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ABSTRACT:
The fundamental requirement for real-time operation of a speech-processing algorithm is causality—that it operate

without utilizing future time frames. In the present study, the performance of a fully causal deep computational audi-

tory scene analysis algorithm was assessed. Target sentences were isolated from complex interference consisting of

an interfering talker and concurrent room reverberation. The talker- and corpus/channel-independent model used

Dense-UNet and temporal convolutional networks and estimated both magnitude and phase of the target speech. It

was found that mean algorithm benefit was significant in every condition. Mean benefit for hearing-impaired (HI) lis-

teners across all conditions was 46.4 percentage points. The cost of converting the algorithm to causal processing

was also assessed by comparing to a prior non-causal version. Intelligibility decrements for HI and normal-hearing

listeners from non-causal to causal processing were present in most but not all conditions, and these decrements

were statistically significant in half of the conditions tested—those representing the greater levels of complex inter-

ference. Although a cost associated with causal processing was present in most conditions, it may be considered

modest relative to the overall level of benefit. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Real-time operation represents a critical requirement

for deep learning based solutions to improve speech intelli-

gibility in hearing technology. The critical requirement for

real-time operation is causality—that an algorithm operate

without using future-frame information, which introduces

processing delays. The other requirement for real-time oper-

ation involves computational complexity and the burden

that a neural network places on hardware. But unlike causal-

ity, this aspect is not fundamental. It is instead directly

related to the ever-advancing computational power of the

hardware on which it operates.

It is important to understand (i) if real-time capable

deep learning can improve intelligibility and (ii) what is the

performance cost associated with real-time capability—by

how much does benefit decline when an algorithm is made

causal. Evidence exists to indicate that causal deep learning

can indeed improve intelligibility for hearing-impaired (HI)

or cochlear implant listeners in the presence of background

noise or other interference (Goehring et al., 2017;

Monaghan et al., 2017; Bramsløw et al., 2018; Goehring

et al., 2019; Keshavarzi et al., 2019; Healy et al., 2021).

What is more poorly understood is the cost, particularly

in terms of human intelligibility and especially in HI indi-

viduals, associated with transitioning an algorithm from

non-causal to causal operation. This is because studies using

human performance to examine causal operation have often

also used smaller networks (fewer layers in the deep neural

network and fewer units in each layer) to produce a network

that is overall more easily implementable. Whereas this is

an admirable goal and increases the challenge substantially,

removing future time-frame information and reducing net-

work size can both serve to reduce algorithm performance,

and so this combined approach confounds the effects of the

two manipulations.

Also poorly understood is the extent to which real-time

capable deep learning can improve intelligibility in the pres-

ence of complex interference characteristic of real-world lis-

tening. One such example of complex interference involves

competing speech and concurrent room reverberation. These

two interferences corrupt the signal of interest in very differ-

ent ways, but they often occur concurrently in real-world

environments. And it is well known that these concurrent

interferences can disrupt speech intelligibility substantially

in normal-hearing (NH) listeners and especially in HI listen-

ers (Plomp, 1976; Culling et al., 2003; Moore, 2007; Healy

et al., 2019; Healy et al., 2020). The current study aims to

increase our understanding of these issues.
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In the current study, a deep computational auditory

scene analysis (deep CASA) algorithm (Liu and Wang,

2019, 2020) was used to increase intelligibility for HI and

NH listeners by isolating a target talker from a competing

talker and removing room reverberation. Importantly, the

network was fully causal. But otherwise, the network, stim-

uli, and experimental procedures were highly similar to a

previous work involving a non-causal version of deep

CASA (Healy et al., 2020). This allows the performance

cost associated with causality to be directly established. The

algorithm employed Dense-UNet (Liu and Wang, 2019) and

temporal convolutional network (TCN) (Lea et al., 2016)

architectures. It was talker independent (trained and tested

on different talkers) as well as corpus/recording-channel

independent. This latter aspect reflects the fact the algorithm

was trained and tested on speech from different speech cor-

pora, recorded using different apparatus in different environ-

ments (see Healy et al., 2020; Pandey and Wang, 2020).

Finally, the algorithm operated in the complex domain (esti-

mated both the real and imaginary parts) allowing both the

magnitude and phase of the signal of interest to be estimated

(Williamson et al., 2016). More comprehensive discussions

of the overall problem and the current solution may be

found in Healy et al. (2020), and additional technical details

on causal deep CASA may be found in Liu and Wang

(2020).

II. METHOD

A. Subjects

Both HI and NH listeners participated. None had any

prior exposure to the target or interferer sentences

employed. Ten HI listeners were recruited from The Ohio

State University Speech-Language-Hearing Clinic and sur-

rounding community to represent a range of typical bilateral

hearing aid users with sensorineural hearing loss. Hearing

losses ranged from mild to profound and were moderate on

average. Configurations ranged from flat to sloping. Pure-

tone average audiometric thresholds (PTAs) based on 500,

1000, and 2000 Hz and averaged across ears ranged from 33

to 75 dB HL, with a mean of 53. Their ages ranged from 21

to 79 years (mean¼ 62 years), and six were male; four were

female. The HI listeners each received a monetary incentive

for participating. Figure 1 displays pure-tone audiograms

(ANSI, 2004, 2010a) performed on day of test. These listen-

ers were numbered in order of increasing PTA.

Ten NH listeners also participated. They were recruited

from undergraduate courses in The Ohio State University

Department of Speech and Hearing Science, and each

received course credit for participating. They were native

speakers of American English, with ages ranging from 18 to

27 years (mean¼ 21). Two were male, and eight were

female. All produced pure-tone audiometric thresholds of

20 dB HL or lower at octave frequencies from 250 to

8000 Hz on the day of the test (ANSI, 2004, 2010a).

B. Stimuli

To facilitate direct comparison, the stimuli used for

algorithm training and testing were identical to those

employed for the non-causal version of deep CASA by

Healy et al. (2020). The training dataset was based on the

Wall Street Journal Continuous Speech Recognition Corpus

(WSJ0) (Paul and Baker, 1992). Two-talker mixtures were

generated by selecting sentences from various pairs of talk-

ers in the si_tr_s folder of the WSJ0 corpus. Either talker

could be either male or female. For sentence pairs of

unequal duration, the longer was trimmed to match the dura-

tion of the shorter. Prior to mixing, the signals were equal-

ized to the same root mean square (RMS) level. The

sampling rate for all signals was 16 kHz.

FIG. 1. Audiometric thresholds for the HI listeners. Pure-tone air-conduction thresholds for right ears are represented by circles and those for left ears are

represented by X’s. The arrow indicates threshold exceeding audiometer limits. The 20 dB HL limit for NH is represented by a horizontal dotted line.

Listeners are numbered in order of increasing degree of hearing loss. Also provided are identifying numbers, ages in years, and sexes.
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To generate reverberant utterances, the signals were

convolved with room impulse responses (RIRs). The RIRs

were generated based on the image method (Allen and

Berkley, 1979; Habets, 2020) in a simulated room having

dimensions of 6� 7� 3 m. The microphone was placed at

the position of (3, 4, 1.5) m, and the reverberation time

(T60) was selected randomly in the range of 0.3 to 1.0 s.

Talker locations were selected randomly from 36 evenly

distributed angles around the microphone, with the target

talker 1 m from the microphone and the interfering talker

2 m away. The elevation of talkers matched that of the

microphone. The target-to-interferer (TIR) ratio was set to

0 dB for the training data. In total, 200 500 mixtures were

created for training, with 500 reserved for cross-

validation.

The test stimuli were drawn from the Institute of

Electrical and Electronics Engineers (IEEE) Revised List of

Phonetically Balanced Sentences (Harvard Sentences)

(IEEE, 1969). The exact unprocessed reverberant mixtures

were identical to those employed by Healy et al. (2020).

Test stimuli consisted of 160 target sentences mixed with

160 interfering sentences, plus reverberation. Sentences

were formed into pairs based on similarity in duration. The

average duration difference between members of a pair was

5 ms, and the difference did not exceed 10 ms for any pair.

The target sentences were distinct from the interfering

sentences, and both were distinct from the training senten-

ces. All target sentences were spoken by the same male

talker (average fundamental frequency¼ 132 Hz, standard

deviation¼ 41 Hz), and all interfering sentences were spo-

ken by the same female talker (average fundamental

frequency¼ 209 Hz, standard deviation ¼ 42 Hz). Neither of

these talkers is present in the WSJ0 corpus recordings. The

TIRs employed for HI listeners were 0 and 5 dB, and those

for the NH listeners were –5 and 0 dB. These TIRs matched

those of Healy et al. (2020) and were selected to produce a

variety of unprocessed intelligibility scores reasonably free

of floor and ceiling effects.

The same reverberation procedures were applied as

for the training set, except that the talker positions were

shifted by 5� to ensure that the test RIRs were different

from those used for training. The T60 values for the test

sentences were 0.3 and 0.6 s, which are representative of

realistic amounts of room reverberation. The value of 0.6 s

corresponds to the upper limit for acceptable room rever-

beration in classrooms (ANSI, 2010b), whereas the value

of 0.3 s falls within that limit. In total, 160 reverberant

two-talker mixtures were generated for testing in each of

the six test conditions (3 TIRs and 2 T60 values).

Additional stimuli detail can be found in Healy et al.
(2020).

It is potentially noteworthy that different sexes were

used for the concurrent talkers to reduce confusion for the

human listeners with regard to which talker was the target.

Algorithm performance has been shown to be similar when

the two concurrent talkers are the same versus different

sexes (Liu and Wang, 2019).

C. Algorithm description

Given a two-talker mixture signal recorded in reverber-

ant conditions, the talker-independent speaker separation

problem in the short-time Fourier transform (STFT) domain

is formulated as

Y t; fð Þ ¼ H1 t; fð ÞS1 t; fð Þ þ H2 t; fð ÞS2 t; fð Þ; (1)

where Y t; fð Þ; S1 t; fð Þ; and S2 t; fð Þ denote the complex

STFT values of the mixture signal, direct-sound target and

interferer signals at time frame t and frequency f , respec-

tively. Hi t; fð Þ; i ¼ 1; 2; represents the RIR in the STFT

domain corresponding to talker i. The goal is to estimate

S1 t; fð Þ, designated as the target talker, based on the rever-

berant mixture signal Y t; fð Þ:
To address this problem, deep CASA was employed

(Liu and Wang, 2019), which achieves high performance in

both anechoic and reverberant conditions (Healy et al.,
2020). Deep CASA breaks down the speaker separation task

into two stages: simultaneous and sequential grouping, moti-

vated by auditory scene analysis principles (Bregman, 1990;

Wang and Brown, 2006). In the simultaneous grouping

stage, separation and dereverberation of the source signals

are performed at the frame level. In the sequential grouping

stage, the separated frames are organized to one of two

talker streams.

A major limitation of deep CASA for real-world

deployment is that prior implementations were not causal:

the algorithm used future information as long as 9 s.

Recently, Liu and Wang (2020) proposed a causal version

of deep CASA to address this limitation in anechoic envi-

ronments. Several aspects of simultaneous and sequential

grouping were modified so that no future information was

used throughout the algorithm. These modifications reduced

the operational latency to one frame of STFT and enabled

real-time processing.

In the current study, causal deep CASA was extended

to perform speaker separation in reverberant conditions. In

what follows, the two stages of deep CASA are described,

as are modifications needed for causal processing. We note

that deep CASA is a dedicated speaker separation algorithm.

The network also performed de-reverberation, but noise

removal was not addressed.

1. Simultaneous grouping

This stage uses a deep neural network (DNN) to esti-

mate two complex ratio masks cRMi t; fð Þ; i ¼ 1; 2; based on

the real and imaginary parts of Y t; fð Þ. The masks are multi-

plied with the reverberant mixture to generate the recon-

structed sources in the complex domain (Williamson et al.,
2016),

Ŝui
t; fð Þ ¼ cRMi t; fð Þ � Y t; fð Þ; (2)

where Ŝui
denotes the unorganized frames that are separated

and dereverberated. Symbol � denotes point-wise complex
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multiplication. The DNN is trained with a frame-level per-

mutation invariant training (tPIT) (Yu et al., 2017) criterion,

which chooses optimal output-talker assignment based on

the pairing that minimizes the l1 norm over all possible

talker permutations. After organizing the frames using tPIT,

the optimally organized talker frames Ŝoi
t; fð Þ are converted

to a time-domain signal ŝoi
tð Þ via inverse STFT. Finally, a

signal-to-noise ratio (SNR) loss JSNR is used to optimize the

network,

JSNR ¼ �10
X

i¼1;2

log

X

t

si tð Þ2

X

t

si tð Þ � ŝoi
tð Þ

� �2 : (3)

The simultaneous grouping DNN is based on a Dense-

UNet architecture. It includes downsampling layers and

upsampling layers interleaved with dense convolutional

blocks. The dilation factor in the dense convolutional blocks

was increased from 1 to 8 to account for the reverberation

effect.

Three changes were made to make Dense-UNet causal.

First, downsampling and upsampling layers were applied

only in the frequency dimension and not across time frames

so as to avoid using future frames. Second, the dense convo-

lutional blocks were modified to include causal temporal

convolution operations that only rely on past information.

Third, the normalization method was changed from standard

layer normalization to batch normalization so that recalcula-

tion of statistics is not needed during inference.

2. Sequential grouping

With unorganized frames from the previous stage, the

sequential grouping stage performs a temporal organization

by assigning each separated frame to one talker.

Specifically, a DNN was used to estimate an embedding

vector VðtÞ 2 Rd for each time frame. The training target

was a two-dimensional indicator vector AðtÞ that represents

the optimal assignment. The label was set to AðtÞ ¼ 1; 0½ �, if

the order of Ŝu1
and Ŝu2

was matched correctly with the

order of talkers; otherwise the label was A ¼ 0; 1½ �, to mean

that the order should be switched. The DNN model was

optimized over a sequence of T frames with a weighted

objective function using A T � 2ð Þ and V T � dð Þ matrices,

JDC ¼ jjW VVT � AATð ÞWjj2F; (4)

where W denotes T � T diagonal weight matrix, jj:jjF repre-

sents the Frobenius norm, and DC stands for deep clustering

(Hershey et al., 2016). The diagonal entries of W correspond

to a frame-level weight vector w tð Þ ¼ jLDðtÞj=
P

tjLDðtÞj,
where LDðtÞ represents the simultaneous grouping tPIT loss

difference (LD) between the two possible talker assign-

ments. The idea of using the weight matrix W was to

emphasize those frames where the two outputs are substan-

tially different so that the wrong order of outputs increases

the tPIT loss.

Instead of using noncausal k-means clustering during

inference, the estimated embedding vectors VðtÞ were

assigned into two groups using a causal clustering algo-

rithm. Two first-in-first-out (FIFO) queues were initialized,

and the embedding vector of the first frame was pushed to

the first queue. Starting from the second frame, the similar-

ity of the embedding vectors between the current frame and

the previous frame was computed. If the similarity was

higher than a predefined threshold, then the embedding vec-

tor was pushed to the first queue. This process continued

until one frame did not meet the threshold, and it was then

assigned to the second queue. Once the second queue loaded

the first embedding vector, the mean values of the two

queues were tracked. Next, each embedding vector with sig-

nificant energy was assigned to the queue whose mean value

was closer to the embedding vector. After each assignment,

the mean values were updated based on the 20 most recent

items in the queues; that is, the length of the two FIFO

queues was 20. At the end, the queues were used for orga-

nizing the features Ŝu2
c; fð Þ and Ŝu2

c; fð Þ.
A TCN was used for sequential grouping. The real,

imaginary, and magnitude STFT of the reverberant mixture,

as well as the outputs of the simultaneous grouping stage,

were stacked to form the input to the TCN, which consisted

of eight dilated convolutional blocks each comprising three

convolutional layers. Layer normalization and convolution

operations were modified to their causal version (Liu and

Wang, 2020). The simultaneous grouping and sequential

grouping modules were trained in turn separately with the

Adam optimizer (Kingma and Ba, 2014).

Although computational complexity and the burden that

a neural network places on hardware is not a fundamental

constraint, it nevertheless represents an important consider-

ation. Accordingly, the computational complexity of the

current causal deep CASA model was calculated in terms of

floating-point operations (FLOPs), a common metric for

evaluating DNN model complexity. The current model has

12.8 M parameters and requires 147.54 G FLOPs to process

a 1-s input signal, using the current 32-ms frames with 8-ms

shift. Causal deep CASA has also been assessed in terms of

the real time factor (RTF) on a single NVIDIA V100 GPU

(Liu and Wang, 2020). RTF is defined as the ratio of proc-

essing time to input signal duration, and so values up to 1.0

represent real-time capable operation. The RTF of causal

deep CASA was 0.011.

Figure 2 displays spectrogram images of various sig-

nals. Panel (a) displays the two-talker reverberant mixture,

mixed at a TIR of –5 dB in a room with T60¼ 0.6 s. This

represents the input to the algorithm as well as the unpro-

cessed signal used for human-subjects testing. Panels (b)

and (c) display the individual clean anechoic utterances,

panels (d) and (e) display these utterances extracted from

the reverberant two-talker mixture using the non-causal ver-

sion of deep CASA employed by Healy et al. (2020), and

panels (f) and (g) display these utterances extracted from the

reverberant two-talker mixture using the current fully causal

version of deep CASA.
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D. Procedure

The procedure was largely identical to that employed by

Healy et al. (2020) involving the non-causal version of

deep CASA, in order to facilitate direct comparison. Each sub-

ject heard a total of eight conditions (2 TIRs� 2 T60s� 2

unprocessed/processed), with 20 target sentences per condi-

tion. Unprocessed conditions refer to the concurrent reverber-

ant sentence mixtures and processed conditions refer to these

mixtures following processing by the fully causal deep CASA

speech separation/dereverberation algorithm. The TIR-T60

conditions were blocked and presented in random order for

each listener. The comparison of greatest interest is that

between the unprocessed and processed condition at each

TIR-T60, and so these conditions were presented in juxtaposed

and random order for each listener. The use of a single fixed

presentation order for the sentence materials allowed a ran-

dom correspondence between sentence pairs and conditions.

No sentence was presented more than once for any listener.

The stimuli were played back from a Windows PC

using an RME Fireface UCX digital-to-analog converter

(Haimhausen, Germany), through a Mackie 1202-VLZ

mixer (Woodinville, WA), and presented diotically using

Sennheiser HD 280 Pro headphones (Wedemark, Germany).

The overall RMS level of each stimulus was set to 65 dBA

in each ear using a sound-level meter and flat-plate coupler

(Larson Davis models 824 and AEC 101, Depew, NY). For

the HI listeners, additional frequency-specific gains were

applied to compensate for the hearing loss of each individual

listener using the NAL-RP hearing-aid fitting formula

(Byrne et al., 1990). These gains were implemented using a

RANE DEQ 60 L digital equalizer (Mukilteo, WA), as

described in Healy et al. (2015). Accordingly, these listeners

were tested with hearing aids removed. The final presenta-

tion level for the HI listeners ranged from 79.1 to 93.4 dBA

(mean¼ 87.2 dBA).

Twenty-five practice stimuli were presented prior to

formal testing, consisting of five stimuli in each condition:

(1) clean sentences with no interference; (2) processed sen-

tences at the higher of the two TIRs for each listener group

and a T60 value of 0.3 s; (3) processed sentences at the lower

TIR for each listener group and a T60 value of 0.6 s; (4)

unprocessed mixtures at the higher TIR and a T60 of 0.3 s;

and (5) unprocessed mixtures at the lower TIR and a T60 of

0.6 s. During this familiarization, the HI listeners were asked

about the loudness of the signals, and no listener reported

the level to be uncomfortable.

Listeners then heard the eight blocks of conditions while

seated in a double-walled sound booth. They were instructed

to attend to the male voice, to repeat back each sentence as

best they could, and to guess if unsure of the content of the

sentence. The listeners were blind to the condition under test,

but the experimenter was not. The experimenter controlled the

presentation of each stimulus and scored keywords correctly

reported. The 20 target sentences presented in each condition

each contained five keywords, for a total of 100 keywords in

each condition. Sentence recognition was expressed as the

percentage of these keywords correctly reported.

III. RESULTS AND DISCUSSION

A. Human performance

1. HI listeners

Sentence recognition for individual HI listeners is

shown in Fig. 3. These listeners are numbered and plotted in

FIG. 2. (Color online) Spectrogram images representing the separation of a target sentence from a reverberant mixture of two talkers (TIR¼ –5 dB,

T60¼ 0.6 s) using deep CASA. Panel (a) reverberant two-talker mixture, (b) clean anechoic target utterance, “Hop over the fence and plunge in,” (c) clean

anechoic interfering utterance, “The slang word for raw whisky is booze,” (d) non-causal deep CASA output 1 (target), (e) non-causal deep CASA output 2

(interferer), (f) causal deep CASA output 1 (target), and (g) causal deep CASA output 2 (interferer).
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order of increasing PTA, as in Fig. 1. Sentence recognition

scores at different TIRs are plotted in separate panels.

Within each panel, unprocessed and processed scores at

each T60 are shown as solid and hatched columns, respec-

tively. For any given listener, algorithm benefit is then rep-

resented by the difference between a solid column and the

hatched column directly to its right. The missing columns

for HI5 and HI8 reflect an inability to correctly report any

keywords in those conditions.

Algorithm processing enhanced speech recognition for

every HI listener in every condition. Considering the 40

unprocessed-processed pairs across HI listeners and condi-

tions, algorithm benefit ranged from 17 to 71 percentage

points. It equaled or exceeded 40 percentage points in 70% of

cases, 50 percentage points in 48% of cases, and 60 percentage

points in 25% of cases. The grand-mean algorithm benefit

for HI listeners across all conditions was 46.4 percentage

points.

There appears to be some tendency for overall scores to

decrease from left to right in each panel of Fig. 3, suggesting

that scores overall could be associated with listener PTA.

However, Spearman rank-order correlations failed to reveal

any significant relationships between PTA and unprocessed

scores averaged across the four TIR-T60 combinations

[jrs(8)j ¼ 0.48, p¼ 0.15]. Similarly, no significant rank-

order correlations were found between PTA and mean

processed scores [jrs(8)j ¼ 0.40, p¼ 0.23] or between PTA

and mean algorithm benefit [jrs(8)j ¼ 0.32, p¼ 0.35].

The right half of Fig. 5 shows group-mean scores and

standard errors of the mean (SEMs) for the HI listeners in

each condition. As in Fig. 3, benefit in each condition is

reflected by the difference between a solid column and the

hatched column directly to its right. Group-mean unpro-

cessed scores increased monotonically as TIR and T60

became more favorable (from left to right in the right half of

Fig. 5). In the least favorable condition (TIR¼ 0 dB,

T60¼ 0.6 s), the lowest unprocessed score of 8.7% rose to

55.2%, for an algorithm benefit of 46.5 percentage points.

The next condition, also in the center panel, was at the same

TIR but with an improved T60 of 0.3 s. This mean unpro-

cessed score of 20.0% rose to 71.9% after processing, pro-

ducing a benefit of 51.9 percentage points. The right-most

panel of Fig. 5 displays the more favorable TIR of 5 dB. At

the T60 of 0.6 s, the score increased from 20.7% to 68.9%

for a benefit of 48.2 percentage points. Finally, the most

favorable TIR-T60 condition (5 dB-0.3 s) produced the high-

est unprocessed score for the HI group (40.2%), which rose

to 79.1%, resulting in the smallest HI group-mean benefit of

38.9 percentage points.

Planned comparisons consisting of uncorrected two-

tailed paired t-tests on rationalized arcsine units (RAUs)

(Studebaker, 1985) were performed to examine algorithm

benefit for HI listeners in each condition. Processed scores

were found to be significantly higher than unprocessed

scores for each of the four combinations of TIR and T60

[each t(9)� 7.7, p� 0.0001]. These results remain signifi-

cant after Bonferroni correction.

2. NH listeners

Figure 4 displays sentence-recognition scores for the

individual NH listeners in each condition. As the figure shows,

the algorithm also provided benefit for each NH listener in

each condition, with one exception where the unprocessed

score equaled the processed score (NH7, TIR¼ 0 dB,

T60¼ 0.6 s). Predictably, the NH-listener unprocessed scores

were higher than the corresponding HI-listener scores. These

higher unprocessed scores resulted in less opportunity for bene-

fit from algorithm processing. Accordingly, benefit tended to

be smaller for these listeners. Across all NH listeners and con-

ditions (40 cases), benefit was 20 percentage points or greater

in 53% of cases and 30 percentage points or greater in 30% of

cases. These proportions are somewhat higher when only the

lower TIR of –5 dB is considered, where unprocessed scores

were lower. Across all conditions, the grand-mean algorithm

benefit for the NH listener group was 21.5 percentage points.

The left half of Fig. 5 shows group-mean scores and

SEMs for the NH listeners in each condition. For these

listeners, mean benefit was largely a function of mean

unprocessed scores, where higher baseline scores limited

benefit. Group-mean algorithm benefit was largest for

the NH listeners in the condition with the greatest

interference (TIR¼ –5 dB, T60¼ 0.6 s), at 32.1 percentage

FIG. 3. Sentence-intelligibility scores for individual HI listeners. The solid

black and solid gray columns represent scores for unprocessed, reverberant

concurrent sentences. The hatched columns represent scores following algo-

rithm processing to isolate the target talker and remove room reverberation.

Fully causal algorithm benefit is then represented by the difference between

a solid column and the immediately adjacent hatched column. The target-

to-interferer ratios of 0 and 5 dB are displayed in separate panels, and the

T60 times of 0.6 and 0.3 s are represented in the legend. Listeners are num-

bered in order of increasing degree of hearing loss, as in Fig. 1.
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points. The second highest group-mean benefit for the NH

listeners (25.3 percentage points) was also obtained at the

T60 of 0.6 s, but it came at the more favorable TIR of 0 dB.

This was followed by a benefit of 18.6 percentage points at

TIR¼ –5 dB, T60¼ 0.3 s. The smallest benefit was obtained

in the most favorable listening condition for the NH listeners

(TIR¼ 0 dB, T60¼ 0.3 s), where the mean unprocessed score

of 84.2% correct rose 10.0 percentage points to 94.2% cor-

rect with the aid of algorithm processing.

As for the HI listeners, the algorithm provided signifi-

cant benefit at all four TIR-T60 conditions in which the NH

listeners were tested, as revealed by four planned two-tailed

paired t-tests on RAUs [each t(9)� 5.3, p< 0.001]. These

results also remain significant after Bonferroni correction.

Another question of interest involves whether HI lis-

teners, when aided by the algorithm, can approximate the

unaided speech-recognition performance of ideal young

NH listeners in otherwise identical conditions. In other

words, can this fully causal algorithm restore NH speech

recognition abilities to HI listeners in complex interfer-

ence? This question was assessed by comparing the unpro-

cessed scores (solid columns) of the NH group to the

corresponding processed scores (hatched columns) of

the HI group at the common TIR of 0 dB, displayed in

the center panel of Fig. 5. This was done separately for

each T60 value. The mean NH unprocessed score was above

the HI processed score at both T60 times. Values were

within 5 percentage points at T60¼ 0.6 s but differed by

12 percentage points at T60¼ 0.3 s. Planned two-tailed

Welch’s independent samples t-tests were conducted on

RAU-transformed scores. These t-tests revealed no significant

differences between the unprocessed scores of the NH listeners

and the processed scores of the HI listeners with either 0.6 s

[t(13.3)¼ 0.53, p¼ 0.61] or 0.3 s [t(11.8)¼ 2.1, p¼ 0.06] of

reverberation time. Therefore, the algorithm-aided speech rec-

ognition performance of the HI listeners appeared to approxi-

mate that of the young NH listeners in the less favorable

interference and be below but not significantly in the more

favorable interference.

3. Comparison to the non-causal algorithm

To examine the human-subjects performance costs

associated with making the non-causal deep CASA algo-

rithm fully causal, the current data were compared to those

of Healy et al. (2020) in which a highly similar but non-

causal algorithm was used to separate and dereverberate the

same concurrent sentence pairs used currently. Figure 6 dis-

plays group-mean speech recognition scores and SEMs for

the HI and NH listeners. The pairs of columns labeled “non-

causal” are from Healy et al. (2020), and those labeled

“causal” are replotted from Fig. 5. The TIR values displayed

were common across the two studies, as was the T60 value

FIG. 5. Group-mean sentence-intelligibility scores (and standard errors) for each condition. As in Figs. 3 and 4, the different target-to-interferer ratios (–5,

0, and 5 dB) are displayed in separate panels, and the different reverberation T60 values are represented by different column pairs in each panel. Means for

the HI and NH listeners are presented separately. Mean algorithm benefit resulting from the fully causal deep CASA algorithm is then represented as the dif-

ference between a solid column and the immediately adjacent hatched column.

FIG. 4. As Fig. 3, but for the NH listeners. Note the different target-to-inter-

ferer ratios employed for these listeners.
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of 0.6 s. As with the previous figures, benefit is reflected as

the difference between each unprocessed (solid column) and

corresponding processed score (hatched column). This is

particularly important to note in Fig. 6, where baseline

unprocessed scores were not identical across studies.

For NH listeners at –5 dB TIR (left panel), the group-

mean non-causal algorithm benefit equaled 45.2 percentage

points, which was reduced to 32.1 percentage points for the

causal algorithm, amounting to a “causality cost” of 13.1 per-

centage points. At 0 dB TIR (center panel, left half), the

causal algorithm produced more benefit than the non-causal

algorithm for NH listeners (a negative cost), with benefit ris-

ing 4.2 percentage points from 21.2 to 25.3.

The greatest causality cost (26 percentage points) was

observed for HI listeners at 0 dB TIR (center panel, right

half), where the large non-causal benefit of 72.5 percentage

points was reduced to 46.5 percentage points for causal

algorithm benefit. The cost of causality for HI listeners was

smaller at the TIR of 5 dB (right panel), where a benefit of

58.6 percentage points for the non-causal algorithm was

reduced to 48.2 percentage points for the causal algorithm,

resulting in a causality cost of 10.4 percentage points.

Planned comparisons consisting of four uncorrected

two-tailed Welch’s t-tests on RAUs were used to assess the

causality cost for each listener group at each TIR. For NH

listeners, causality significantly reduced algorithm benefit at

–5 dB TIR [t(17.9)¼ 3.07, p¼ 0.007] but the difference (the

negative cost) was not significant at 0 dB TIR [t(18.0)

¼ –0.51, p¼ 0.61]. For the HI listeners, causality signifi-

cantly reduced algorithm benefit at 0 dB TIR [t(17.3)¼ 3.76,

p¼ 0.0015] but not at 5 dB TIR [t(17.9)¼ 1.22, p¼ 0.24].

The two significant results survive Bonferroni correction

with a family size of four comparisons. Performance costs

associated with making the algorithm causal were therefore

greater and only significant at the less-favorable TIR tested

for each listener type.

B. Objective measures

The current results were evaluated in terms of extended

short-time objective intelligibility (ESTOI) (Jensen and

Taal, 2016), perceptual evaluation of speech quality (PESQ)

(Rix et al., 2001), and signal-to-distortion ratio improve-

ment (DSDR) (Vincent et al., 2006). ESTOI (typical

scale¼ 0 to 100%) is a predictor of speech intelligibility

resulting from essentially a correlation between acoustic

amplitude envelopes of clean target speech and that same

speech following corruption and processing to remove cor-

ruption. PESQ (scale¼ –0.5 to 4.5) is an objective measure

of speech sound quality and also represents the acoustic rela-

tionship between clean target speech and speech following

corruption and processing. DSDR (dB) reflects the signal-to-

noise ratio improvement following processing. The average

scores in each TIR condition are displayed in Table I. Values

are provided for the current fully causal version of deep

CASA as well as for the non-causal version from Healy et al.
(2020), in the common conditions of T60¼ 0.6 s.

As expected, causal deep CASA performed more poorly

than the non-causal version, due to the lack of future

FIG. 6. Comparison between non-causal and causal processing: Plotted are group mean (and standard error) intelligibility resulting from the non-causal ver-

sion of deep CASA (data from Healy et al., 2020), along with values from Fig. 5 for the fully causal version of the algorithm, at the common conditions of

T60¼ 0.6 s. The speech stimuli and experimental procedures were identical across studies. The algorithm was also largely identical, with the exception of

conversion from utterance-based processing to a fully causal time-frame-based model. Different groups of listeners were employed across the two studies,

likely accounting for the difference in unprocessed scores. Again, benefit is represented by each difference between unprocessed (solid column) and proc-

essed (adjacent hatched column) scores.

TABLE I. Average ESTOI, PESQ, and DSDR at different target-to-

interferer ratio conditions for the target speaker in reverberant two-talker

mixtures with T60¼ 0.6 s. The signals were processed by non-causal and

fully causal deep CASA.

TIR (dB) �5 0 5 Average

ESTOI (%) Noisy 20.48 27.84 36.26 28.19

Non-causal 66.55 74.79 81.95 74.43

Causal 51.81 66.78 75.33 64.64

PESQ Noisy 1.23 1.47 1.72 1.47

Non-causal 2.45 2.69 2.97 2.70

Causal 1.89 2.41 2.72 2.34

DSDR (dB) Non-causal 13.95 11.78 10.50 12.07

Causal 10.46 9.76 8.08 9.43
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information. Compared to the anechoic condition (Liu and

Wang, 2020), the degradation resulting from causal process-

ing was larger in the reverberant environment. This can be

attributed to the decline of dereverberation performance by

removing the future context in causal processing (Zhao

et al., 2020). Nevertheless, substantial improvements were

observed in all conditions after the reverberant mixtures

were separated with fully causal deep CASA. On average,

ESTOI, PESQ, and DSDR scores were improved by

36.45%, 0.87 and 9.43 dB, respectively.

IV. GENERAL DISCUSSION

The current results demonstrate that substantial

increases in intelligibility can be obtained for both HI and

NH listeners, in conditions of complex interference involv-

ing a competing talker and concurrent room reverberation,

using a fully causal deep learning algorithm. The efficacy of

the current algorithm, as well as that of the non-causal ver-

sion, can be visualized in Fig. 2. The top panel (a) shows

that the acoustic energy of the two-talker reverberant mix-

ture is considerably spread over time and that acoustic land-

marks characteristic of clear speech are considerably

distorted, particularly when viewed in relation to the clean

individual signals in panels (b) and (c). But the panels below

(b) and (c) show that both algorithms output signals that

appear highly similar in acoustic structure to the original

clean speech. Also, apparent is the similarity in structure

between the outputs of the non-causal and causal versions of

the algorithm.

It is particularly important to observe that substantial

benefit remains during fully causal processing in realistic

amounts of room reverberation. The reverberant spread or

duplication of acoustic energy occurs forward in time (the

echo follows the event). Accordingly, access to this future

time-frame information could be especially beneficial in

reverberant environments as the network seeks to perform

dereverberation. Effective operation without this informa-

tion is notable.

The current results also allow the cost associated with

conversion to causal processing to be known. It is first

important to note that the causal costs established currently

apply to the current deep CASA algorithm, and different

implementations might display different costs. Figure 6 dis-

plays the intelligibility comparison across non-causal and

fully causal deep CASA, in otherwise essentially identical

conditions. It is clear that causal processing does not come

without cost in most conditions. The decrement associated

with causal processing was found to be significant in half of

the conditions examined. But it is also clear that substantial

benefit remains even in the case of fully causal processing.

The HI listeners received 46 percentage points of benefit on

average across the current fully causal conditions. And the

NH listeners received 22 percentage points of benefit on

average across the fully causal conditions, with their benefit

likely reduced due to high baseline scores. Thus, it can be

concluded that the cost associated with the current fully

causal processing is significant in some conditions, but mod-

est in magnitude relative to the overall level of benefit.

The current network was talker independent and required

to generalize across different TIRs and RIRs. It was also cor-

pus independent and recording-channel independent, which

are highly related and can challenge generalization, particu-

larly at lower SNRs/TIRs. The different speech corpora used

for algorithm training versus testing possess linguistic and

speech-production differences that can potentially challenge

generalization. The different recording equipment and

recording environments used to create stimuli for training

versus test impart acoustic differences that can also challenge

generalization. Specifically, the frequency response of the

microphone and the background noise and reverberation

environment of the recording session impart a constant

acoustic influence on the speech signal that a deep learning

algorithm could be sensitive to. Pandey and Wang (2020)

examined this issue in speech enhancement and found that

differences in recording-channel characteristics dominate the

cross-corpus/channel generalization challenge.

The current network also used complex representations,

which allowed both the magnitude and phase of the signal

of interest to be estimated. This technique was introduced

by Williamson et al. (2016) through the concept of the com-

plex ratio mask. It represents an advancement over the more

traditional approach (ratio mask) in which only the magni-

tude of the signal of interest is estimated by the network,

then combined with the phase corresponding to the unpro-

cessed speech-plus-interference (“noisy phase”) to construct

the estimated signal of interest. Initial investigations of

complex-domain phase estimation focused on speech qual-

ity, which is known to be impacted by phase and is in fact

substantially improved through the addition of estimated

“clean” phase. But the past several years have brought an

increased understanding that estimation of both magnitude

and phase can serve to improve speech separation in a far

broader sense [e.g., Choi et al. (2019) and Gu et al. (2021)].

The dramatic advantage associated with complex represen-

tations is illustrated by the fact that the deep CASA-

estimated complex ideal ratio mask can actually outperform

the ideal ratio mask (non-complex), despite that the former

is an algorithmic estimate made with no knowledge of the

separate target speech and interference signals, whereas the

latter is an oracle mask calculated using knowledge of these

unmixed signals (Liu and Wang, 2019).

One limitation of the current study involves the use of

separate listener groups to assess benefit in non-causal ver-

sus causal conditions. Further, the hearing loss of the current

HI group was 10 dB HL greater than that employed by

Healy et al. (2020), which could possibly serve to increase

benefit in the current study and reduce the causal cost. But

mitigating these effects is the fact that benefit was always

measured within subjects as the processed-unprocessed dif-

ference. And although benefit has been related to PTA in

other works, this relationship was not found in the current

data, suggesting that any influence of hearing-loss difference

between studies is small if present.
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This work follows the philosophy that optimal algo-

rithm performance should be targeted first, to the near exclu-

sion of other considerations. Accordingly, our prior works

have targeted performance without much concern over cau-

sality or network size. The rationale is that high perfor-

mance affords room for performance reductions as

implementation concerns are addressed. The other rationale

is that the establishment of high performance benchmarks

allows any performance reductions associated with imple-

mentation modifications to be known.

The current study involves the next step, which involves

the only fundamental requirement for real-time operation–

causality. The high performance benchmark associated with

the non-causal network afforded room for reductions to

occur and benefit to remain large. Subsequent works will

address network size and computational burden. One

approach to this issue is to simply reduce the number of

layers and units per layer in a traditional neural network.

But this typically results in substantial performance decre-

ments. Fortunately, techniques are being developed to allow

small, more readily implementable networks to operate with

efficacy similar to larger networks [see, e.g., Tan and Wang

(2021)].
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