled computational space step using
the Jacobian.

vcomstep = J−1vphystep

3. Compute the block-local computational space unscaled step.

vloccomstep =
vcomstep

pblkmax− pblkmin

4. Compute the scaled computational space and physical space
steps(section 5.3)

5. Check whether the the computational space position of the
ray lies within a child volume. If it does not, sample the
field texture and accumulate the field texture using a maxi-
mum intensity projection rule. A simple list of volumes that
are axis aligned cuboids in computational space, each defined
by a minimum and maximum point, defines the child volumes
to a given block.

6. Increment the computational space and physical space posi-
tion vectors by the scaled steps

7. Compute the block-local computational space position

8. Apply the correction(section 5.2) loop to the computational
space position.

9. Check if that position is within the bounds of the block. If it is
not, terminate the ray loop and write the resulting color value
and maximum field value to the fragment program color and
depth results respectively.

10. Goto 2

5.2 Correction loop
Because the current computational space position was computed
using a linear approximation(the Jacobian) of the step in compu-
tational space for the step in physical space, an error is inherent
in it. The correction loop corrects this error by iteratively trans-
forming the reverse error vectors in physical space to computa-
tional space then accumulating them with the current computational
space position. This is very similar to applying gradient descent for
minimization of the distance between a given physical space point
and a physical space point that corresponds to a varying compu-
tational space position, except the gradient is not being computed
numerically in computational space, reducing the number of texture
fetches required.

1. Transform the current computational space position(pcom) in
to a physical space position(ptruephy, the current “true” physi-
cal space position), using equation 1.

2. Compute the physical space correction vector using the cur-
rent physical space position and the current “true” physical
space position.

vphycor = ptruephy− pphy

3. If the magnitude of vphycor is below a specified tolerance,
break from the correction loop.

4. Transform the physical space correction vector into a compu-
tational space correction vector using the Jacobian.

vcomcor = J−1vphycor

5. Accumulate the computational space correction vector vcomcor
with the current computational space position pcom. A scaling
factor(γ) is applied to the correction vector to improve the rate
of convergence.

To improve performance for previewing of volumes, a hard iteration
limit can be applied to this correction loop. This will have some
implications in accuracy, but for the purposes of previewing may
be acceptable.

5.3 Step length determination
While a uniform step length can be used successfully, variable step
lengths can provide for greater performance. With curvilinear data,
cells may vary in size greatly, so the proper step size through the
data should also vary. Our technique computes the approximate in-
tersection points in computational space with the borders of a given
cell to find the necessary step to the next cell. Performing the in-
tersection in computational space greatly simplifies the operation,
because the cells unit cubes in rectilinear space rather than six-faced
curved volumes in physical space.

1. Compute the cell ceiling and floor for that step using equa-
tions. These are needed to find the intersection with neigh-
boring cells.

pcomcellceil =

 dNi ploccomie
dN j ploccom je
dNk ploccomke


pcomcellfloor =

 bNi ploccomic
bN j ploccom jc
bNk ploccomkc





2. Compute the intersection with the neighboring cells in com-
putational space to find the proper step size using the compu-
tational space step vector, pcomcellceil, and pcomcellfloor. This is
done by computing the intersection with each face plane with
the vcomstep, then using the intersection lowest positive inter-
section parameter. Some special cases must be handled with
the intersections. If a ray is traveling parallel to or even within
a given face, intersections should not be computed against that
face. Also, if a ray intersection with a face would result in a
time parameter of zero, the ray should not be intersected with
that face. Additionally, a scaling factor greater than but close
to 1 needs to be applied to the resulting intersection time to
reduce the likelihood that an intersection point will lie exactly
on a face.

3. Apply the minimum step length constraint to the intersection
parameter. If the intersection parameter is less than the mini-
mum step length, then it it is set to the minimum step length.
This is to permit user configurability of quality.

4. Using that intersection parameter, scale the computational
space and physical space step vectors(vcomstep and vphystep
into their scaled forms.

In practice, it was found that the linear approximation to a ray
within a given cell did not introduce noticeable error. A future ex-
tension to this step length determination method could set a max-
imum step length that is a function of the curvature of the space
in that cell to reduce the amount of error. Additionally, because
the step length is chosen based on cell boundary intersections, only
a test for whether the origin of a given ray step is within a child
volume is required to support adaptive mesh refinement.

5.4 GPU implementation
Block boundaries are rasterized with OpenGL using GLSL vertex
and fragment programs. The depth buffer is used for compositing
the different blocks with maximum intensity projection. Equations
1, 8, and 9 are implemented within fragment and vertex programs.
In total, 6 small textures are used to represent the parameters for
defining the transformations between computational and physical
space, and the volume samples for each block are stored in a 3D
volume texture. Each block has an associated list of child block
bounding regions in computational space which is passed to the
vertex and fragment programs.

The positional functions p(k), n(k), and s(i, j) can each be de-
fined by a texture. p(k) is a one-dimensional texture with resolution
Nk and 3 components per texel. n(k) is a one-dimensional texture
with resolution Nk and 3 components per texel. It is possible to re-
duce n(k) to two-components per texel given that n(k) is a unit vec-
tor, but on current graphics hardware this would not yield any per-
formance improvement because the memory requirements wouldn’t
be significantly changed, yet additional computation would be re-
quired to renormalize the values. s(i, j) is a two-dimensional tex-
ture with resolution Ni x N j, with two components per texel.

While the derivatives for the Jacobian matrices can be derived
within the fragment program, a significant performance penalty was
found to be incurred by the required number of texture fetches
and conditionals required for handling boundary cases. Instead,
the derivatives are sampled and stored in textures. The derivatives
δ p(k)

δk and δn(k)
δk are each stored in their own one-dimensional, three-

component textures. δ s(i, j)
δ i and δ s(i, j)

δ j are combined into a single
two-dimensional, four-component texture. These textures can be
built directly from the p(k), n(k), and s(i, j) textures.

6 RESULTS

Two data sets were used for testing, both from the context of MHD
simulations as discussed in section 3. Both data sets are curvilinear,

Table 1: Set 1 blocks

Space dimensions 128x128x128
Total samples 819200

Level 0 Blocks 8x(32x32x32)
Level 1 Blocks 8x(32x32x32)

8x(16x32x32)
8x(20x32x32)

Table 2: Set 2 blocks

Space dimensions 512x512x512
Total samples 189440

Level 0 Blocks 1x(32x32x32)
Level 1 Blocks 1x(24x24x24)
Level 2 Blocks 1x(24x24x24)
Level 3 Blocks 1x(36x32x32)
Level 4 Blocks 1x(48x40x48)

Table 3: Data set memory requirements

Set 1 Set 2
Data Component(L) Voxels 906048 205921

Profile(UV) Texels 4225 1089
Curve/Normal(XYZ) Texels 130 66

utilize adaptive mesh refinement, and contain cell-centered sam-
ples.

Set 1 has two levels with several blocks within each level. Ta-
ble 1 lists the blocks and their dimensions, and figure 4 exhibits
the block boundaries. This set is a good test case for the usage of
several blocks within a single level, as well as shallow AMR.

Set 2 has one block per level, and five levels. Table 2 lists the
blocks and their dimensions, and figure 3 exhibits the block bound-
aries. This set is a good test case for deep AMR data sets. Due to
the curvilinear AMR representation used as well as the representa-
tion for the computational space to physical space transformation,
memory requirements are very reasonable. As can be seen from
figure 5.4, very little overhead is needed to represent the data, thus
permitting increased scalability.

Figures 5 and 4 show volume rendering times for data sets 1 and
2 respectively. Set 1 requires more rendering time than set 2 due to
the increased number of samples and blocks in set 1.

As can be seen in figures 6 and 7, the rendering time does not
vary linearly with the resolution. It was found that the majority of
time within the fragment programs, where the ray casting occurs,
is being spent on texture fetches. This indicates that at lower res-
olutions, the caches on the GPU are not as effective at caching the
texture data as they are at higher resolutions.

Also, as expected, as the minimum step length increases, the
required computational time decreases due to the decreased number
of steps. Figure 5 exhibits a range of step lengths for both of the
test data sets.

The proposed compact representation of position greatly reduces
the amount of memory bandwidth required between GPU caches
and the external texture memory. Additionally, it reduces the num-
ber of texture fetches required to compute Jacobians for each ray
step.

Some positional error results from the profile extrusion on AMR



Figure 8: The positional error(the difference between the original mesh position and the mesh point found with equation 1) is proportional to the
point darkness in these images. From left to right, the images are of set 1 levels 0 to 1, set 1 level 1, set 2 levels 0 to 4, set 2 levels 3 to 4.

Table 4: Set 2 rendering times for different minimum step lengths and
viewport resolutions.

MSL 1024x741 768x549 512x357
0.1 0.032s 0.025s 0.020s

0.05 0.049s 0.038s 0.029s
0.01 0.155s 0.112s 0.076s

0.005 0.229s 0.161s 0.106s
0.001 0.396s 0.275s 0.177s

Table 5: Set 1 rendering times for different minimum step lengths and
viewport resolutions.

MSL 1024x741 768x549 512x357
0.1 0.095s 0.083s 0.079s

0.05 0.151s 0.127s 0.110s
0.01 0.60s 0.47s 0.338s

0.005 0.90s 0.70s 0.528s
0.001 1.85s 1.46s 1.01s

Figure 6: Data set 1 running times

data. On the test data sets, this error remained much smaller than
the size of a given cell within the data. Figure 6 exhibits the posi-

Figure 7: Data set 2 running times

tional error in the data sets.
For a 1024x1024x1024 volume that fits the above constraints

to be fully defined for transformations between computational
space and physical space, only 4096 three-component, 220 two-
component, and 220 four-component texels would be required –
a significant improvement over a direct 3D representation which
would require thousands of times more memory.

7 CONCLUSION

We have a presented a technique for memory-efficient and time-
efficient volume rendering of curvilinear adaptive mesh refinement
data within extrudable computational spaces. The volume is repre-
sented as a planar two-dimensional surface that is extruded along a
profile curve. The Jacobian for points within the volume can also
be easily computed using partial derivatives of these functions. This
provides significant memory savings over using a a uniformly sam-
pled volume texture to represent the transformation, in addition to
reduced memory bandwidth requirements because due to more lo-
calized texture lookups. With this technique, curvilinear adaptive
mesh refinement data sets with extrudable meshes can be more ef-
ficiently visualized and manipulated.



REFERENCES

[1] J. Georgii and R. Westermann. A generic and scalable pipeline for
gpu tetrahedral grid rendering. IEEE Transactions on Visualization
and Computer Graphics, 12(5):1345–1352, 2006.

[2] L. Hong and A. Kaufman. Accelerated ray-casting for curvilinear
volumes. In VIS ’98: Proceedings of the conference on Visualization
’98, pages 247–253, Los Alamitos, CA, USA, 1998. IEEE Computer
Society Press.

[3] L. Hong and A. E. Kaufman. Fast projection-based ray-casting algo-
rithm for rendering curvilinear volumes. IEEE Transactions on Visu-
alization and Computer Graphics, 5(4):322–332, 1999.

[4] J. Kruger and R. Westermann. Acceleration techniques for gpu-based
volume rendering. In VIS ’03: Proceedings of the 14th IEEE Visual-
ization 2003 (VIS’03), page 38, Washington, DC, USA, 2003. IEEE
Computer Society.

[5] G. Marmitt, H. Friedrich, and P. Slusallek. Interactive Volume Ren-
dering with Ray Tracing. In Eurographics State of the Art Reports,
2006.

[6] D. M. Reed, R. Yagel, A. Law, P.-W. Shin, and N. Shareef. Hard-
ware assisted volume rendering of unstructured grids by incremental
slicing. In VVS ’96: Proceedings of the 1996 symposium on Volume
visualization, pages 55–ff., Piscataway, NJ, USA, 1996. IEEE Press.

[7] R. Samtaney, B. van Straalen, P. Colella, and S. C. Jardin. Adaptive
mesh simulations of multi-physics processes during pellet injection
in tokamaks. Journal of Physics Conference Series, 78:2062–+, July
2007.

[8] P. Shirley and A. Tuchman. A polygonal approximation to direct
scalar volume rendering. SIGGRAPH Comput. Graph., 24(5):63–70,
1990.

[9] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A Simple and Flex-
ible Volume Rendering Framework for Graphics-Hardware–based
Raycasting. In Proceedings of the International Workshop on Volume
Graphics ’05, pages 187–195, 2005.

[10] J. H. University. Visualization of time-varying curvilinear grids using
a 3d warp texture yuan chen, jonathan cohen, subodh kumar.

[11] J. E. Vollrath, T. Schafhitzel, and T. Ertl. Employing Complex GPU
Data Structures for the Interactive Visualization of Adaptive Mesh Re-
finement Data. In Proceedings of the International Workshop on Vol-
ume Graphics ’06, 2006.

[12] J. Wilhelms, J. Challinger, N. Alper, S. Ramamoorthy, and A. Vaziri.
Direct volume rendering of curvilinear volumes. In Computer Graph-
ics (San Diego Workshop on Volume Visualization), pages 41–7, 1990.

[13] Y. Zhou and M. Garland. Interactive point-based rendering of higher-
order tetrahedral data. IEEE Transactions on Visualization and Com-
puter Graphics, 12(5):1229–1236, 2006.


