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A B S T R A C T   

Severe crop defoliation caused by insects and pests is linked to low agricultural productivity. If the root cause is 
not addressed, severe defoliation spreads, damaging whole crop fields. Understanding which areas are afflicted 
by severe defoliation can help farmers manage crops. Unmanned Aerial Vehicles (UAV) can fly over whole crop 
fields capturing detailed images. However, it is hard to characterize crop defoliation from aerial images that 
include multiple, overlapping plants with confounding effects from shadows and lighting. This paper assesses the 
efficacy of machine learning techniques to characterize defoliation. Given an UAV image as input, these tech-
niques detect if severe defoliation is present. We created a labeled data set on soybean defoliation that comprises 
over 97,000 UAV images. We compared machine learning techniques ranging from Naive Bayes to neural net-
works and assessed their efficacy for (1) correctly characterizing images that contain defoliated crops and (2) 
avoiding wrong characterizations of healthy crops as defoliated. None of the techniques studied achieved high 
efficacy on both questions. However, we created DefoNet, a convolutional neural network designed for detecting 
crop defoliation that produces models that can be efficacious for either question. If adopted in practice, DefoNet 
models can guide decision making for mitigating crop yield losses due to defoliating insects.   

1. Introduction 

In the United States, over 500,000 farmers manage soybean crops 
covering 88 million acres and producing 4.5 billion bushels annually 
(USDA, 2019). However, a variety of leaf-chewing insects, such as Bean 
Leaf Beetle, Green Cloverworm, and Japanese Beetle, routinely feed on 
soybean crops. These insects cause severe crop defoliation, i.e., the some 
discussions about the benefits of network design for DefoNet widespread 
loss of leaf area, which has been linked to loss in agricultural produc-
tivity (Haile et al., 1998; Thomas et al., 1974; Higley, 1992; Li et al., 
2006). 

There exist well-researched treatment threshold guidelines for soy-
bean, which inform the farmer when there is enough insect defoliation 
damage to warrant an insecticide application. However, current best 
practice for the assessment of soybean defoliation involves manual 
collection of upper,middle, and lower-canopy leaf samples from 50 
plants per acre (Hunt, 2007). While widely used in practice, this 

approach is laborious, tedious and slow. Also, it is very difficult to 
accurately judge defoliation levels by eyes. Thus, it is very common for 
farmers and crop consultants to over-estimate both the extent of soybean 
defoliation and its potential impact on yield, which results in over- 
treatment and unnecessary expense which decreases farm profit (Man-
andhar et al., 2020). Furthermore, the over use of insecticides raises 
serious problems, from long-term environmental damage to the health 
of agriculture workers to evolutionary resistance. A second problem is 
that there are multiple sources of variability within a crop field, such as 
topography, moisture and soil type, that can affect crop defoliation. So, 
the collection of a few samples from a few sections of the field can 
produce unreliable estimates of soybean defoliation. Severity of defoli-
ation in areas where leaves were not collected may be worse than ex-
pected. A third problem is that with so many acres to scout, detecting 
problem levels of defoliation on the ground via manual approaches can 
be difficult and time consuming. As such, active infestations can spread 
rapidly while farmers contract, deploy and wait for manual crop 

Abbreviations: DL, Deep learning; CNN, Convolutional neural networks; ML, Machine learning; UAV, Unmanned aerial vehicles. 
* Corresponding author. 

E-mail addresses: zhang.9325@osu.edu (Z. Zhang), khanal.3@osu.edu (S. Khanal), raudenbush.3@osu.edu (A. Raudenbush), tilmon.1@osu.edu (K. Tilmon), 
cstewart@cse.ohio-state.edu (C. Stewart).  

Contents lists available at ScienceDirect 

Computers and Electronics in Agriculture 

journal homepage: www.elsevier.com/locate/compag 

https://doi.org/10.1016/j.compag.2021.106682 
Received 6 July 2021; Received in revised form 16 November 2021; Accepted 30 December 2021   

mailto:zhang.9325@osu.edu
mailto:khanal.3@osu.edu
mailto:raudenbush.3@osu.edu
mailto:tilmon.1@osu.edu
mailto:cstewart@cse.ohio-state.edu
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2021.106682
https://doi.org/10.1016/j.compag.2021.106682
https://doi.org/10.1016/j.compag.2021.106682
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2021.106682&domain=pdf


Computers and Electronics in Agriculture 193 (2022) 106682

2

scouting to finish. Consequently, there is a need for effective, efficient, 
and nondestructive approaches for detecting and mapping defoliation, 
and characterizing patterns of disturbance to guide better management 
decisions about the use of insecticide. 

Remote sensing technologies such as UAV provide cost-effective 
approaches to acquire timely crop health information over a large 
geographic area that can be used for identifying and mapping soybean 
defoliation. UAV can fly to preset locations in a field, hover meters above 
ground, and capture detailed images. Unlike manned airplanes, UAV are 
piloted via remote control, making them more cost effective for scouting 
crop fields (Boubin et al., 2019). By covering the whole field, UADeep 
learning DLConvolutional neural networks CNNMachine learning 
MLUnmanned aerial vehicles UAV AbbreAV images can provide holistic 
views that manual scouting can’t. While physiological and phenological 
crop traits,such as biomass, height, and greenness, can be characterized 
directly from UAV images (Bendig et al., 2014; Yeom et al., 2019; Lar-
rinaga and Brotons, 2019; Anthony et al., 2014), crop defoliation pre-
sents challenges. First, aerial images capture multiple plants that overlap 
in dense canopies, making it hard to mimic manual approaches that 
analyze individual leaves from specific, isolated crops. Second, aerial 
images confound defoliation with shadows. To distinguish the effects of 
lighting from actual crop damage, experts use contextual data based on 
the field, phenological crop traits, and defoliation patterns in the local 
region. 

Recent research has extensively used machine learning to address 
complex agricultural problems. For example, Mueller et al. predicted 
soil erosion using logistic regression (Mueller et al., 2005). The paper 
concluded that logistic regression has potential for developing erosion 
indices with soil survey. Lu et al. predicted agricultural water usage 
using support vector machine (Lu et al., 2009). Grbi et al. deployed 
multiple Gaussian process regression models to predict stream water 
temperature with RMSE around 0.87 C and MAE below 0.7 C (Grbić 
et al., 2013). Fletcher et al. used random forest models fed with leaf 
multispectral data to classify pigweed and soybean crops (Fletcher and 
Reddy, 2016). They achieved an overall accuracy of 96.7%. Venkatesh 
et al. counted corn stalks using CNN models with UAV collected images 
(Venkatesh et al., 2019). Similarly, studies used deep learning method, 
such as CNN, for identification of plant disease (Pourreza et al., 2015; 
Fuentes et al., 2018; Ferentinos, 2018; Barbedo, 2018), as well as for the 
automated recognition of plants based on morphological patterns of 
crop leaves (Lee et al., 2015; Grinblat et al., 2016). Although machine 
learning has been applied to many agricultural related problems, their 
applications to soybean defoliation assessment have been very limited. 

Prior studies such as ONeal et al. proposed a method based on the 
analysis of digital images (ONeal et al., 2002). They collected physical 
leaf samples and used a desktop scanner to measure leaf area and 
defoliation. Liang et al. used color-image analysis to estimate soybean 
leaf area, edge, and defoliation (Liang et al., 2018). The R2 and root 
mean square error (RMSE) of estimated and observed defoliation of 
trifoliate leaves were 0.90 and 6.16%, respectively. Da Silva et al. 
trained CNN models to predict soybean leaf defoliation (da Silva et al., 
2019). The data set used to train CNN models was built with single leaf 
images, and leaf defoliation was manually created by placing irregular 
shapes on leaves to simulate different degrees of defoliation. The best 
result achieved a root mean square error of 4.57%. However, the CNN 
model was trained with only synthetic images of leaves in isolation. 
While these results are promising, approaches that assess defoliation for 
individual leaves can not be applied directly to aerial images that 
include multiple occlusions and overlapping leaves. 

The overall objective of this paper is to produce a process that finds 
which machine learning techniques work well on aerial images collected 
by UAV for assessment of soybean defoliation. Since there exist several 
machine learning techniques, the paper compares the efficacy of mul-
tiple machine learning algorithms to characterize defoliation. Often-
times the agricultural data set including soybean defoliation images are 
imbalanced and thus, it is very challenging to achieve high accuracy in 

model performance. Also, the model performance is biased towards 
classes that are in majority. Although this is a very common issue while 
applying machine learning techniques in agricultural data set, tech-
niques to address class imbalance to counter bias has received little 
attention. This paper also assesses techniques to enhance the accuracy of 
machine learning technique when training and testing sets are 
imbalanced. 

2. Material and methods 

Fig. 1 outlines the process for evaluating the efficacy of machine 
learning for soybean defoliation. In the next section, each stage has been 
described, focusing on properties that affected the design of our study. 

2.1. Data collection 

In August and September 2020, we conducted six UAV missions over 
five soybean fields in Wooster, Ohio, U.S., spanning the critical growth 
stages when soybean defoliation is usually observed. The fields were 
planted in April and eventually harvested in early November. 

For each field, we defined 10–20 waypoints, i.e., GPS locations for 
the UAV to fly and capture aerial visible images. A DJI Matrice 200 UAV, 
mounted with DJI Zenmuse Z5S visible camera, was used to collect 4 
megapixel images at an altitude of 10 meters above ground. At each 
waypoint, a minimum of five images were collected to ensure collection 
of high quality images. Throughout this paper, we will refer to the image 
as RGB, reflecting the structure of red, green and blue pixels for each 
image. 

2.2. Expert labeling 

We wrote a script file in Python to automatically crop UAV images. 
Each UAV image was cropped into small images, with each image of size 
108× 108 pixels. Fig. 2 provides example images from our data set. In 
total, we randomly selected 94 UAV images that represented areas in a 
soybean field where at least 5% defoliation were observed. These images 
were divided into small images. In total, we had 97,395 cropped images 
from six UAV missions, which were used for expert labelling. 

We used our expertise to label the crops shown in each image as (1) 
healthy or (2) defoliated (Fig. 2). To be sure, manually labeling images is 
tedious work. Although we could have employed unskilled laborers 
(Ipeirotis et al., 2010; Hara et al., 2019), to ensure correct labeling, we 
recruited two experts, 1) a field entomologist with a minimum of 5 years 
of experience in soybean defoliation and monitoring, and 2) a third year 
PhD student with multiple publications in precision agriculture forums 
and experience in collecting and processing agricultural remote sensing 
data. The experts also serve as co-authors of this manuscript. 

To label as many images as accurately as possible, the field ento-
mologist randomly checked the labels assigned by the least experienced 
labeller. Images where more than 10% of the visible leaf area was 
defoliated were identified and labelled as defoliated and all other images 
were labelled as non defoliated or healthy. 

Imbalanced Multiclass Defoliation Dataset: As shown in Table 1, 
67,479 images were labelled healthy and 29,916 showed greater than 
10% defoliation, a ratio greater than 2-to-1. Similar to other agricultural 
data set focused on diseases, it is common to expect imbalance between 
healthy and defoliated soybean crops as they are one of the important 
cash crops to farmers and thus highly managed to avoid potential 
defoliation. However, imbalanced data challenges machine learning. 
First, naive algorithms biased toward healthy labels will predict the 
common case well, even though the models do not capture the traits of 
defoliation. The most widely used metric to assess efficacy, i.e., accu-
racy, is biased if test sets are not skewed toward defoliated crops. 
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2.3. Data extension 

Given a training set, machine learning techniques find patterns to 
predict the outcome feature (i.e., defoliation in this study). However, 
machine learning may require very large training sets to learn concepts 

easily encoded by experts. These concepts can be encoded as data ex-
tensions, reducing the size of the training set required for machine 
learning. For example, in computer systems, data extensions based on 
queuing theory make online learning and cloud management feasible 
(Morris et al., 2018). 

Vegetation indexes have been used widely as a proxy for crop con-
ditions (Kogan, 1995; Zhang et al., 2020; Yang et al., 2020; Khanal et al., 
2018; Kamble et al., 2013; Holzman et al., 2014). The concept behind 
vegetation indexes uses arithmetic equations involving spectral signa-
tures (RGB image in this study) at a pixel level. Some vegetation indexes 
are computed from image data acquired via multispectral or hyper-
spectral sensors covering visible (VIS) and infrared (IR) regions, which 
are comparatively expensive than visible sensor. For example, normal-
ized difference vegetation index (NDVI) requires near-IR and red bands. 
For this work, in addition to RGB images, we selected three vegetation 
indices, excess green index (ExGI), leaf area to leaf edge index (LAE), 
and leaf area index (LAI), that can be computed using RGB images, 
mainly because (1) soybean leaf defoliation can be detected visually, 

Fig. 1. 4-stage process for a study on the efficacy of machine learning for crop defoliation.  

Fig. 2. Example images collected for the study. (a), (b), and (c) were labeled healthy, whereas (d), (e), (f) were labeled as defoliated.  

Table 1 
Healthy and defoliated labels by UAV mission.  

Flight No. Expert Labels 

Healthy Defoliated 

1 10,353 4,758 
2 10,900 4,404 
3 9,956 3,654 
4 10,575 7,896 
5 11,969 6,819 
6 10,200 5,911 

Total 67,479 29,916  
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and (2) these reflect on leaf area which indicates defoliation. 
Use of vegetation indexes in our workflow (Fig. 1) reduces the 

required training set size when vegetation indexes are correlated with 
defoliation, as well as help better quantify the defoliation.  

• ExGI focuses on contrasting green vegetation from soil by giving 
more weight to green spectral band than red and blue. It can 
outperform some complex indices that require NIR band (Larrinaga 
and Brotons, 2019). ExGI equation is as follows: 

ExGI = (2 × g) − b − r (1)  

where g = G/(R + G + B),b = B/(R + G + B),r = R/(R + G + B). R,
G,B are spectral bands of RGB images.  

• LAE is a ratio of leaf area to leaf edge, and is found to be helpful in 
characterizing leaf defoliation. For a single leaf, defoliation tends to 
decrease a leaf area and increase a leaf edge. Thus, the more defo-
liation, the less LAE is. LAE is calculated by: 

LAE =
LA
LE

(2)  

where LA represents the total leaf area and LE represents the total 
leaf edge. To calculate LAE, we use ExGI to extract green vegetation 
and count each pixel for the leaf area. For the leaf edge, we adopt the 
canny edge detection algorithm to extract the leaf edge and count the 
number of pixels (Canny, 1986).  

• LAI calculates the leaf area from the plant canopy. It is designed to 
measure the leaf area per unit ground area. Thus, its equation is as 
follows: 

LAI =
LA
GA

(3)  

where LA is the leaf area while GA is the ground area. The mea-
surement of LA is the same as that in LAE. The ground area is ob-
tained by counting the total pixels of the image. 

2.4. Machine learning techniques 

We first extracted useful features from aerial images, such as ExGI, 
LAE, LA, and trained some classic machine learning models. We selected 
several machine learning classification algorithms that have been 
widely used in agricultural applications as a start. Furthermore, we also 
used our data sets to train deep learning approaches, such as VGG16 and 
ResNet50 deep CNN models, and compared their performance.  

• Naive Bayes Classifier (NB) (Bhargavi and Jyothi, 2009; Miriti, 
2016) consists of a series of simple probabilistic classifiers that use 
the Bayes theorem under the assumption of strong independence 
between features.  

• K Nearest Neighbors (KNN) (Hossain et al., 2019; Suresha et al., 
2017) is a supervised machine learning algorithm whose main idea is 
to classify the k number of nearest data points to a given point as the 
same class. The classification result varies given k size.  

• Random Forest (RF) (Lebourgeois et al., 2017; Grimm et al., 2008; 
Tatsumi et al., 2015) is an ensemble classification model consisting 
of several decision trees. Its output depends on the majority results 
given by all decision trees in it. 

• Support Vector Machine (SVM) (Pujari et al., 2016) can be inter-
preted as a linear classifier with the largest interval in the feature 
space. The strategy of SVM is to maximize the interval.  

• Gaussian Process (GP) (You et al., 2017) is a generalization of 
Gaussian probability distribution that can be used as a classification 
algorithm.  

• Convolutional Neural Networks employ deep learning by adding 
multiple convolutional layers. Other than DefoNet that we custom 
designed (discussed in Section 2.5), we also trained VGG16 and 

ResNet50 models using same data sets for comparisons. VGG16 is a 
very deep CNN model that achieved 92.7% top-5 test accuracy in 
ImageNet, which is a dataset of over 14 million images belonging to 
1000 classes (Simonyan and Zisserman, 2014). It consists of 13 
convolutional layers and 3 fully connected layers, which in total has 
over 138 million parameters. ResNet50, short for residual networks, 
has an architecture that allows us to train extremely deep CNN 
models with 50 layers (He et al., 2016). The structure of ResNet50 
consists of 5 stages each with a convolution and an identity block. 
For each convolution block, it has 3 convolutional layers and for each 
identity block, it also has 3 convolutional layers. In total, ResNet50 
has over 23 million trainable parameters. 

2.5. DefoNet design 

To further explore the potential of deep learning approaches in 
solving agricultural problems. We designed and fine tuned a CNN model, 
DefoNet, from scratch to test its performance on characterizing soybean 
leaf defoliation. DefoNet is modified from the classical CNN architecture 
of LeNet (LeCun et al., 1989). The structure of LeNet is very simple, 
which mainly consists of two convolutional layers. Each convolutional 
layer is followed by a pooling layer. Based on the structure of LeNet 
(convolutional layer to pooling layer), we designed a much deeper and 
more complex CNN model. The idea behind designing a CNN model 
specific for soybean defoliation is simple. We first started with a simple 
CNN structure. Based on each result, we added or deleted layers and 
neurons in each layer accordingly. After the performance of our model 
stabilized, we tuned model parameters, such as learning rate, number of 
epochs, regulations, dropout rate, etc. As shown in Fig. 3, the architec-
ture of DefoNet has the following features:  

• Input layer. The size of input images is chosen as 108 * 108 pixels as 
it is small enough to contain several leaves at a higher resolution and 
yet not too small to contain a whole leaf. 

• Convolutional layers. Unlike LeNet that used only two convolu-
tional layers, DefoNet is built with a deeper structure that consists of 
8 convolutional layers divided into 3 parts. Each convolutional layer 
uses 3 × 3 filters, 1 stride, and zero padding. The first part has two 
convolutional layers with 32 filters for each layer, the second part 
has three layers with 64 filters for each layer, and the last part has 
three layers with 128 filters for each layer.  

• Activation layers. For each convolutional layer, ReLU was adopted 
as the activation function (Krizhevsky et al., 2012). And we use 
sigmoid activation function for the last layer of DefoNet.  

• Normalization layers. Each ReLU activation layer is followed by a 
batch normalization layer to accelerate model training speed (Ioffe 
and Szegedy, 2015).  

• Pooling layers. Each convolutional part is followed by a max- 
pooling layer to down-sample feature maps generated by convolu-
tional layers. The max-pooling has 2 × 2 pooling size and 1 stride.  

• Dropout layer. We add a dropout layer with a 0.35 dropout rate 
before the fully connected layer to avoid model overfitting (Srivas-
tava et al., 2014). 

2.6. Techniques to counter imbalance data 

In this study, images representing the non defoliated class greatly 
outnumbered images in the defoliated class (2.25:1 ratio). Thus, a CNN 
model when trained on a highly imbalanced data naturally tends to 
perform poorly on the minority class compared to a majority class 
because there is not enough features in the minority class to learn about. 
Although the CNN model can yield a decent overall accuracy, it is 
important to maximize the performance of CNN model for the minority 
(defoliated) class. 

To get a better classification results for the minority class in an 
imbalanced data set, we adopted two approaches. The first approach is 
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to increase the class weight of the minority class to balance the total 
weights between the majority and the minority class so that during the 
model training process, the classifier will largely weigh the few available 
minority features. The second approach is to decrease the number of 
images in the majority class in the training data set by random under-
sampling. Random undersampling randomly picks a subset of images 
from the majority class so that two classes will be equal during the model 
training process. In this way, the classifier can pay the same attention to 
features in both classes. Random undersampling only happens to the 
training set of the data set while the test set remains the same. Overall, 
the original data set, along with two (weight balanced and randomly 
undersampled) processed data sets were used to train DefoNet as well as 
VGG16 and ResNet50. 

2.7. Evaluation method 

Models that characterize crop defoliation provide insights for man-
aging crops to avoid defoliation driven yield losses. Efficacy, in this 
context, means helping farmers learn about soybean defoliation in their 
field or reduce costs by replacing whole-field insecticide applications 
with a fewer applications targeting defoliated areas. Thus, models with 
high accuracy, i.e., over 90% of test images are characterized correctly, 
are not necessarily efficacious. As areas with severe defoliation are rare, 
such imbalanced data can allow models to achieve high accuracy by 
characterizing most images as healthy images. Farmers looking for areas 
with defoliation may find that such models wrongly characterize healthy 
images as defoliated, making it hard to understand the true health of the 
field. Such models thus have limited value for crop management. 

Fig. 4 presents a confusion matrix that highlights metrics for efficacy: 
precision and recall. These metrics thwart imbalance by excluding the 
dominant label (true healthy). Eqs. 4 and 5 define precision (P) and 
recall (R). 

Precision =
TrueDefoliated

TrueDefoliated + FalseHealthy
(4)  

Recall =
TrueDefoliated

TrueDefoliated + FalseDefoliated
(5) 

Models that achieve high precision help guide farmers to areas with 
severe defoliation than guiding to areas that are incorrectly classified as 
defoliated. Models that achieve high recall help find most of the areas 
with severe defoliation. 

We evaluated precision and recall when comparing the performance 
of the machine learning techniques described in Section 2.4. We used 
stock implementations from Python Scikit (Pedregosa et al., 2011) to 
build the models. We split the images from our data set into training and 
testing subsets. We randomly selected 70% of the images for training 
and used the remaining images for testing. Experiments were conducted 
on a server running Windows 10 with Intel(R) Xeon(R) Gold 6258R CPU, 
64 GB RAM, and NVIDIA GeForce RTX 2080 Ti GPU. 

3. Results 

3.1. Machine learning techniques 

Fig. 5 reports precision and recall for each of the studied machine 
learning techniques. Resnet50, VGG16, and DefoNet achieve the highest 
precision and recall. As discussed in Section 2.4, CNNs are well struc-
tured for image processing, using deep learning and spatial locality to 
infer concepts that improve accuracy. 

Traditional machine learning techniques achieved lower precision 
and recall. Naive Bayes achieved 88.4% recall, but only 39.5% precision. 
Over 65% of healthy images are wrongly characterized as defoliated. In 
contrast, Random forest achieved 67% precision, but low recall. 

Using 2 DefoNet models, i.e., one for precision and one for recall, was 
the most efficacious, achieving 91% precision and 90.9% recall. DefoNet 
reduced false healthy characterizations (precision error) by 1.6X, 1.4X 
and 3.8X compared to VGG16, ResNet50 and the best traditional ma-
chine learning technique respectively. DefoNet reduced false defoliated 
characterizations (recall error) by 1.9X (VGG16), 2.3X (ResNet50) and 
1.2X (Naive Bayes) respectively. 

Fig. 7 provides a detailed leaf-level comparison of the efficacy of 
different machine learning models. We selected 12 images that capture 

Fig. 3. The architecture of DefoNet.  

Fig. 4. A confusion matrix for leaf defoliation. Positive means defoliated while 
negative means non defoliated. 

Fig. 5. Precision and recall (efficacy) of competing machine 
learning techniques. 
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various challenges with defoliation assessment from UAV. Model pre-
dictions on these images were indicative of the limitations of various 
approaches, especially relative to DefoNet. The first two images capture 
whole, healthy leaves. These images are correctly classified by all but 
four classifiers. We observed that lighting issues may have upset 
Gaussian Process and Naive Bayes models on the second image, because 
these approaches learn distinct non-contiguous classes for images that 
contain neon green leaves versus images that contain matte green 
leaves. The third image contains a dark shadow due to depth and 
lighting. Using only pixels and vegetation indices to split features, the 
decision tree is unable to extract context that discounts the shadow and 
over fits. Conversely, random forests use an ensemble of decision trees to 
remove this bias and correctly predict the third (and fourth) image. The 
sixth, seventh and eighth images were the hardest for experts to classify. 
Every machine learning approach struggled to label these images 
correctly, because they contain overlapping leafs, shadows, actual 
defoliation, and depth. DefoNet (in recall mode) distinguishes these 
effects, but in precision mode, it reverses its decision on the sixth image, 
conservatively labeling it as unhealthy. These borderline images sepa-
rate the efficacy of DefoNet. The remaining images capture clear cases of 
defoliation, but have varying lighting and resolution issues. Deep 
learning approaches, in general, excel at object detection and, in this 
case, they identify defoliated leaves well, even under dark lighting that 
causes simple machine learning approaches to fail (e.g., the eleventh 
image). 

3.2. Impact of imbalanced data 

There were changes in recall and precision values among the CNN 
models trained on the original (imbalanced),class weighted and random 
undersampling data. Fig. 6 shows results when class weighting and 
subsampling are used to counter imbalanced data. 

Models trained on the original, imbalanced data set, showed higher 
precision because fewer images were characterized as defoliated. In 
contrast, models trained using subsamples from training data had the 
lowest precision. Class weighted models provided good precision and 
recall. For DefoNet, class weighting outperforms training data sub-
sampling in recall while nearly matching the original, imbalanced model 
on precision. 

3.3. Training time 

As shown in Table 2, traditional machine learning techniques trained 
models quickly. Naive Bayes classifier trained a model in 0.03 seconds. 
Gaussian Process took 1 h and 54 min to train. As shown in Table 3, CNN 
models trained much more slowly. CNN models trained on the original 
data set and on the weight balanced data set have similar training time 
since the two data sets have the same data size. CNN models trained on 
the randomly subsampled data set have the shortest training time 
compared to the CNN models trained on the other two data sets because 
of a smaller data size. From Table 3 we can see that with a smaller CNN 
architecture, the DefoNet models were trained for about 6 times faster 

compared to the ResNet50 models that trained on the same data set, and 
about 8 times faster compared to the VGG16 models. 

3.4. Training data size 

We explored the impact of shrinking the training data on (1) training 
time and (2) efficacy. We repeatedly decreased the training set size by a 
factor of 2, going from 1/2 to 1/256 (Fig. 8). We randomly selected 
images for removal. For this experiment, we did not change the size of 
the testing data set. 

We trained DefoNet models on each training set with original, 
imbalanced data. As shown in Fig. 8, precision gets lower as training set 
gets lower. However recall does not change significantly. With less 
training data, attempts to find the concepts correlated with defoliated 
are more error prone, resulting in more False Healthy characterizations 
and degrading precision. After shrinking the training set below 1/256, 
recall drops sharply to 46%. 

3.5. Image resolution 

In addition to changing the data size, we explored the impact of 
lower resolution imbalanced images on the performance of DefoNet 
models. There are two practical considerations for this experiment. First, 
in practice, UAV and traditional aircraft often fly at higher altitudes than 
the altitude used in our study. Second, less expensive UAV may use 
cameras with a lower resolution. 

We used blurring kernels to lower resolution, where larger kernels 
reflect lower resolution. As shown in Fig. 9, we used kernel sizes of 3 × 3, 
5 × 5, and 7 × 7 to artificially create images of lower resolution, which 
were then used to train the DefoNet models. We observed that precision 
has a better tolerance than recall over resolution loss. As we increased 
the kernel size from 3 × 3 to 7 × 7, recall decreased from 80.6% to 
73.8%. 

3.6. Multi-class data set 

We also explored the potential of the DefoNet models on classifying 
multiple degrees of defoliation severity. For this test, we extended the 
testing data by labeling images with 20% or greater defoliation. This 
version of testing data included 3 classes: Class 0 (healthy), Class 1 
(10–20% defoliation), Class 2 (greater than 20% defoliation). Again, we 
observed imbalance innate to the data. 3,818 images were Class 0, 754 
images were Class 1, and 57 images were Class 2. 

We trained DefoNet models on the binary training data to charac-
terize the multi-class testing set. We adapted DefoNet by exploiting a 
feature of CNNs outputs - a probability for each class. We characterized 
an image as Class 2 if the model outputs a high probability of defoliated 
and low probability for healthy. We characterized an image Class 1 if the 
prediction shows that the image was most probable defoliated but 
healthy probability exceeded a threshold. 

Multi-Class Efficacy: Efficacy differs when there are multiple clas-
ses compared to only two classes. Here, we will focus on managing very 
severe defoliation, i.e., Class 2. Areas with very severe crop defoliation 
call out for manual inspection. Thus, false characterizations as Class 2 
can be very costly, causing crop managers to visit healthier areas in the 
field unnecessarily. 

Fig. 10 presents confusion matrices of three DefoNet models’ results. 
False characterizations of Class 2 (precision) are rampant for all DefoNet 
models. CNN models with the original and imbalanced training set yield 
the lowest rate of false Class 2 characterization, which is nearly 7 false 
labels to 1 one true Class 2. Clearly, DefoNet does not achieve efficacy 
here. However, CNN models trained on weighted and undersampling 
training sets perform well with regard to true classification of Class 2. 

Fig. 6. Comparing VGG16, ResNet50, and DefoNet with imbalanced, weighted 
and subsampled training data. 
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4. Discussion 

Fig. 11 maps defoliated areas within a soybean field. Each area re-
flects 108 square pixels, i.e., roughly 7 square inches. If an area in the 
image depicts severe defoliation according to DefoNet (imbalanced), 
then it has a red bounding box. Characterizations like this can guide 
decision making for managing crop fields, as evidenced by prior 
research (Zhang et al., 2020; Khosla et al., 2002). We used the following 
questions to assess the efficacy of characterizations for decision making.  

1. Is decision making affected by False Healthy, False Defoliated, or both?  
2. Does the task demand low error rates (<15%) or does it allow some error 

(<30%)?  
3. Are there time or computational constraints? 

4.1. Machine learning techniques 

None of the studied machine learning techniques were efficacious for 
tasks demanding low error rate for both precision and recall. However, 
for many tasks that require either high precision or high recall, CNNs can 
be efficacious. For example, insurance payouts after unexpected in-
festations would be based on total damage. Here, characterizations must 
capture most actual-defoliated areas, so high recall alone suffices. In 
contrast, insecticide applications today are often applied to whole fields. 
There are opportunities to reduce costs by applying insecticide to only 
defoliated areas, requiring high precision to avoid False Healthy 
characterizations. 

The design and development of DefoNet proved to be an useful way to 
target the soybean leaf defoliation problem. CNNs can use class 
weighting to learn efficacious models from imbalanced data. Besides, 
tuning CNNs for the unique task of detecting defoliated crops can 
significantly improve accuracy. DefoNet was the only technique studied 
to achieve over 90% accuracy in terms of precision and recall. 

Fig. 7. Prediction result of 12 sample images from machine learning models. First 6 images are healthy while the latter 6 images are defoliated. Green means correct 
prediction, red means incorrect prediction. 

Table 2 
The training time of traditional machine learning techniques.  

Baseline 
Model 

Naive 
Bayes 

KNN Random 
Forest 

SVM Gaussian 
Process 

Time (sec) 0.03 0.42 11.73 263.21 6852.63  

Table 3 
The training time of CNN models.  

CNN Models DefoNet VGG16 ResNet50 

Training Data imbalanced weighted sampled imbalanced weighted sampled imbalanced weighted sampled 

Time (min) 505 504 339 4150 4183 2708 3089 3097 2060  

Fig. 8. The performance of DefoNet trained on different sizes of training set of 
the original data set. 

Fig. 9. Performance comparison of models trained on lower resolution data set. 
Different resolutions are simulated by deploying different sizes of blur-
ring kernels. 

Fig. 10. Confusion Matrices of 3 DefoNet models: DefoNet (original), DefoNet 
(weighted), DefoNet (sampled). C0,C1,C2 indicate non defoliated, defoliated 
level 1, and defoliated level 2 separately. 
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Furthermore, the process of designing a CNN model, DefoNet, for solving 
a specific agricultural problem can also be used in the future to provide 
guidance when encountering similar agricultural challenges. 

Traditional machine learning techniques produced models quickly. 
However, in general, these approaches were not efficacious for tasks 
requiring low recall or precision. These approaches can be useful if 
models need to be trained quickly for tasks that allow some error. For 
example, before contracting a professional crop scouting company, a 
farmer may quickly fly over their field to estimate which services are 
needed. Here, the farmer can tolerate error as long as the process doesn’t 
take much time. Naive Bayes techniques integrated within the smart-
phone app used to set waypoints (e.g., Litchi (Litchi, 2021)) could be 
efficacious in this example. 

4.2. Additional considerations 

Training data and Image Resolution:To further explore the 
robustness of DefoNet given different data sizes and image resolutions, 
we decreased the data size and lowered the image resolution gradually 
and reported the performance of DefoNet models. As shown in Fig. 9, 
recall dropped slowly while precision didn’t lose much performance. 
This provides options for farmers to balance between cost and outcome 
when deploying UAV to scout the field. The DefoNet model trained on 
the low resolution data set can lose performance on recognising defo-
liated images, which lowers recall by classifying more defoliated images 
as non defoliated. In the meantime, due to the performance loss on 
classifying the defoliated class, the number of defoliated images that 
were correctly classified as defoliated and the number of non defoliated 
images that were misclassified as defoliated both decreased. However, 
the nominator of the precision equation decreased more compared to 
that of the denominator. As a result, precision stayed in a relatively 
stable stage. 

Fig. 8 showed the performance comparison of DefoNet models 
trained on different size of data set. In order to make the results com-
parable, we only decreased the size of the training set. The size of the test 
set remained unchanged. Decreasing from 100% of the original size to 
only 8%, recall still performed steadily, wandering around 70%. Despite 

the decrease in training size, the performance of DefoNet models didn’t 
change much in classifying defoliated images. In the meantime, the 
ability of DefoNet models to learn the features of non defoliated images 
was compromised; more and more non defoliated images were mis-
classified, which led to the drop in precision. After decreasing the 
training size to 1/256, only 182 non defoliated images and 80 defoliated 
images were left in the training set. At this point, the DefoNet model 
failed to learn enough features of the defoliated class and tended to 
make predictions towards the non defoliated class, which resulted in the 
huge performance drop of the DefoNet model, especially recall. A recall 
of merely 46.28% indicate that the DefoNet model can only classify 
around 46% of defoliated images correctly. The increase in precision, 
however, didn’t indicate a performance boost. Instead, the reason for the 
increase in precision is that both nominator (true positive) and de-
nominator (true positive + false negative) of precision dropped, de-
nominator dropped harder. 

Multiclass Defoliation Problem: We explored the potential of 
deploying DefoNet models trained on binary class data set to classify a 
multiclass defoliation problem. For this, we built a small data set con-
taining three classes: non defoliated, defoliated level 1, and defoliated 
level 2. Since it’s hard to find level 2 defoliated images, the data set is 
even higher imbalanced, with images 3818, 754 and 57 in non defo-
liated, defoliated level 1, and defoliated level 2 classes, respectively. 
Results in Fig. 10 showed a same pattern as the results in Fig. 6 that the 
DefoNet model trained on the original data set obtained the highest 
precision while the other two DefoNet models obtained better recalls. 
However, due to the introduction of a new class and its insufficient data 
set, all DefoNet models performed poorly on the multiclass data set, 
especially on classifying defoliated level 2. 

5. Limitations 

Here, we describe limitations to our study that may be addressed by 
future work. 

Data Collection and Data Expansion: Although all UAV images 
used to train machine learning models were collected from several dates 
covering critical growth stages of soybean when defoliation is likely to 
take place, the fields had very limited areas where defoliation greater 
than 20% were observed. Future work could extend the data set to 
include images representing severe soybean defoliations from other 
fields/regions. Further, UAV images collected using multispectral or 
thermal cameras could provide better machine learning outcomes. Also, 
in addition to vegetation indexes, topographical and moisture data can 
provide important context for assessing defoliation. In particular, we 
hypothesize that larger data would allow random forests to achieve 
greater efficacy. 

Data Labeling: Our selection of data labellers could yield bias into 
our process which could lead to results that can not be repeated and do 
not reflect the true efficacy of machine learning for defoliation. Experts 
from other regions may use context and crop traits in ways that change 
image labels. This would affect the marginal efficacy of models. Future 
work may explore approaches to involve independent experts from other 
regions or train non-experts in labeling crop defoliation, allowing tools 
like Amazon Mechanical Turk to produce larger data sets. 

Machine Learning Techniques: We assessed and compared several 
machine learning techniques to characterize soybean leaf defoliation 
and sought the potential of designing a CNN model as the solution. Other 
machine learning methods for image recognition, such as semantic 
segmentation (Girshick et al., 2014; Long et al., 2015), deep random 
forests, and R-CNN models (He et al., 2015; Girshick, 2015; Ren et al., 
2015; He et al., 2017), should also be studied. 

Applying Models in Practice As precision agriculture reaches 
maturity, it is essential to gain experiential studies using model-driven 
crop management in the field. We are particularly interested in the 
distribution of practical usage scenarios benefited by precision, recall or 
accuracy. For example, if most usage scenarios need precision, custom 

Fig. 11. Aerial image of a soybean field. We used DefoNet to map defoliated 
areas with red bounding boxes. We enlarged a 3 × 3 block of areas to visualize 
DefoNet characterizations. B1 and C2 were Healthy while the other enlarged 
areas were Defoliated. 
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agricultural UAV and crop scouting models can be developed to maxi-
mize throughput and lower cost. 

6. Conclusion 

In this paper, we seek a solution from machine learning techniques to 
characterize the severity of soybean leaf defoliation using UAV-collected 
images. In order to help find the answer to the two key questions pro-
posed in this paper: (1) Are images containing severe defoliation 
incorrectly characterized as healthy? (2) Do images characterized as 
healthy contain severe defoliation? The idea is to assess the efficacy of 
machine learning models from basic machine learning algorithms to 
state-of-the-art deep CNN models to problem-targeted self-designed 
CNN model. We design and evaluate the performance of a new CNN 
model, DefoNet, and compare it with many popular machine learning 
algorithms as well as other CNN models such as VGG16 and ResNet50. 
Compared to other machine learning models, DefoNet can yield a high 
precision model with 91% accuracy and a high recall model with 
90.93% accuracy, which can be adopted for answering either question. 
The soybean leaf defoliation map generated from UAV images showed 
that if adopted in practice, DefoNet models could aid farmers on getting 
soybean leaf defoliation condition of their fields in a timely and efficient 
manner compared to conventional approaches. Furthermore, the pro-
cess of designing a CNN model, DefoNet, for solving a specific agricul-
tural problem can also be used in the future to provide guidance when 
encountering similar agricultural challenges. 
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