
Available online at www.sciencedirect.com
www.elsevier.com/locate/specom

Speech Communication 51 (2009) 230–239
On the optimality of ideal binary time–frequency masks

Yipeng Li a,*, DeLiang Wang b

a Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210-1277, USA
b Department of Computer Science and Engineering and Center of Cognitive Science, The Ohio State University, Columbus, OH 43210-1277, USA

Received 19 February 2008; received in revised form 26 August 2008; accepted 1 September 2008
Abstract

The concept of ideal binary time–frequency masks has received attention recently in monaural and binaural sound separation.
Although often assumed, the optimality of ideal binary masks in terms of signal-to-noise ratio has not been rigorously addressed. In this
paper we give a formal treatment on this issue and clarify the conditions for ideal binary masks to be optimal. We also experimentally
compare the performance of ideal binary masks to that of ideal ratio masks on a speech mixture database and a music database. The
results show that ideal binary masks are close in performance to ideal ratio masks which are closely related to the Wiener filter, the the-
oretically optimal linear filter.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Recently monaural and binaural sound separation have
received attention. A promising approach to the problem,
called computational auditory scene analysis (CASA) (Wang
and Brown, 2006), is inspired by the perceptual theory of
auditory scene analysis (ASA) (Bregman, 1990), which
attempts to explain the remarkable capability of the human
auditory system in segregating an acoustic signal into
streams that correspond to different sound sources. The
majority of CASA systems developed so far (Brown and
Cooke, 1994; Wang and Brown, 1999; Roman et al.,
2003; Li et al., 2006; Deshmukh et al., 2007) have applied
binary time–frequency (T–F) masking to extracting a target
sound. Typically, in such systems a signal is first trans-
formed to a T–F representation such as a spectrogram.
Then an element of such a representation, called a T–F unit
corresponding to a certain time and frequency, is assigned
1 if its energy is considered as from the target or 0 other-
0167-6393/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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wise. Hu and Wang (2001, 2004) proposed a binary mask,
called the ideal binary mask (IBM), where a T–F unit is
assigned 1 if in that unit the target energy exceeds the inter-
ference energy and 0 otherwise. Specifically, consider a
mixture z½n� ¼ x½n� þ y½n�, where n denotes discrete time,
x½n� the target signal and y½n� the interference signal.
Denote Z, X, and Y as the T–F representations of
z½n�; x½n�, and y½n� obtained from some T–F transforma-
tion, respectively. The IBM M for the target signal x½n� is
defined as following:

Mcm ¼
1; if jXcmj2 > jYcmj2;
0; otherwise;

(
ð1Þ

where Xcm and Ycm are the spectral values of X and Y at a
T–F unit ucm indexed by frequency c and time m, respec-
tively. Note that the construction of the IBM requires the
premixed target and interference signals. Given Z and M,
an estimate of the target signal x½n� can be reconstructed
from the element-wise product of Z and M.

Fig. 1 shows an example of the IBM for a speech signal
mixed with a babble noise. The magnitude spectrogram of
a female utterance is shown in Fig. 1a. Fig. 1b shows the
magnitude spectrogram of a 20-talker babble noise.
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Fig. 1. An example of the IBM. (a) The magnitude spectrogram of a female utterance ‘‘this was easy for us”. (b) The magnitude spectrogram of a babble
noise. (c) The magnitude spectrogram of the mixture. (d) The IBM. (e) The magnitude spectrogram of the mixture masked by the IBM.
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Fig. 1c shows the magnitude spectrogram of the mixture of
speech and noise mixed with equal overall energy. The
IBM for this mixture is shown in Fig. 1d, where white indi-
cates 1 and black 0. Fig. 1e shows the magnitude spectro-
gram of the mixture masked by the IBM.

The IBM has several desirable properties as a computa-
tional goal of CASA (Wang, 2005), including direct corre-
spondence to the auditory masking phenomenon, flexibility
in constructing different IBMs out of the same mixture
depending on what the target is, and well-definedness
regardless of the number and types of signals in the mix-
ture. The IBM has also been shown to be important for
human speech intelligibility and automatic speech recogni-
tion. A number of recent psychoacoustic experiments have
demonstrated that target speech reconstructed from the
IBM can dramatically improve the intelligibility of speech
masked by different types of noise, even in very noisy con-
ditions (Roman et al., 2003; Brungart et al., 2006; Li and
Loizou, 2008). Li and Loizou (2008) further demonstrate
that binary masks that deviate from the IBM show gradual
degradation of intelligibility performance. The IBM has
also been shown to improve the performance of automatic
speech recognition by a large margin (Srinivasan et al.,
2006).

A widely used metric for performance measure in sound
separation is signal-to-noise ratio (SNR). For sound sepa-
ration it is defined as

SNR ¼ 10log10

P
nx2½n�P

nðx̂½n� � x½n�Þ2
; ð2Þ

where x̂½n� is the estimated target signal. A purported prop-
erty of the IBM is that it is globally optimal, i.e., the IBM
produces an output with the highest SNR gain among all
binary masks (Hu and Wang, 2004; Ellis, 2006). Partly
due to this claim, many recent computational systems have
used the IBM as a measure of ceiling performance for
sound source separation (Li et al., 2006; Kim et al., 2006;
Harding et al., 2006; Radfar et al., 2007; Deshmukh
et al., 2007; Reddy and Raj, 2007). However, the global
optimality of the IBM has not been rigorously addressed.
In this paper we theoretically examine the optimality of
the IBM. Note that this paper is not intended to advocate
the use of SNR as the performance measure of sound sep-
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aration systems. Instead we analyze an assumed property
of the IBM that is given in terms of SNR. Also in this pa-
per, we are not concerned with how to estimate the IBM,
which is the task of sound separation.

It has been noted that the IBM is locally optimal in the
SNR sense, i.e., flipping a T–F unit’s assignment in the
IBM always yields a lower SNR for that T–F unit. There
exist two arguments for the global optimality of the
IBM. Hu and Wang (2004) argue for the global optimality
based on its local optimality. At each T–F unit, the IBM
either maximally retains target energy or removes interfer-
ence energy. As a result, the sum of missing target energy
that is discarded by the mask and interference energy that
gets through the mask, i.e., the denominator in (2), is min-
imized. Therefore the IBM would achieve the highest SNR.
This argument is flawed in that SNR calculation is nonlin-
ear: the denominator in (2) is not equal to the linear com-
bination of energy retained or removed in each individual
T–F unit. Ellis (2006) makes an argument from the view-
point of Wiener filtering. According to Wiener filtering,
optimal SNR can be achieved by the Wiener filter whose
frequency response is P T=ðP T þ P IÞ, where P T and P I are
the power spectrum densities of target and interference sig-
nals, respectively. Quantizing the Wiener filter at each T–F

unit to the closest binary value results in the IBM which
would produce the optimal binary mask. However, this
argument suffers the same drawback as the one by Hu
and Wang since it is still based on the local optimality of
the IBM: the optimal quantization is performed on each
T–F unit.

To closely examine the optimality of the IBM, we con-
sider the optimality of the IBM at three levels: the T–F unit
level, the time frame level, and the global level, and find
that local optimality does not translate to global optimal-
ity. In Section 2 we show that, at each level, the IBM can
be optimal under certain conditions imposed on T–F

decomposition. We also give counterexamples showing
that the IBM is not optimal when these conditions are vio-
lated. In Section 3 we compare SNR gain of the IBM to
that of ideal ratio masks which are closely related to the
Wiener filter. Conclusion and discussion are presented in
Section 4.

2. The optimality of the ideal binary mask at different levels

2.1. T–F unit level

Two types of T–F transformations are commonly used
in sound separation systems. The first one, such as the
short time Fourier transform (STFT), first divides a signal
into successive frames and then transforms each frame to
the frequency domain. This is called block transform
(Princen and Bradley, 1986). The second one, such as a
gammatone filterbank (see Section 2.4 for details), first fil-
ters a signal by a filterbank and then divides the output of
each filter into successive frames. This belongs to the para-
digm of filterbank-based transform (Princen and Bradley,
1986). At the T–F unit level, when the block transform is
used, only a single spectral value is observed at each T–F

unit. As a result, the conventional definition of SNR in
(2) is not applicable. Since the SNR defined in (2) essen-
tially is the ratio of the energy of the target to the energy
of the estimation error, we can extend it to the T–F unit
level

SNRcm ¼ 10log10

jXcmj2

jX̂cm � Xcmj2
; ð3Þ

where X̂cm is the estimated spectral value of the target at T–
F unit ucm. When the filterbank-based transform is used, in
each T–F unit a time-domain signal is observed (when dec-
imation is not used). In that case, we can still apply the
SNR definition as (2).

We first show that at the T–F unit level, the IBM is opti-
mal with respect to SNR defined in (3) for the block trans-
form. At each T–F unit, the IBM takes value 1 if the energy
of the target is stronger than that of the interference within
the unit, and 0 otherwise. Consequently, the spectral esti-
mate of Xcm is (assuming that the T–F transformation is
linear)

X̂cm ¼
Zcm ¼ Xcm þ Ycm; if jXcmj2 > jYcmj2;
0; otherwise:

(
ð4Þ

Consider the case where jXcmj2 > jYcmj2, i.e., the target is
stronger in energy than the interference at ucm. If ucm is as-
signed 1, as in the IBM (see (1)), then the denominator in
(3) is

jX̂cm � Xcmj2 ¼ jXcm þ Ycm � Xcmj2 ¼ jYcmj2: ð5Þ

On the other hand, if ucm is assigned 0, different from the
IBM, then the denominator is

jX̂cm � Xcmj2 ¼ j0� Xcmj2 ¼ jXcmj2: ð6Þ

Since jYcmj2 < jXcmj2, the denominator is smaller than when
ucm is assigned according to the IBM.

Similarly, if jXcmj2 6 jYcmj2 (i.e., the target is not stron-
ger in energy than the interference) and ucm is assigned 0
as in the IBM, then the denominator becomes

jX̂cm � Xcmj2 ¼ j0� Xcmj2 ¼ jXcmj2: ð7Þ

If ucm is assigned 1, then

jX̂cm � Xcmj2 ¼ jXcm þ Ycm � Xcmj2 ¼ jYcmj2: ð8Þ

Since jXcmj2 6 jYcmj2, the IBM always minimizes the
denominator and consequently maximizes the SNR. There-
fore we conclude that the IBM is optimal at the T–F unit
level for the SNR defined in (3) for the block transform.

For the filterbank-based transform, according to the
IBM, the time-domain estimation of xcm½n�; x̂cm½n�, in each
ucm is
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x̂cm½n� ¼
zcm½n� ¼ xcm½n� þ ycm½n�; if

P
n

x2
cm½n� >

P
n

y2
cm½n�;

0; otherwise;

(

ð9Þ
where xcm½n�; ycm½n�, and zcm½n� are the filtered and framed
target signal, interference signal, and the mixed signal at
ucm, respectively. Following the same procedure as (5)–
(8), it can be easily shown that

P
nðx̂cm½n� � xcm½n�Þ2 is min-

imized when the mask is determined according to the IBM.
Therefore we can conclude that the IBM is optimal at the
T–F unit level for the SNR defined in (2) for the filter-
bank-based transform.

2.2. Time frame level

We now consider xm½n�, the time-domain target signal at
frame m. Without loss of generality, we assume that the
index of n is from 0 to N � 1. We first consider the discrete
Fourier transform (DFT) of xm½n�

Xcm ¼
XN�1

n¼0

xm½n�e�
2pcn

N j; c ¼ 0; . . . ;N � 1:

The SNR of x̂m½n�, the estimate of xm½n�, with respect to
xm½n� can be calculated using (2) with summation of n from
0 to N � 1. It is clear from (2) that maximizing the SNR is
the same as minimizing the denominator, the energy of the
error signal x̂m½n� � xm½n�. According to the Parseval’s theo-
rem (Oppenheim et al., 1999), the energy of the error signal
can be equivalently calculated in the frequency domain
when the transform is DFT, i.e.,XN�1

n¼0

ðx̂m½n� � xm½n�Þ2 ¼
1

N

XN�1

c¼0

jX̂cm � Xcmj2: ð10Þ

In Section 2.1, we have shown that the IBM minimizes
jX̂cm � Xcmj2 for each c. Therefore the IBM also minimizes
the summation

PN�1
c¼0 jX̂cm � Xcmj2. As a result, the IBM

yields the highest SNR among all binary masks.
The key step in the above proof is applying Parseval’s

theorem to equate the energy summation in the time
domain to that in the spectral domain. This is possible
because the bases used in DFT are orthonormal, i.e.,
orthogonal and the length of each basis is 1. In general,
Parseval’s theorem holds for any orthonormal frequency
decomposition. This can be seen clearly when a set of
orthonormal bases are used for frequency decomposition:
Let feig be a complete set of bases with hei; eji ¼ dij, where
h�; �i denotes the inner product and dij the Dirac delta func-
tion. If hx; eii ¼ ai, the projection of vector x on basis ei,
then we have

hx; xi ¼
X

i

aiei;
X

j

ajej

* +
¼
X

i

X
j

aiajhei; eji ¼
X

i

a2
i :

ð11Þ
Therefore we can conclude that a sufficient condition for
the IBM to be optimal at the time frame level is orthonor-
mal frequency decomposition.
2.3. Global level

For the entire target signal x½n�, we first consider STFT.
x½n� can be written as

x½n� ¼
XM�1

m¼0

xm½n�=A½n�; ð12Þ

where m is the frame index and M the number of frames. A½n�
is the normalization factor and A½n� ¼

PM�1
m¼0 w½n� ms�,

where w is a window function with length N and s is the
frame shift. xm½n� is a windowed signal of x½n� at frame m.
Therefore xm½n� ¼ 0 for n < ms and n P msþ N . Similarly
we can write the entire estimated signal as

x̂½n� ¼
XM�1

m¼0

x̂m½n�=A½n�: ð13Þ

Again x̂m½n� ¼ 0 for n < ms and n P msþ N .
The energy of the entire error signal is

X
n

ðx̂½n� � x½n�Þ2 ¼
X

n

X
m

x̂m½n�=A½n� �
X

m

xm½n�=A½n�
 !2

¼
X

n

1

A2½n�
X

m

ðx̂m½n� � xm½n�Þ
 !2

¼
X

n

1

A2½n�
X

m

ðx̂m½n� � xm½n�Þ2
 

þ 2
X

m1

X
m2>m1

ðx̂m1
½n� � xm1

½n�Þðx̂m2
½n� � xm2

½n�Þ
!
;

ð14Þ

where m1 and m2 are frame indices.
If consecutive frames do not overlap, for a particular n,

either x̂m1
½n� � xm1

½n� or x̂m2
½n� � xm2

½n� is zero. This is
because a frame is zero outside of its corresponding win-
dow and m1–m2. In this case, the cross terms in (14) do
not contribute to the overall error energy and (14) becomesX

n

ðx̂½n� � x½n�Þ2 ¼
X

n

1

A2½n�
X

m

ðx̂m½n� � xm½n�Þ2: ð15Þ

Assume A½n� is constant for all n, we haveX
n

ðx̂½n� � x½n�Þ2 ¼ 1

A2

X
m

X
n

ðx̂m½n� � xm½n�Þ2: ð16Þ

Note that in the above equation, the order of summation is
also switched.

Since the IBM minimizes
P

nðx̂m½n� � xm½n�Þ2 for each
frame m when DFT is used for frequency decomposition
as discussed in Section 2.2, it also minimizes the energy
of the entire error signal. Consequently, the IBM is opti-
mal. Given non-overlapping consecutive frames, the win-
dow function must be rectangular in order for A½n� to be
constant.

If consecutive frames overlap, the cross terms also con-
tribute to the overall energy of the error signal. In this case,
a T–F unit couples with T–F units in the overlapping
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frames. For example, if the overlap is 50%, it can be shown
that a T–F unit will couple with every other T–F unit in the
successive frame. It is in general difficult to quantify the
contribution of the cross terms and compare it with the
square terms. However, because of the nonlinearity in the
SNR calculation, we suspect that IBM may not be optimal
in the overlapping case. In the next subsection we will show
that other binary masks can indeed give higher SNR in this
case.

We have shown that for the IBM to be optimal when
STFT is used for frequency decomposition, the consecutive
frames have to be non-overlapping and the window is rect-
angular. However the requirements of non-overlapping
frames and rectangular windowing are not critical for the
IBM to be optimal. The key to optimality is that the T–F

decomposition bases are orthonormal. For STFT, non-
overlapping frames and rectangular windowing simply
ensure that the T–F bases are orthonormal. STFT can be
considered as applying DFT to each frame consecutively.
This can be represented as matrix multiplication

Xr ¼Wx ¼

W1 0

W2

. .
.

0 Wm

2
66664

3
77775

x½0�
x½1�

..

.

x½N g�

2
66664

3
77775; ð17Þ

where Wi is the DFT matrix applied to frame i, Ng is the
length of the entire signal, and Xr is the reshaped version
of X : Xr is a column vector where the DFT of each frame
is stacked together. Here the windowing is included in the
DFT matrix. Rectangular windowing guarantees that the
rows of Wi remain orthonormal. When consecutive frames
do not overlap, Wi does not share columns with Wiþ1. As a
result, the rows (also the columns) of W are orthonormal.
Therefore, the IBM can be optimal using overlapping
frames and non-rectangular windowing given that the
decomposition matrix W is orthonormal. Modified discrete
cosine transform (MDCT) is such an example (Vincent
et al., 2007). It has an orthonormal bases while allowing
overlap in consecutive frames. It has been shown that the
IBM is optimal for MDCT (Vincent et al., 2007).

The following summarizes the main analytical result in
the form of a theorem.

Theorem 1. A sufficient condition for the ideal binary mask

to be globally optimal is that the time–frequency decompo-

sition is orthonormal.
2.4. Counterexamples

In this section we show several counterexamples in
which the IBM is not optimal. Note that it is not difficult
to come up with such counterexamples. This suggests that
the IBM is probably not optimal when the condition stated
before, i.e., orthonormal T–F decomposition, is not satis-
fied. In all examples, signals are sampled at 20 kHz and
are mixed to 0 dB SNR to create mixtures for analysis.

We first present a counterexample showing that the IBM
is not optimal when a non-orthogonal gammatone filter-
bank is used for frequency decomposition. The gammatone
filterbank has been widely used in CASA systems for fre-
quency decomposition (Wang and Brown, 2006). The
impulse response of a gammatone filter is

g½n� ¼ ðnT Þl�1 expð�2pbnT Þ cosð2pfnT Þ; n P 0;

0 otherwise;

(

ð18Þ

where T is the sampling interval, l ¼ 4 is the order of the
filter, b is the equivalent rectangular bandwidth (ERB),
and f is the center frequency of the filter. Typically, a
gammatone filterbank consists of 32 to 128 filters with f
quasi-logarithmically spaced, based on the ERB-rate. The
gammatone filterbank does not provide orthogonal fre-
quency decomposition of a signal because the polyphase
matrix of the gammatone filterbank is not paraunitary
(Strang and Nguyen, 1996). Fig. 2 shows an example that
the IBM is not optimal with the gammatone filterbank
for a single frame. In this example, the gammatone filter-
bank has 128 channels and the center frequencies are line-
arly spaced from 50 to 8000 Hz on the ERB-rate scale. The
top two panels show two musical signals with 2048 data
points. The lower left is the IBM and the lower right is a
binary mask obtained with a local SNR threshold (LC)
(Brungart et al., 2006) of 1 dB, i.e., ucm is labeled 1 if and

only if 10log10

P
n
x2

cm ½n�P
n
ðx̂cm½n��xcm½n�Þ2

> 1, where xcm½n� is the time-

domain signal underlying ucm and x̂cm½n� is the estimate.
In all the illustrations in this subsection, white indicates
that a T–F unit is labeled 1 and black 0. The estimated sig-
nals are reconstructed from the two binary masks using a
technique introduced by Weintraub (1985) (also see Wang
and Brown, 2006). Since the resynthesis procedure is an
integrated part of the gammatone filterbank-based analy-
sis, we do not attempt to isolate its contribution to the
SNR gain. In this case, the IBM gives a 7.0 dB SNR gain
while the other binary mask gives a 7.3 dB SNR gain.

The second counterexample, illustrated in Fig. 3, shows
that the IBM is not optimal when a non-rectangular win-
dow is used with STFT. In this example, consecutive
frames do not overlap. The top two panels plot two musi-
cal signals. When a hamming window with a length of 512
samples is applied, the SNR gain of the IBM (lower left) is
3.97 dB while the SNR gain of a mask (lower right) with a
LC of 0.4 dB is 3.99 dB. One of the noticeable differences
between the two masks is indicated by a circle.

If consecutive frames overlap, the IBM may not be opti-
mal even with a rectangular window when STFT is used.
Fig. 4 shows such an example with the same musical signals
as in Fig. 3. The frame length is 512 and the overlap is 50%.
The SNR gain of the IBM (lower left) is 16.7 dB while the
SNR gain for a mask obtained with a LC of 0.4 dB is
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Fig. 2. An example showing that the IBM is not optimal when a gammatone filterbank is used for frequency decomposition for one frame. (a) The
waveform of a target music signal. (b) The waveform of an interference music signal. (c) The IBM. (d) A mask generated with a local SNR threshold of
1 dB (see text).
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16.9 dB (lower right). The circle marks one noticeable dif-
ference between the two masks. This example shows the
effect of coupling between overlapping frames.

3. The ideal binary mask and the ideal ratio mask

Most sound separation systems decompose a signal into
overlapping frames to reduce boundary effects caused by
windowing. In this case, based on the discussion in Sections
2.3 and 2.4, the IBM may not be optimal. On the other
hand, its SNR gain is close to that of ideal ratio masks
(IRM). The IRM is defined as (Srinivasan et al., 2006)

Rcm ¼
jXcmj2

jXcmj2 þ jYcmj2
ð19Þ

for each c and m. The IRM is closely related to the Wiener
filter, the optimal linear filter in the minimum mean-square
error sense (Wiener, 1949). Moreover, if a target signal, an
interference signal, and their mixture are jointly Gaussian,
the Wiener filter is the optimal filter among all possible fil-
ters, linear or nonlinear (van Trees, 1968). Additionally, gi-
ven that the causality of a filter is not required and the
target signal and the interference signal are uncorrelated,
the Wiener filter amounts to the same ratio as (19) with
spectral values replaced by power spectral densities (van
Trees, 1968). The conditions for the Wiener filter to be a
ratio mask can be satisfied in many cases: the non-causality
of the filter can be allowed since most sound separation sys-
tems operate offline; the uncorrelatedness can also be as-
sumed since sound sources are generally independent.

One can show that the IRM always leads to a local SNR
gain no smaller than the IBM in the filterbank-based trans-
form. For ucm, consider three underlying signals: the target
xcm½n�, the interference ycm½n�, and the mixture zcm½n�. With
linear frequency decomposition, zcm½n� ¼ xcm½n� þ ycm½n�.
The ratio mask can be defined using the energy of time-
domain signals as

r ¼
P

nx2
cm½n�P

nx2
cm½n� þ

P
ny2

cm½n�
: ð20Þ
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Fig. 3. An example showing that the IBM is not optimal when a hamming window is used for orthogonal T–F decomposition. (a) The waveform of a
target music signal. (b) The waveform of an interference music signal. (c) The IBM. (d) A mask generated with a LC of 0.4 dB.
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Denote E ¼
P

nx2
cm½n� þ

P
ny2

cm½n� and we have
P

nx2
cm½n� ¼

rE and
P

ny2
cm½n� ¼ ð1� rÞE. Consider the case whereP

nx2
cm½n� >

P
ny2

cm½n�, the target stronger than the interfer-
ence. When applying the IBM, the T–F unit is assigned 1
and zcm½n� is retained. In this case, the local SNR is

SNR ¼ 10log10

P
nx2

cm½n�P
nðzcm½n� � xcm½n��Þ2

: ð21Þ

When the IRM is applied, the new SNR is

SNR0 ¼ 10log10

P
nx2

cm½n�P
nðrzcm½n� � xcm½n�Þ2

: ð22Þ

Now compare the denominators in (21) and (22)X
n

ðzcm½n� � xcm½n�Þ2 �
X

n

ðrzcm½n� � xcm½n�Þ2

¼
X

n

y2
cm½n� �

X
n

ðrycm½n� þ ðr � 1Þxcm½n�Þ2

¼ ð1� r2Þ
X

n

y2
cm½n� � 2rðr � 1Þ

X
n

xcm½n�ycm½n�

� ðr � 1Þ2
X

n

x2
cm½n�

¼ ð1� r2Þð1� rÞE � ðr � 1Þ2rE ¼ ðr � 1Þ2E: ð23Þ
Note that in the above derivation we assumeP
nxcm½n�ycm½n� ¼ 0, which is roughly equivalent to uncorre-

latedness between the two signals. Since ðr � 1Þ2E P
0;
P

nðzcm½n� � xcm½n�Þ2 P
P

nðrzcm½n� � xcm½n�Þ2. This shows
that compared to IBM, IRM gives an equal or smaller
denominator and therefore the same or better SNR. The
equal sign holds when r ¼ 1, i.e., when the interference is
absent at ucm. Similarly we can show that whenP

nx2
cm½n� 6

P
ny2

cm½n�, the IRM also achieves an SNR that
is at least as good as the IBM. In this case, the equal sign
holds when r ¼ 0, i.e., when the target is absent at ucm.

In the above discussion, we show that the IRM is locally
no worse in terms of SNR compared to the IBM. However
it is difficult to theoretically quantify the global difference
between the two. We investigate this issue experimentally
using mixtures of interest. In particular, we use a speech
mixture database and a music database. The speech mix-
ture database is collected by Cooke (1993), which includes
different types of interference that are commonly encoun-
tered in real environments. It also has premixed target
and interference, which makes the construction of the
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Fig. 4. An example showing that the IBM is not optimal when frames overlap even with a rectangular window. (a) The waveform of a target music signal.
(b) The waveform of an interference music signal. (c) The IBM. (d) A mask generated with a LC of 0.4 dB.
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IBM and the IRM possible. For music, we use a database
constructed for musical sound separation. The database is
synthesized from the tenor and the alto line of string quar-
tets by J.S. Bach. Each line is constructed based on MIDI
data using instrument samples from the RWC database
(Goto et al., 2003). Details of synthesis can be found in
(Li and Wang, 2007). For each database, we consider the
SNR gain of the IBM and the IRM over two different
kinds of frequency decomposition—DFT and the gamm-
atone filterbank (GF) as described in Section 2.4. In each
case, the frame length is 512 points and the frame overlap
is 50%. The sampling frequency is 20 kHz. In the gamm-
atone filterbank analysis, the filterbank has 64 filters with
center frequencies equally spaced on the ERB-rate scale
from 50 to 8000 Hz.

Table 1 shows the SNR gains of the IBM and the IRM
in dB for the Cooke database with both DFT and GF. In
the database, there are ten voiced utterances spoken by
male and female speakers. There are 10 different types of
interference: N0, 1-kHz pure tone; N1, white noise; N2,
noise bursts; N3, ‘‘cocktail party” noise; N4, rock music;
N5, siren; N6, trill telephone; N7, female speech; N8, male
speech; and N9, female speech. The length of the signals is
about 1–2 s. In the experiment, each utterance is mixed
with each interference so that the overall SNR is 0 dB.
Each number in Table 1 represents an average over 10
utterances for one type of interference. The average SNR
gain over the whole database is listed in the bottom row
of the table. It can be seen that the IRM gives a higher
SNR gain in all cases. On the other hand, the SNR gains
of the IBM are close to those of the IRM. When DFT is
used for frequency decomposition, the SNR gain of the
IBM is 0.7 dB lower than that of the IRM on average.
With the gammatone filterbank, the difference is only
0.4 dB. The variance of the SNR gain difference is also
small—the largest difference is 0.8 dB when the interference
is female speech (N7) and DFT is used.

The SNR gains for the music database are shown in
Table 2. In this case, we group the SNR gains according
to instrument combinations. Four instruments, a clarinet



Table 1
SNR gain (in dB) of IBM and IRM for a speech mixture database

Interference DFT GF

IBM IRM IBM IRM

N0 18.3 19.0 21.4 21.7
N1 12.2 12.9 11.3 12.0
N2 17.6 18.3 17.6 18.1
N3 7.8 8.5 7.6 7.8
N4 12.4 13.0 11.2 11.6
N5 18.7 19.4 19.7 19.9
N6 21.0 21.7 20.6 20.9
N7 13.9 14.7 12.4 12.8
N8 13.2 13.8 12.2 12.7
N9 9.7 10.4 9.9 10.1

Average 14.5 15.2 14.4 14.8

Table 2
SNR gain (in dB) of IBM and IRM for a music database

Instruments DFT GF

IBM IRM IBM IRM

CL + FL 12.9 13.5 12.3 12.0
CL + VN 13.2 13.9 12.3 12.1
CL + TR 11.3 12.2 9.0 9.3
FL + VN 13.7 14.8 11.9 11.8
FL + TR 11.1 12.1 8.8 9.4
VN + TR 12.1 12.8 8.9 9.2

Average 12.4 13.2 10.5 10.6
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(CL), a flute (FL), a violin (VN), and a trumpet (TR) are
used to synthesize different music lines in the music data-
base and there are six different combinations. It can be seen
that the IRM gives higher SNR gains for all instrument
combinations when DFT is used for frequency decomposi-
tion. For the gammatone filterbank, the IBM actually per-
forms better in several instrument combinations. One
possible reason is that the uncorrelatedness assumption
does not hold well in music. In Western music, pitches in
harmonic relation—pitches form a simple integer ratio
(Hubbard and Datteri, 2001)—are favored. As a result,
harmonics of different notes may collide. This is more likely
with the gammatone filterbank since the bandwidth of the
filters are wider in the high frequency range. Nonetheless,
on average, the IRM gives a better SNR gain than that
of the IBM. Similar to speech, the SNR gains between
the IBM and the IRM are small. With DFT, the IBM is
0.8 dB worse while with the gammatone filterbank, the dif-
ference is only 0.1 dB.

In summary, the IRM achieves higher SNR gains com-
pared to the IBM. However, despite the fact that the IBM
is binary and the IRM is not, the SNR gain of the IBM is
surprisingly close to that of the IRM. This shows that the
IBM is a very reasonable performance metric for sound sep-
aration. Indeed, there are reasons to prefer the IBM over
the IRM as the computational goal of a separation system.
The estimation of the IBM is considerably simpler than that
of the IRM: the former requires only binary decisions, while
the latter requires estimating the energy ratio of the two sig-
nals. Binary estimation is facilitated by the existence of
numerous classification and clustering methods.

4. Concluding remarks

In this paper we have addressed the optimality of the
IBM in terms of SNR gain at three different levels and clar-
ified the conditions at each level for the IBM to be optimal.
At the T–F unit level, the IBM is optimal. At the time
frame level, the IBM is optimal when the frequency decom-
position is orthonormal. At the global level, IBM is opti-
mal when the T–F decomposition is orthonormal. We
give counterexamples where the IBM is not optimal when
the stated conditions are not satisfied. In most practical
applications, frames overlap, and as a result the IBM is
not expected to be optimal. However we have shown exper-
imentally that the performance of the IBM is close to that
of the IRM and therefore the IBM is still a good objective
for sound separation systems.

The analysis in this paper is given in terms of SNR
because the purported optimality of the IBM has been
expressed in SNR. It is worth pointing out that the SNR
metric does not correlate directly with speech intelligibility
or quality when the signal is speech (Lim and Oppenheim,
1979). Attempts have been made to use several metrics
together to evaluate the performance of a separation sys-
tem. For example, Wang and Brown (1999) use signal-to-
interference ratio (SIR) along with the percentage of recov-
ered signal energy. Vincent et al. (2006) suggest the use of
SIR, SDR (signal-to-distortion ratio), and SAR (signal-to-
artifact ratio) jointly. These three measures are calculated
by projecting an estimated signal onto the subspaces
expanded by the target and the interference. Although mul-
tiple metrics may provide a fuller picture, it is often difficult
to compare two separation systems if one performs better
in some metric and worse in others. The SNR measure pro-
duces a single number making it easy to gauge the perfor-
mance of a separation system relative to others, and this is
probably a main reason why SNR remains the most widely
used performance metric despite its shortcomings.
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