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Edge computing is the next Internet frontier that will leverage computing resources located near users, sen-

sors, and data stores to provide more responsive services. Therefore, it is envisioned that a large-scale, ge-

ographically dispersed, and resource-rich distributed system will emerge and play a key role in the future

Internet. However, given the loosely coupled nature of such complex systems, their operational conditions

are expected to change significantly over time. In this context, the performance characteristics of such systems

will need to be captured rapidly, which is referred to as performance benchmarking, for application deploy-

ment, resource orchestration, and adaptive decision-making. Edge performance benchmarking is a nascent

research avenue that has started gaining momentum over the past five years. This article first reviews ar-

ticles published over the past three decades to trace the history of performance benchmarking from tightly

coupled to loosely coupled systems. It then systematically classifies previous research to identify the system

under test, techniques analyzed, and benchmark runtime in edge performance benchmarking.
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1 INTRODUCTION

The computing landscape has changed significantly over the past three decades. Loosely cou-
pled and geographically dispersed systems have begun replacing tightly coupled monolithic sys-
tems [146]. One example is from two decades ago, when computing resources that were distributed
across numerous organizations and continents were connected under the umbrella of grid com-
puting. Grids offered the unique capability of processing large datasets near data sources without
requiring the transfer of data from a distributed workflow to a central system [49]. Subsequently,
computing became a utility offered remotely through the cloud [147].

Although the cloud is the main computing model adopted for many Internet-based applications,
it has been recognized as an untenable model for the future. This is because billions of devices and
sensors are connected to the Internet, and the data generated by these sources cannot be trans-
ferred and processed in geographically distant cloud data centers without incurring considerable
communication delays [150]. Therefore, the next disruption in the computing landscape is to dis-
tribute infrastructure resources and application services further, to bring computing closer to the
edge of the network and data sources [114, 132]. In this article, we use the term “edge computing” to
refer to the use of resources located at the edge of a network, such as routers and gateways or ded-
icated micro data centers, to either provide applications with acceleration by co-hosting services
in cooperation with the cloud or by hosting them natively or entirely on edge resources [125].

The inclusion of edge resources for computing creates a large-scale, geographically dispersed,
resource-rich distributed system that spans multiple technological domains and ownership
boundaries. Such a complex system will be transient, meaning that resources, their availability,
and characteristics will change over time. For example, an edge resource previously available for
an application may become unavailable based on a recent fault or because the operating system
of a target resource may change during maintenance [154, 155]. In this context, it is essential to
address the challenge of understanding the relative performance of applications by comparing
diverse target hardware platforms from different vendors and their impact on performance when
system software changes or new networking protocols are introduced [102]. This has motivated
the development of edge performance benchmarking1 [13, 67].

Performance benchmarking is the process of inducing stress on a system while closely observing
its responses using a wide range of quality metrics. Typically, synthetic or application-driven work-
loads are executed on a system under test, such as a virtual machine, a storage system, a stream
processing system, or a specific application component, while measuring quality characteristics,
such as I/O throughput, end-to-end communication, or computation latency. Unlike alternative
approaches such as predictive methods or simulation, insights into real system behaviors can be
obtained by replicating the conditions of a production environment [19].

To the best of our knowledge to date, a survey on edge performance benchmarking is not
available in the literature. Hence, this article focuses on the following aspects: (i) Tracing the
history of the development of performance benchmarking over the past three decades for

1This article will use the terms “performance benchmarking” and “benchmarking” interchangeably. However, the focus of

this article is on edge performance benchmarking.
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Fig. 1. Histogram of the research publications reviewed in this article.

high-performance computing (HPC), grid, and cloud systems; (ii) cataloging and examining
different edge performance benchmarks; and (iii) reviewing the system under test, techniques
analyzed, and benchmark runtime that facilitate edge performance benchmarking.

Figure 1 presents a histogram of the total number of research publications reviewed in this article
from 1976 and 2020 in the following categories: (i) books and book chapters; (ii) reports, including
preprint articles or white papers and doctoral research theses; (iii) conference or workshop papers;
and (iv) journal or magazine articles. More than 83% of the articles reviewed were published after
2010 and more than 61% of the articles were published after 2015.

1.1 Survey Method

The survey method adopted for preparing this article is based on an approach presented in a
previous survey article [46]. This method includes (1) defining the objectives of the survey, (2)
defining research questions, (3) selecting keywords for searching, and (4) identifying criteria for
including or excluding research. These aspects are defined below.

(1) The objectives of this survey are defined as follows:

O1 Provide the research community with a catalog of research related to edge performance
benchmarking.

O2 Trace the development timeline of performance benchmarking for edge systems.
O3 Understand the key dimensions of existing research on edge performance benchmarking.
O4 Discuss directions for future research to extend the application of edge performance bench-

marking.

(2) The research questions addressed by this survey are defined as follows:

RQ1 To which systems is edge performance benchmarking applied? This will be discussed in
Section 4.

RQ2 Which techniques are analyzed by edge performance benchmarking? This will be discussed
in Section 5.

RQ3 What are the runtime environments that edge performance benchmarks operate in? This
will be discussed in Section 6.
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(3) Publication platforms such as the ACM Digital Library, IEEEXplore, ScienceDirect, arXiv, and
Google Scholar were considered. The primary keywords were a combination of edge (fog, mobile
edge, cloud-edge, cloudlet) and benchmarking (benchmark, benchmark suite, micro benchmark,
and macro benchmark) with additional keywords such as performance, system, and distributed
systems.

(4) The resulting works were screened to identify the most relevant works. A total of 3,764 pub-
lications were considered and screened down to 689 publications. The initial filters applied were
based on the title, followed by the relevance of the abstract. Two types of performance bench-
marking works are available, namely explicit and implicit edge performance benchmarking. For
research to be selected as explicit performance benchmarking, a benchmarking method, specific
benchmark, or toolchain for facilitating performance benchmarking had to be presented, which
was determined by inspecting complete papers. Such papers generally contribute to the field of
edge benchmarking. We selected 21 works containing explicit performance benchmarks, which
are cataloged in Section 3.

Implicit performance edge benchmarking works were also included if they presented an evalu-
ation of the performance of a system under testing, technique developed, or runtime, even though
such works did not explicitly highlight a benchmark, benchmarking methodology, or benchmark-
ing suite. Studies that did not present a comparative analysis of the system under test, technique
developed, or runtime were not considered for implicit benchmarking. The selected works often
use novel workloads and measurement approaches that could potentially be incorporated into
explicit edge benchmarking research. A total of 99 implicit performance edge benchmarking pub-
lications were selected. Selections based on the above mentioned criteria were validated by at least
two of the authors of this article.

This article considers a wide range of papers and Internet sources related to edge performance
benchmarking. For this purpose, we focus on explicit and implicit edge performance benchmarks.
We do not claim completeness for our selected set of implicit benchmarks for the following two
reasons. First, the body of work on edge computing (including closely related topics such as fog
computing or mobile edge computing) is very large and cannot be considered within a single
survey paper. Second, explicit edge benchmarks can be identified objectively, whereas implicit
benchmarks are subjective. Based on careful analysis and validation by at least two authors, the set
of selected implicit benchmarks may not necessarily be complete, but it contains no false positives.
Therefore, the subset of implicit benchmarks considered within the scope of this article adds value
to this survey and to the emerging field of edge performance benchmarking.

The remainder of this article is organized as follows. Section 2 provides a brief history of per-
formance benchmarking. Section 3 catalogs different edge performance benchmarks. Section 4
presents a review of systems under testing in edge performance benchmarking. Section 5 reviews
the techniques analyzed in edge performance benchmarking. Section 6 surveys runtime execu-
tion environments and deployments in edge performance benchmarks. Section 7 discusses future
directions for additional research and concludes this article.

2 A BRIEF TIMELINE OF PERFORMANCE BENCHMARKING

Performance benchmarks have played an important role in the evolution of the computing land-
scape and represent an important field of research and development. CPU or processor-related
benchmarks have existed since the 1970s. For example, the Whetstone benchmark was developed
to measure the floating-point arithmetic performance [36]. Dhrystone is another benchmark de-
veloped in the 1980s to evaluate the performance of integers [157].

This section provides a brief history of the development of the field of benchmarking of
distributed systems over the past three decades, as shown in Figure 2. Specifically, both tightly
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Fig. 2. Brief history of the development of performance benchmarking for HPC, grid, cloud, and edge

systems.
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coupled HPC clusters and supercomputers (highlighted in green), as well as more loosely coupled
infrastructure, such as the grid (highlighted in bronze) and the cloud (highlighted in turquoise),
are considered. The next section will consider edge computing benchmarks (highlighted in red
color), which are the main focus of this article.

This article does not present an exhaustive timeline of performance benchmarking within com-
puter science, but highlights some of the key milestones that have shaped performance bench-
marking research for current distributed systems and more specifically edge computing, which
is discussed in Section 3. In general, the observed pattern is that post-1990 HPC benchmarking,
post-2000 grid benchmarking, post-2010 cloud benchmarking, and post-2015 edge benchmarking
achieved major milestones. This trend seems to suggest that benchmarks for more loosely coupled
distributed systems are gaining prominence as a result of the decentralization and distribution of
resources within the computing landscape.

2.1 HPC Benchmarking

In 1979, the LINPACK benchmark was developed. This benchmark eventually evolved into the
High-Performance LINPACK (HPL) benchmark [42]. This benchmark is computationally in-
tensive and measures the floating point rate of execution by solving a dense system of linear equa-
tions. HPL is a de facto benchmark used for capturing the performance of supercomputers and
clusters in the TOP5002 list launched in 1993.

The NAS Parallel Benchmarks (NPB) were launched in 1991 and are based on computa-

tional fluid dynamics (CFD) applications [8]. The Standard Performance Evaluation Cor-

poration (SPEC) launched several HPC benchmarks in 1996 [45]. They focused on three industrial
applications, namely seismic processing, computational chemistry, and climate modeling.

More than a decade after the TOP500 project was launched, energy efficiency became an impor-
tant metric that influenced the development of parallel computing systems [130]. This resulted in
the launch of the Green5003 project in 2005, which evaluated floating point rates of execution in
the context of power consumption. A methodology for measuring and reporting the power used
by an HPC system was developed.4 In 2016, Green500 was integrated with the TOP500 project.

The HPC Challenge benchmark was launched in 2005 to measure performance and productiv-
ity [97]. This benchmark includes the STREAM benchmark for measuring sustainable memory
bandwidth [101].

The field commonly known as big data became popular in the context of HPC clusters, and
hence the GridMix5 benchmark for Hadoop clusters emerged in 2007.

The High Performance Conjugate Gradient is a relatively new benchmark that was launched in
2013 to rank supercomputers and clusters in a more balanced manner [66]. The performance of
this benchmark is influenced by memory bandwidth.

In 2016, several benchmarks utilized on the UK’s national supercomputer ARCHER were pre-
sented.6 These benchmarks are a combination of real applications (DFT, molecular mechanics-
based, CFD, and climate modeling) developed by the UK Met Office and synthetic benchmarks
from the HPC Challenge.

2https://www.TOP500.org/.
3https://www.TOP500.org/green500/.
4https://www.TOP500.org/static/media/uploads/methodology-2.0rc1.pdf.
5https://hadoop.apache.org/docs/r1.2.1/gridmix.html.
6https://www.archer.ac.uk/documentation/white-papers/benchmarks/UK_National_HPC_Benchmarks.pdf.
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Because HPC has become more heterogeneous with the advent of hardware accelerators, such
as GPUs, novel benchmarks have begun to emerge. These benchmarks include the RODINIA [28]
and SHOC GPU benchmarks [37], as well as the more recent Mirovia benchmarks [70].

2.2 Grid Benchmarking

As academic and research organizations have begun connecting clusters of computers, geograph-
ically dispersed and heterogeneous grids have become popular for scientific computing. Key
metrics that are relevant to grid benchmarking included turnaround time and throughput, be-
cause data originated from different geographic locations in a scientific workflow is executed on
grids [136].

One of the first benchmarks for evaluating computing performance on grids was the GridNPB,
which was released in 2001. This benchmark is an NPB distribution that uses the Globus grid
middleware [51].

In 2003, GridBench, which allows benchmarks to be specified using a definition language that
is compiled into specification languages supported by grid middleware, was released [143].

In 2004, the DiPerF benchmarking tool was used to generate performance statistics for grids to
predict grid performance [44].

GRENCHMARK was developed for generating synthetic workloads for benchmarking
grids [72]. This approach was adopted in ServMark for automating benchmarking pipelines [5].

Additional benchmarks such as GrapBench have provided flexibility to benchmarking ap-
proaches by considering variations in problems and machine sizes of applications and the grid,
respectively [108]. Furthermore, CROWNBench generates synthetic workloads for benchmarking
[160]. Domain-specific benchmarks, such as those relevant to financial workloads, have also been
developed [52].

2.3 Cloud Benchmarking

Benchmarking or web-based systems, including open, closed, and partially closed systems, have
also been considered [127]. One of the earliest benchmarks for web servers was SPECweb96.7

In 2010, the first cloud-specific benchmarks were released, namely the Yahoo! Cloud Service

Benchmark (YCSB) [35] and transaction processing benchmarks [82]. YCSB++ is an extension
of the YCSB that benchmarks scalable column stores [115]. Various approaches for benchmarking
scientific applications in the cloud [73, 144, 145] and virtual machines (VMs) [22] have been
proposed. Moreover, the aspect of fairness in benchmarking has been considered [54]. Several
benchmarks for the consistency of cloud storage services have been developed [14, 15].

A number of cloud performance benchmarks were developed between 2012 and 2015. Two
benchmarks developed by the Transaction Processing Performance Council (TPC) are partic-
ularly noteworthy. The first is the TPCx-V [21] benchmark, which is a virtual machine benchmark
for database workloads. The second is the TPCx-HS [109] benchmark, which is a big data bench-
mark on the cloud. Other benchmarks include CloudRank-D [95] and CloudSuite [48] for resources
and services. Benchmarks for cloud storage [43, 85], relational databases [40], database secu-
rity [106], and the scalability and elasticity of distributed databases have also been developed [84].

The SPEC benchmarks for infrastructure-as-a-service clouds were launched in 2016 (SPEC
Cloud IaaS 20168). At this time, container-based benchmarking suites such as DocLite [149]
and a containerized version of CloudSuite [111] also emerged. Moreover, novel cloud hardware
architectures could be evaluated using the PALMScloud benchmark suite [158], and a framework

7https://www.spec.org/web96/.
8https://www.spec.org/cloud_iaas2016/.

ACM Computing Surveys, Vol. 54, No. 3, Article 66. Publication date: April 2021.

https://www.spec.org/web96/
https://www.spec.org/cloud_iaas2016/


66:8 B. Varghese et al.

Fig. 3. Classification of edge performance benchmarking under three dimensions: system under test, tech-

niques analyzed, and benchmark runtime.

for benchmarking cloud storage services was introduced [12]. Additionally, a comparison of
various benchmarking suites for measuring the quality of cloud services from a client perspective
was introduced [19]. More recently, this has led to the development of benchmarks for microser-
vices on distributed clouds [53, 57] and benchmarks that can be used in continuous integration
processes [56, 68].

3 EDGE PERFORMANCE BENCHMARKING

This section highlights developments in edge performance benchmarking and then defines a clas-
sification that is used in this article for presenting the different dimensions of research undertaken
in the context of edge performance benchmarking.

As shown in Figure 2, edge performance benchmarking has been under development since 2015.
These benchmarks cover a wide range of resources, including (i) end devices, such as IoT sensors,
smartphones, and user gadgets, including wearables; (ii) computational resources located at the
edge of a wired network, including routers, switches, gateways, and dedicated resources, including
embedded computers and micro clouds; and (iii) cloud resources. Different benchmarks focus on
capturing the performance of these resources in both isolated and networked execution contexts.

Existing research on edge performance benchmarking can be classified into the following three
dimensions, as shown in Figure 3:

• System under test refers to the hardware infrastructure and software platforms that are
benchmarked. This aspect is detailed in Section 4 and aims to address RQ1, which was
posed in Section 1.1.

ACM Computing Surveys, Vol. 54, No. 3, Article 66. Publication date: April 2021.
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• Techniques analyzed refers to the application optimization options, resource allocation, and
application offloading and deployment options analyzed by edge benchmarks, which are
discussed in Section 5, where we aim to address RQ2, which was posed in Section 1.1.

• Benchmark runtime refers to the software and data characteristics of an execution environ-
ment and deployment destination, including test beds, which are considered in Section 6,
where we aim to address RQ3, which was posed in Section 1.1.

As highlighted in Section 1.1, two types of edge performance benchmarking research can be
observed in the literature. The first is explicit performance benchmarking, which is defined as re-
search on developing a benchmarking method, benchmark, or toolchain to facilitate performance
benchmarking. The second is implicit performance benchmarking, which refers to research that
presents evaluations to capture and compare the performances of any of the aforementioned di-
mensions (i.e., system under test, techniques analyzed, and benchmark runtime) without specifi-
cally presenting a method, benchmark, or toolchain.

Table 1 summarizes existing explicit performance benchmarking research that is relevant to
edge computing systems by considering the benchmark type (micro/macro), application domain,
benchmarks used, and destination platforms (device, edge, and cloud) of 21 edge benchmarking
techniques or suites. Micro benchmarks refer to benchmarks that capture system-level (CPU, mem-
ory, network, storage) performance metrics. By contrast, macro benchmarks refer to benchmarks
that capture application-specific system performance metrics for different application domains.
Only two benchmarks capture both micro and macro benchmarks, namely RIoTBench [133] and
AIoTBench [96]. The majority of benchmarks are macro benchmarks and only two utilize generic
workloads, namely EdgeBench [38] and DeFog [102]. Moreover, only five benchmarks can capture
the performance of a complete computation pipeline consisting of a device, edge, and cloud. This
can be attributed to the lack of readily available large-scale test beds (although a few are available)
for experimentation that integrate a cloud and edge for end users.

The large body of research on edge benchmarking considered in this article relies on either
trace data obtained from simulators or on simulators themselves for evaluation, which is contrary
to the classic definition of benchmarking. We anticipate experimental benchmarking approaches
to be adopted as edge computing matures as a research area and more realistic test beds become
readily available.

The next three sections will consider both explicit and implicit edge performance benchmarking
research and examine this research across the dimensions of system under test, techniques ana-
lyzed, and benchmark runtime. Each subsection is organized to discuss explicit edge performance
benchmarks first, followed by implicit edge performance benchmarks.

4 SYSTEM UNDER TEST

In this section, the systems under testing in edge performance benchmarking are examined by
considering two components, infrastructure and software platforms, which are discussed in the
following subsections. Each subsection will discuss both explicit and implicit edge performance
benchmarks. The explicit performance benchmarks are listed in Table 2.

4.1 Infrastructure

Embedded CPUs, accelerators, memory, storage hardware, and the network are the infrastructure
resources that are considered in edge performance benchmarking.

4.1.1 CPUs. As shown in Table 2, the majority of edge performance benchmarks can measure
the performance of CPUs used on the edge (five of these benchmarks cannot). Many edge
benchmarks are evaluated on single-board computers (SBCs), such as Raspberry Pi [67], acting

ACM Computing Surveys, Vol. 54, No. 3, Article 66. Publication date: April 2021.
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Table 2. Comparison of the Characteristics of System under Test in Existing

Edge Performance Benchmarks

Infrastructure Software platforms
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considered by edge performance
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CoAP benchmark [83] Y N Y N N N N N N

Virt. benchmark [118] Y N Y Y Y N N N N

Virt. benchmark [104] Y N Y Y N N N N N

Voice benchmark [139] Y N N N N N N N N

RIoTBench [133] Y N Y N N N N N N

D-Cube [128] Y N N N N N N N N

CAVBench [156] Y N Y N N N N N N

EdgeBench [38] Y N Y N N N Y N N

Edge AIBench [61] N N N N N N N N Y

HERMIT [90] Y N Y N N N N N N

LEAF [26] N N N N N N N N Y

AIoTBench [96] N N N N N N N N Y

pCAMP [165] Y Y N N N N N N N

DeFog [102] Y N N N Y N N N N

Edgedroid [110] N N N N N Y N N N

IoTBench [87] Y N N N N N N N N

Machine learning accelerator
benchmark [120]

Y Y N N N N N N N

Edge FPGA-based Neural Net benchmark [41] N Y N N N N N N N

as edge resources. An SBC is a circuit board consisting of a CPU, memory, network, storage, and
other components. Most SBCs adopt ARM processors as CPUs and have low cost and low power
characteristics. Additionally, the performance of modern ARM processors is comparable to that
of other general-purpose CPUs [117].

The constrained application protocol (CoAP) benchmark [83] utilizes lmbench11 for bench-
marking ARM processors in Raspberry Pi, BeagleBone, and BeagleBone Black SBCs in terms of
bandwidth and latency. The processing overhead of key operations in a modern WSN gateway
can also be measured. An ARM Cortex-A7 dual-core processor hosted by Cubieboard2 was bench-
marked [118] using NBench,12 sysbench,13 and the HPL benchmark [39]. In a recent study, a wide
range of ARM-based SBCs, including the Raspberry Pi 2 model B (RPi2), Raspberry Pi 3 model

B (RPi3), Odroid C1+ (OC1+), Odroid C2 (OC2), and Odroid XU4 (OXU4) [104], were bench-
marked by using sysbench to stress their CPUs. In terms of CPU performance, the Odroid C2 with
a Quad-core 2-GHz ARM v8 Cortex-A53 outperformed the other tested SBCs. In terms of power
consumption, the Raspberry Pi boards, OC1+, and OC2 achieved high energy efficiency, whereas
the OXU4 consumed three to seven times more power than the other SBCs.

11http://lmbench.sourceforge.net/.
12https://nbench.io/.
13https://github.com/akopytov/sysbench.
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An ARM Cortex A53 CPU hosted by RPi3 was benchmarked [139] using Mycroft,14 which is an
open-source voice assistant. The latency of the pipeline stages of voice interaction was measured,
and the results indicated that cloud services outperform RPi, meaning RPi is more suitable for low-
complexity tasks compared to the cloud. RIoTBench [139], an IoT benchmark for stream processing
systems, can measure latency, throughput, jitter, and CPU utilization for VMs that process data
flow tasks. D-Cube [128] is a benchmarking tool that can profile end-to-end delay, reliability, and
power consumption for any CPU designed for deploying IoT protocols on the edge.

An Intel Xeon E3-1275 v5 processor included in the Intel fog reference design was benchmarked
using CAVBench [156], which is a benchmarking program for connected and autonomous vehicles.
CAVBench deploys computer vision and deep learning applications on a processor and measures
the average frames per second and latency. This study concluded that deep learning applications
cannot achieve satisfactory performance on the Xeon CPU, meaning accelerators are required.
EdgeBench [38] utilizes audio, image, and scalar pipeline applications to evaluate the computation
time, end-to-end latency, and CPU utilization of RPi3. HERMIT [90] is a benchmarking suite for
medical IoT and was utilized to test RPi3 to determine if it is suitable for medical IoT. Various In-
tel and ARM CPUs were benchmarked using machine learning models in pCAMP [165]. pCAMP
compares TensorFlow, Caffe2, MXNet, PyTorch, and TensorFlow Lite in terms of inference time,
total time, and energy consumption. DeFog [102] was used to evaluate ARM-based SBCs, includ-
ing RPi3 and OXU4, in various fog computing scenarios consisting of object classification and
speech-to-text conversion. IoTBench [87] offers diverse IoT applications in the vision, speech
recognition, and physiological signal processing domains and was used to evaluate RPi3’s per-
formance in terms of executed instructions, cycles, and cache misses.

4.1.2 Accelerators. Although the use of hardware accelerators has been proposed for edge com-
puting [148], there is limited use of such accelerators in the explicit edge performance benchmarks
listed in Table 2 (3 of 21 [41, 120, 165]).

pCAMP [165] benchmarks the inference time of deep learning workloads for edge computing
on the Nvidia Jetson TX2. Low-power and purpose-built accelerators such as the Intel Movidius
Myriad XVPU (Vision Processing Unit) [71], Google Edge TPU [27], NVIDIA 128-core Maxwell and
256-core Pascal architecture-based GPU, and custom field-programmable gate arrays (FPGAs)

are benchmarked using deep neural networks on edge devices [120]. During the benchmarking
process, it was noted that custom FPGAs optimize the performance of specific neural network ap-
plications [41] (also refer to Reference [103]). Various FPGA platforms have been evaluated using
custom benchmarks that implement separable convolutional neural network keyword spotting [9].
Their performances were compared to that of the Intel NCS platform in terms of inference time,
power consumption, and energy per inference [41].

In addition to the abovementioned explicit edge performance benchmarks that evaluate accel-
erators, implicit edge performance benchmarks consider accelerators as well. The most relevant
of these benchmarks are presented below.

The Intel NCS 2 and Google’s Coral USB accelerators were benchmarked using popular inference
workloads, namely MobileNet-v1 [69] and Inception-v1 [140], in the MLPerf benchmark [119] in
terms of inference time and energy efficiency [89].

To explore whether a particular deep learning model can provide sufficient accuracy on edge
devices, TomoGAN [92, 93], which is an algorithm for enhancing the quality of X-ray images, was
adapted to run on the Google Edge TPU and NVIDIA Jetson TX2 [2]. The benchmarking results

14https://mycroft.ai/.
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indicated that edge accelerators can provide sufficient accuracy with a novel shallow CNN called
the fine-tune network.

In a recent study, the Google Edge TPU, NVIDIA 128-core Maxwell GPU, and Intel Movidius
Myriad X VPU were benchmarked by executing eight deep learning models used in personal-scale
sensory systems [6]. The benchmarking results revealed that the Google Edge TPU outperformed
the other accelerators on all eight models. In terms of energy efficiency, the Google Edge TPU
utilized less than 10 mJ of energy for a single execution of any of the eight models, whereas the
other platforms consumed between 5 and 274 mJ depending on the model.

4.1.3 Memory. Seven of the explicit benchmarks in Table 2 consider memory when bench-
marking. The CoAP benchmark [83] measures memory usage and latency to evaluate the memory
performance of SBCs. CAVBench [156] measures the memory bandwidths and footprints of com-
puter vision and deep learning applications, because these applications require significant memory
bandwidth and can act as a bottleneck in capacity-limited edge devices. EdgeBench [38] evaluates
the memory utilization of benchmark applications on the Raspberry Pi 3B. HERMIT [90] was used
to analyze the memory characteristics of benchmark applications, and it was determined that a
large L1 D-cache and last-level cache are required in Raspberry Pi to achieve efficient memory
access.

A few examples of implicit memory benchmarking in edge computing systems are presented
below. The STREAM benchmark,15 which measures sustainable memory bandwidth, was used to
evaluate edge resources [118]. The memory performance of copy, scale, add, and triad operations
in STREAM was measured on three different software systems: native Linux, Docker, and
kernel-based virtual machines (KVM). The Unix command mbw was utilized to test the
memory performance of a wide range of ARM-based SBCs [104]. The mbw command quantifies
available memory bandwidth by transferring large arrays of data in memory. OC1+ outperformed
RPi2, because OC1+ adopts 792-MHz LPDDR3 RAM, whereas RPi2 uses 400-MHz LPDDR2 RAM.
RPi3 utilizes 900-MHz LPDDR2 RAM and outperforms OC1+ in most cases. OC2 and Odroid
OXU4 outperform RPi2, RPi3, and OC1+ based on their doubled RAM capacity.

4.1.4 Storage. Only two explicit edge performance benchmarks consider storage devices. Small
form factor edge resources typically use flash-based storage devices, such as embedded MultiMe-

diaCard (eMMC) and MicroSD. The storage performance of edge resources has been evaluated
using Bonnie++16 and the Unix DD command [118]. Bonnie++ measures data read and write band-
width, as well as the number of file operations per second. DD is used to measure bandwidth for
accessing special device files, such as /dev/zero/. The fio benchmark17 has been used to perform
sequential read/write operations in MicroSD cards, and sysbench has been utilized to perform
random disk operations on eMMC cards [104]. The evaluation results revealed that eMMC cards
operate at speeds in the order of hundreds of MB/s, whereas MicroSD cards operate in the range
of hundreds of Mb/s.

4.1.5 Network. Although the network plays a key role in performance on the edge, there are
only two explicit benchmarks that address this aspect. The network performance of Cubieboard2,
which provides a 100BASE-TX Fast Ethernet connection, was evaluated using Netperf18 in na-
tive, Docker, and KVM environments [118]. The results revealed that Docker achieves near-native
performance, whereas KVM introduces considerable overhead. DeFog [102] was used to measure

15https://www.cs.virginia.edu/stream/.
16https://www.coker.com.au/bonnie++/.
17https://github.com/axboe/fio.
18https://hewlettpackard.github.io/netperf/.
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communication latency from an edge device to the Amazon cloud when the network bandwidth
was fully utilized by the stress-ng operation.19

Observation #1. Even though there have been considerable efforts devoted to benchmarking
CPUs and moderate efforts for benchmarking memory, additional effort is still required to measure
the edge performance of accelerators, storage, and networks effectively.

4.2 Software Platforms

Orchestrators, cloud services, schedulers, and artificial intelligence (AI) platforms are examples
of software platforms that are benchmarked on edge computing systems. Although other software
platforms exist, there has been no research in the context of edge performance benchmarking, so
these platforms are not discussed in this article.

4.2.1 Orchestrators. Orchestrators for edge computing manage edge resources by creating con-
tainers, deploying and starting servers, and assigning and scaling computational resources. Or-
chestration in edge computing is challenging because of limited hardware resources, large volumes
of edge resources, and the mobility of connected devices [67].

Edgedroid [110] is the only explicit edge performance benchmark that considers orchestrators.
Edgedroid evaluates human-in-the-loop applications such as augmented reality and wearable cog-
nitive assistance that are deployed on edge devices. Such applications connect to containers in the
cloud for background processing. Edgedroid collects uplink, downlink, and processing time data
to identify scaling limits.

However, there are also a few implicit edge performance benchmarks that consider orchestra-
tors. FocusStack coordinates edge resources for moving targets, such as cars and drones [3]. This
is a challenging task, because existing orchestrators (e.g., OpenStack) were developed to manage
a relatively small number of servers. FocusStack extends OpenStack to support location-based
awareness to minimize the number of devices managed at one time. The full-time active moni-
toring system of FocusStack was benchmarked using the following metric, which represents the
total number of bytes transferred every 10 s for monitoring between the orchestrator and a device.
FocusStack sent 358 bytes every 10 s while the unmodified OpenStack transferred 17,509 bytes
every 10 s.

Edge workload orchestrators that select target edge resources for offloading tasks have been
proposed based on fuzzy logic [138]. Such orchestrators can be benchmarked by relying on data
obtained from the EdgeCloudSim simulator [137]. The explored applications include augmented
reality, healthcare, intensive computing, and infotainment applications, which are evaluated in
terms of service time, failed tasks, and virtual machine utilization.

4.2.2 Service Model. Different service models can facilitate the delivery of services on the
edge. Service models can be serverless models or Infrastructure-as-a-Service (IaaS) models.
There is limited consideration for such models in the explicit edge benchmarks listed in Table 2.
EdgeBench [38] provides benchmarking applications for the serverless edge computing service
model and compares the performances of the AWS IoT Greengrass20 and Azure IoT Edge21

platforms.
Some implicit edge performance benchmarks consider the IaaS model and two examples are dis-

cussed below. Nebula implements a decentralized edge cloud by utilizing volunteer edge nodes that

19https://kernel.ubuntu.com/git/cking/stress-ng.git/.
20https://aws.amazon.com/greengrass/.
21https://azure.microsoft.com/en-us/services/iot-edge/.
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provide computational and storage resources [123]. Nebula offers the IaaS service model (compu-
tation and storage services are available). MapReduce, Wordcount, and InvertedIndex applications
have been used to benchmark Nebula in terms of performance, fault tolerance, and scalability [81].

Similarly, FemtoClouds offers IaaS-type services by forming small clusters using smartphones
and laptops by leveraging idle or less-loaded resources to fulfill user requests [60]. FemtoClouds
has been benchmarked for various metrics, including computational throughput, network utiliza-
tion, and computational resource utilization.

4.2.3 Schedulers. Edge schedulers allow service providers to allocate computing resources effi-
ciently. None of the explicit edge performance benchmarks can compare the performances of edge
schedulers. However, several implicit edge performance benchmarks have considered resource
scheduling policies to satisfy the real-time requirements of smart manufacturing applications in
edge computing [88]. A two-phase scheduling strategy is adopted that first selects a suitable edge
computing server based on the target task load, after which additional servers are selected, if
necessary, to distribute tasks when one server cannot meet real-time constraints. Schedulers are
evaluated on OpenCV applications using metrics such as computing latency, satisfaction degree,
and energy consumption. The fairness aspect of edge scheduling was recently evaluated using
synthetic benchmarks [99].

4.2.4 Artificial Intelligence Platforms. Three of the explicit edge performance benchmarks con-
sider AI platforms. Edge AIBench [61] provides four AI benchmark applications that can reflect
complex scenarios of edge computing, including intensive care unit patient monitoring, surveil-
lance cameras, smart homes, and autonomous vehicles. These test models can be executed using
a federated learning framework in a publicly available test bed.22 LEAF [26] is a modular bench-
marking framework for evaluating learning in federated settings. LEAF consists of open-source
datasets, statistical and system metrics, and reference implementations. AIoTBench [96] was de-
signed to evaluate the AI capabilities of edge devices for image classification, speech recognition,
transformer translation, and micro workloads.

Observation #2. Explicit edge performance benchmarks do not consider software platforms such
as orchestrators, service models, and schedulers, which are vital for performance on the edge.
Therefore, existing benchmarks cannot capture the integrated performances of services or appli-
cations when different software platforms are adopted.

5 TECHNIQUES ANALYZED

This section reviews various techniques that have been analyzed in edge performance benchmarks
across the dimensions of application optimization and application deployment options. Table 3
categorizes the benchmarks listed in Table 1. Table 4 summarizes the considered dimensions for a
selected set of implicit edge performance benchmarks.

5.1 Application Optimization Options

Tables 3 and 4 list the different optimization options for target applications that are considered
in explicit and implicit edge performance benchmarks, respectively. These options are related to
energy consumption, quality of service (QoS), and hardware utilization.

5.1.1 Energy Consumption. Energy is an important metric used in many edge performance
benchmarks. The virtualization benchmark [104] compares the power consumption rates of five

22http://www.benchcouncil.org/testbed.html/.
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Table 3. Comparison of the Characteristics of the Techniques Analyzed by Explicit Edge

Performance Benchmarks; Offloading: End-user Device, Edge, Cloud, or None; Virtualization: Virtual

machine, Container, or None
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CoAP benchmark [83], HERMIT [90] N Y Y N N

Virt. benchmark [118] N N Y N V, C

Virt. benchmark [104] Y Y Y N C

Voice benchmark [139] N Y N D −→ E N

RIoTBench [133] N Y Y N V

TPCx-IoT N Y N N N

D-Cube [128] Y Y N N N

CAVBench [156] N Y Y N N

EdgeBench [38] N Y Y E −→ C V, C

Edge AIBench [61] N N N N N

LEAF [26], AIoTBench [96] N N N N N

pCAMP [165] Y Y N N N

DeFog [102] N Y N C −→ E V, C

Edgedroid [110] N Y N N C

MAVBench [23] Y Y N D −→ C N

IoTBench [87] Y N N N N

SoftwarePilot N N N N V, C

Machine learning accelerator benchmark [120] Y N Y N V

Edge FPGA-based Neural Net benchmark [41] Y Y N N N

different SoCs acting as end-user devices. This type of evaluation is useful for estimating the bat-
tery durations of end-user devices. To select the best low-power wireless protocol, D-Cube [128]
measures the power consumption of a target edge system while applying different protocols for
an IoT application.

Moreover, energy consumption has been employed to evaluate machine learning packages on
systems on the device-edge-cloud continuum [165]. Such benchmarks are useful for optimizing
packages for various edge systems. MAVBench [23] compares the energy consumption of a full-on-
edge drone to that of a full-on-cloud drone. This performance benchmark provides a breakdown
of the energy consumed by different components of MAVs. Similarly, IoTBench [87] evaluates
the energy dedicated to different components of benchmarks. Recently, several machine learning
benchmarks [41, 120] focusing on the energy consumption of accelerators have been developed.

Several implicit edge performance benchmarking studies have compared different energy con-
sumption techniques, a few of which are discussed below.
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Table 4. Comparison of the Characteristics of the Techniques Analyzed by Explicit Edge
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Resource allocation benchmark [58], MECO
benchmark [162], RTLBB [167], EEDOA [32]

Y N N D −→ E N

MIMO benchmark [124] Y N N D −→ C N

IoT benchmark [134], LBVS [78], MeFoRE [1], VEC
benchmark [164]

N Y N D −→ E N

IoT benchmark [135] N Y N D −→ E N

DYVERSE [154], ENORM [155] N Y N C −→ E V, C

ECC benchmark [29] N Y N D −→ E N

YEAST [151], EDAL [161] Y Y N N N

Content delivery benchmark [91] N Y Y N N

Cloudlet benchmark [33] N N N C −→ E V

Migration benchmark [98] N Y N E −→ E C

Cloudlet benchmark [122] Y Y N D −→ E N

Virt. benchmark [104] Y N Y N C

Early efforts led to the formulation of a convex optimization problem for minimizing mobile
energy consumption [162]. A multi-user MEC system was considered with a mobile base station
and multiple mobile devices, from which tasks were split using a threshold-based policy.

A fine-grained method for multi-resource joint optimization for the energy consumed for task
offloading, sub-channel allocation, and CPU-cycle frequency was also developed [167]. Energy
efficiency can also be benchmarked when workloads have varying execution times on MEC
servers [58]. ThriftyEdge [31] is used to benchmark the performance of delay-aware task graph
partitioning and virtual machine selection to minimize IoT device edge resource occupancy. Sto-
chastic optimization for minimizing the energy consumption of task offloading while guaranteeing
the average queue length of IoT applications was benchmarked in Reference [32].

5.1.2 Quality-of-Service. QoS is a frequently examined metric in edge performance benchmarks
that is represented by execution time, computation and communication latencies, and so on. The
CoAP benchmark [83] and HERMIT [90] measure the execution times of IoT applications on
end-user devices. When comparing application performance across different layers in device-
edge-cloud systems, the voice benchmark [139] and Edgedroid [110] break down execution times
according to application components for analysis. A fine-grained study of application latency un-
der varying edge resource availability characteristics and workloads can be performed using De-
Fog [102]. Existing edge performance benchmarks largely focus on hardware with relatively little
emphasis on benchmarking different algorithms to optimize edge systems. Therefore, example
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edge performance benchmarking studies that have focused on optimizing QoS based on algorithm
designs are discussed below.

Because improving application QoS is a key component of edge computing [150], the evaluation
of QoS is very common in edge literature. We discuss a few examples below. ENORM [155] bench-
marks the benefits of offloading application services from the cloud to the edge based on the QoS
of multiple applications on the same edge node. Priority-based resource scaling approaches can be
benchmarked by DYVERSE, which estimates the amount of resources to be added to or removed
from a running edge service [154]. The metric used in this evaluation is the QoS violation rate,
which is also employed for evaluating the performance of an optimization model for placing IoT
services on edge resources to prevent QoS violations [135].

From the perspective of edge service users, MeFoRE [1] uses previous records of quality of

experiences (QoE), such as service give-up ratio, to estimate the resources required by different
users. QoE is frequently used in utility functions to optimize the performance of running appli-
cation services (utility-based optimization). Moreover, the use of QoE to measure user utility for
running jobs on the edge versus local execution on mobile devices has been benchmarked [30].

5.1.3 Hardware Utilization. The utilization of hardware on the edge is another dimension that
can be considered to optimize edge performance. This aspect is also captured by edge performance
benchmarks. The virtualization benchmark [118] compares the utilization of different hardware re-
sources on an edge system to select optimal virtualization techniques. Similarly, CPU and memory
utilization has been analyzed for benchmarking stream processing platforms [133] and machine
learning accelerators [120].

Observation #3. It is noteworthy that the QoS captured by edge performance benchmarks is a
dominant criterion for optimizing performance. However, other criteria, such as energy consump-
tion, are not typically captured by edge performance benchmarks.

5.2 Application Deployment Options

Edge benchmarks have captured the performance of application deployment options. These in-
clude the direction of deployment and determining how to deploy applications on edge systems,
which are considered by reviewing edge performance benchmarks for techniques analyzed for
computation offloading and virtualization technologies, respectively. The dimension of deploy-
ment in the context of the execution environment is considered in Section 6.2.

5.2.1 Computation Offloading. Only 4 of the 21 explicit edge performance benchmarks listed
in Table 3 consider this dimension. This section reviews the computation offloading techniques
that are analyzed in explicit edge performance benchmarking.

The following four directions of offloading are relevant to edge environments:
i. Cloud-to-Edge: Voice benchmark [139] characterizes the performance impact of pushing the

execution of voice interaction pipelines closer to end-user devices. EdgeBench [38] offloads server-
less functions from the cloud to the edge. Edge AIBench [61] and DeFog [102] break down the
components of applications and offload some components from the cloud to the edge. Implicit
edge performance benchmarks capture the benefits of cloud-to-edge offloading for database repli-
cation [91] and application cloning [33].

ii. Edge-to-Cloud: This is the typical direction for the internet of connected vehicles, and utility-
based multi-level offloading schemes are evaluated to maximize the utility of vehicles, edge servers,
and cloud servers [164]. A collaborative offloading approach has been evaluated to optimize re-
source allocation and offloading decisions jointly [166].
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iii. Edge-to-Edge: When an edge node does not have sufficient resources, it can offload
(or migrate) its workload to a peer. Two approaches are typically benchmarked: (i) offload
forwarding, which forwards all unprocessed workloads to neighboring edge nodes to meet
service objectives [159], and (ii) service migration, which dynamically migrates services across
multiple heterogeneous edge nodes [29]. Service handoff approaches have been benchmarked to
investigate their feasibility for supporting seamless migration to the nearest edge server when a
mobile client is moving [98].

iv. Device-to-Edge: Edgedroid [110] offloads the backend of task guidance for wearable cognitive
assistance from end-user devices to the edge. In addition to existing edge benchmarks, typical
offloading from end-user devices to the edge has been evaluated for applications that require edge
data aggregation for energy saving. For aggregating tasks, data from multiple devices are collected
by an edge node for preprocessing and filtering tasks [151, 161].

5.2.2 Virtualization Techniques. More than 50% of the explicit edge performance benchmarks
listed in Table 3 execute applications directly on hardware. Some benchmarks have investigated
VMs and/or containers, and implicit edge performance benchmarking has also considered
unikernels.

Virtual machines are important for edge computing in the context of cloudlets [126]. Implicit
benchmarking has focused on the evaluation of VMs on the edge. For example, the selection of the
most suitable VM was evaluated for different types of applications [122], and a general approach
for SLA-driven scheduling for placing VMs in a multi-network operator-sharing edge environment
was benchmarked [78]. The virtualization benchmark [118] compares the performances of VMs
to those of containers on different edge systems.

Containers have been extensively evaluated for edge systems based on their reduced boot times
and lower resource footprints compared to VMs [47]. Among the explicit edge performance bench-
marks, the container is the most frequently adopted virtualization technology for application de-
ployment (e.g., EdgeBench [38], DeFog [102], and Edgedroid [110]). Other benchmarking efforts
have highlighted the feasibility of using Docker containers23 and Linux containers24 as viable op-
tions for providing rapid edge deployment [75, 155].

Unikernels 25 are used for single-purpose applications that use library operating systems and are
sealed to modification following deployment [100]. The corresponding small resource footprints
are attractive for edge computing. Unikernels and containers have been benchmarked according
to the dimensions of scalability, security, and manageability for IoT applications on the edge [105].

Observation #4. It is noteworthy that the majority of existing edge performance benchmarks
do not capture performance by deploying applications using virtualization techniques. Therefore,
such benchmarks can capture the application performance of edge systems that only run a single
application, but not those that operate in a multi-tenant edge environment.

6 BENCHMARK RUNTIME

This section will discuss the execution environments, deployment destinations, and test beds
considered by edge performance benchmarks. The execution environments highlight the
software- and data-related characteristics considered by different edge performance benchmarks
at runtime. Additionally, single and multiple destinations used for deployment by various
benchmarks are considered. Finally, different infrastructure deployment options considered by

23https://www.docker.com/.
24https://linuxcontainers.org/.
25 http://unikernel.org/.
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Table 5. Comparison of the Software and Data Related Execution Environment Characteristics

of Edge Performance Benchmarks
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edge performance benchmarks, namely real-world, lab-based, emulated, and simulated test bed
infrastructures, are presented.

6.1 Execution Environment

Execution environments consist of the software packages and datasets required to execute a
benchmark [25]. Based on growing support from different programming languages (e.g., Python)
and virtualization tools (e.g., Docker), execution environments can be reused across projects,
research groups, and scientific disciplines. Open, representative, and comprehensive execution
environments broaden research avenues by facilitating scientific exploration in new domains.
However, execution environments differ significantly across edge computing applications,
because such applications change rapidly and frequently. Typically, benchmarks are designed
with a narrow focus to target specific workloads by sacrificing the features required to reuse their
execution environments.

Table 5 lists seven characteristics of open, representative, and comprehensive execution
environments. First, software packages and datasets must be accessible to researchers outside
the initial study. Clearly, benchmarks are accessible if they use only open-source software
(Characteristic #1). However, benchmarks that represent complex and emergent workloads
require custom and/or proprietary software. When it is necessary, such software should be clearly
identified and made available (Characteristic #2). Likewise, the datasets used to drive benchmark
execution should be open and easily portable across research contexts (Characteristic #5).
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Benchmarks represent real workloads by mimicking specific aspects of their functionality.
However, software components with limited functionality place less stress on edge devices
compared to commercial-grade software. Therefore, execution environments that are at least
partially composed of commercial-grade software can ensure representative demand on edge
resources (Characteristic #3).

Researchers reuse execution environments by adjusting contextual settings to match their tar-
get domains. For example, researchers that study edge resources may ignore user actions related
to QoS, whereas researchers that study edge-to-cloud offloading may consider multiple contextual
settings for QoS. By design, comprehensive benchmarks support a wide range of settings (Charac-
teristic #7). Execution environments that rely on traces from prior workload executions are often
inflexible in terms of runtime and contextual adjustments. Traces have closed data models that
cannot be easily extrapolated to what-if conditions. By contrast, execution environments that use
data from complex models of simulations or model-driven stochastic methods can be ported to
new domains and workload conditions (Characteristics #4 and #6).

Table 5 reveals several interesting trends. Edge benchmarks often employ commercial-grade
software components (71%) and use open datasets (84%). These results are likely to be influenced
by the machine learning kernels in edge workloads. Commercial-grade versions of neural network
platforms, object detection models, and speech processors are open sources that are widely used.
By contrast, only 50% of the studied benchmarks support comprehensive evaluation across run-
time and contextual settings. This result stems from common dependence on traces from prior
executions. Furthermore, 75% of the benchmarks are narrowly tailored to specific contexts and
use closed-model traces that are not easily adapted across runtime and contextual settings.

Among the studied benchmarks, EdgeDroid [110, 153], SoftwarePilot [24], and MAVBench [23]
have the characteristics of open, representative, and comprehensive execution environments. For
example, SoftwarePilot and MAVBench capture virtual reality. Each of these benchmarks employs
commercial-grade open-source software components for machine learning and cognitive assis-
tance. Additionally, in the corresponding papers, each benchmark is evaluated across various run-
time and contextual settings by adjusting the complexity of machine learning models or adapting
user QoS expectations. Leaf [41] is also a comprehensive benchmark that can vary workloads and
runtime settings. A subtle difference between these benchmarks is that MavBench relies on sim-
ulated environments, which is a design choice that could yield non-representative workloads if
simulations deviate from real-world edge conditions. By contrast, SoftwarePilot, EdgeDroid, and
Leaf use Markov decision models to adapt real data to new contextual settings. This approach is
likely to be more robust for researchers targeting new domains.

Observation #5. Note that most benchmarks do not operate on data from a real-world edge test
bed. Instead, they use simulation data, trace data, or data from a test bed adapted to a different
contextual setting. While this issue can be attributed to a lack of readily available edge test beds,
it also highlights the need for revisiting and validating existing edge performance benchmarking
approaches when new edge test beds become available.

Observation #6. There is a limited selection of edge performance benchmarks that can generate
data to capture a wide range of workload conditions. This factor translates into benchmarks that
are narrowly focused on specific applications and cannot be used generically.

6.2 Deployments

This section will explore the different resource locations at which benchmarks are executed, which
are referred to as deployment destinations. It will also review test bed options. The following
deployment destinations are considered: (i) single destination and (ii) multiple destinations.
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6.2.1 Destination. As mentioned previously, this article considers the edge as resources located
at the edge of a wired network. However, a number of researchers have also considered user devices
as the edge by adhering to a broader definition of the edge (of a network). Therefore, we consider
device-only deployment for a single destination.

i. Single destination refers to benchmark execution on only one device or edge.
a. Device-only: Research that explores device-only benchmarking has been considered for bench-

marking in different areas, such as low-power wireless industrial sensors, device-specific protocols,
low-overhead virtualization, medical IoT devices, and devices that will execute machine-learning-
based workloads.

Low-power wireless industrial sensors: Wireless protocols for industrial sensor devices have
been benchmarked using observation modules [128]. The six protocols considered are (i) En-
hanced ContikiMAC, (ii) Thompson-sampling-based channel selection, (iii) Glossy, (iv) Chaos,
(v) Sparkle, and (vi) Time-slotted channel hopping. Power consumption and end-to-end latencies
are profiled, and an additional validation mechanism is incorporated to evaluate the accuracy of
benchmarking.

Device-specific protocols: Some researchers have benchmarked system architectures for CoAP-
based IoT devices [83]. The key results from benchmarking can be summarized as follows: (i) the
selected processor directly impacts CoAP server performance and (ii) the latency of communica-
tion channels affects the round-trip times of CoAP requests.

Low-overhead virtualization: The performance of virtualization for user devices has been bench-
marked extensively [104, 118]. A range of virtualization techniques such as docker containers and
KVMs have been considered [118]. The key results are that hypervisor-based virtualization incurs
large overhead and containers seem to be more appropriate for network edges. Container-based
virtualization across five different devices has also been considered [104]. Moreover, there is a
negligible impact on performance when using containers compared to bare-metal execution. The
characteristics of workloads represent key information for estimating the energy efficiency of
devices.

Medical IoT devices: The computation and memory characteristics of IoT devices used in the med-
ical domain have been benchmarked [90]. A collection of medical applications (macro benchmarks)
was evaluated against the MiBench, PARSEC, and CPU06 micro benchmarks. The evaluation re-
sults revealed that execution characteristics differ between micro and macro benchmarks.

Devices that run machine learning workloads: The benchmarking of machine-learning-specific
workloads for various devices was presented in Reference [96]. Both micro benchmarks, such as
the individual layers of a neural network, and macro benchmarks, such as applications in image
classification, speech recognition, and language translation on the TensorFlow and Caffe2 frame-
works, were considered. Similarly, benchmarking for the vision and speech domains has also been
considered [87].

b. Edge-only: Research that explores benchmarking for edge-only deployment will ideally utilize
macro benchmarks that are edge native (edge resources are not merely accelerators, but are essen-
tial for an application to be used in the real world). Autonomous vehicles are one such application.
CAVBench is a benchmarking suite developed for autonomous vehicles by focusing on real-time
applications that must process unstructured data [156]. The edge node employed in this research
was designed based on the Intel fog reference design. Hardware accelerators, such as FPGAs on
the edge, have been benchmarked for convolutional neural networks in the context of keyword
spotting [41]. It is worth nothing that this use case may not necessarily represent an edge-native
benchmark.

ii. Multiple-destination: This refers to the execution of a benchmark either across an entire
device-edge-cloud resource pipeline or a partial resource pipeline (e.g., device-edge or edge-cloud).
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a. Entire device-edge-cloud pipeline: There are a number of examples of benchmarking studies
that leverage an entire resource pipeline consisting of a device, the edge of a wired network, and
a cloud for benchmarking. Three main types of applications are considered.

Service pushdown: Voice-interactive applications have been used as macro benchmarks for an-
alyzing entire resource pipelines [139]. The goal is to push services from the cloud across weak
devices and the edge to optimize applications to obtain consistent dialog latency.

Data aggregation: Benchmarks that are relevant to the data-intensive workflows of power grids
have been presented in the context of an entire resource pipeline (TPCx-IoT).26 This workflow
enables real-time analytics to be performed on gateways while ingesting data from 200 different
types of power station sensors. This benchmark operates in two runs: one run for a warm up
and another for measurement. Performance, price, and availability metrics are considered. The
majority of benchmarks considered by DeFog fall under this category [102].

Edge inference: Benchmarks are employed to train machine learning models on the cloud and
perform inference on the edge (assuming that a trained model is available on the edge) [61]. A va-
riety of devices or sensors are considered to generate data in patient monitoring, surveillance, or
smart home scenarios. Similarly, inference on a device, edge, or cloud for different machine learn-
ing platforms, such as TensorFlow, Caffe2, PyTorch, MXNet, and TensorFlowLite, is considered by
pCAMP [165], which can also consider different accelerators [120]. It should be noted that in this
case, inference is not distributed, because it is performed entirely on the edge.

b. Partial pipeline: The following three combinations for benchmarking on partial resource
pipelines are considered.

Device-Edge: Edgedroid [110] is an example of benchmarking human-in-the-loop applications,
such as cognitive assistance in an edge-cloud deployment, where the edge is a cloudlet. The
underlying benchmarking approach is to mimic applications by replaying traces of sensory inputs
that are obtained from running the application in the real world. The feedback generated by
processing such sensory inputs on the cloudlet is processed using a model of human reactions.
This enhances the understanding of latency tradeoffs in the contexts of both the application and
edge-cloud deployment.

Device-Cloud: The device-cloud pipeline focuses on estimating the performance of distributed
intelligence systems [76] and IoT stream application compositions [133]. The former type of sys-
tem deploys a sliced neural network across a user device and cloud for distributed inference by
estimating where a neural network should be sliced. The latter facilitates benchmarking by com-
bining distributed stream applications using modular IoT tasks.

Edge-Cloud: This deployment pipeline is typically used to investigate the performance of ap-
plications and the lifecycle of application service offloading from the cloud to the edge and vice-
versa (although this is not exclusive to the edge-cloud pipeline and is also relevant in other partial
pipelines and the entire resource pipeline (refer to Section 5.2.1)). Benchmarks that exploit this
pipeline include EdgeBench [38] and SoftwarePilot [24].

Observation #7. A number of explicit edge performance benchmarks focus on either a device
or edge as a deployment destination. There are relatively few edge performance benchmarks that
consider the entire resource pipeline, which integrates a cloud, edge, and device.

6.2.2 Test Beds. The test bed options for deploying edge benchmarks include real-world and
physical, lab-based experimental, emulated, or simulated infrastructures.

i. Real-world physical infrastructure: This refers to “in the wild” physical test beds that closely
mimic the operational characteristics of an actual edge deployment. There are only a few such test

26http://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-iot_v1.0.4.pdf.
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beds available, such as the Living Edge Lab27 and those reported in References [107, 121]. There
has been no evaluation of any of the benchmarks listed in Table 1 on real-world infrastructures.

ii. Lab-based experimental infrastructure: The majority of test beds on which the edge applica-
tions or benchmarks listed in Table 1 have been evaluated are lab-based infrastructures. Such test
beds may be public cloud offerings or private cloud resources coupled with edge resources in the
form of single-board computers [102, 155] (or a cluster [142]) or routers/gateways. End user de-
vices may range from wireless sensors [128] to user gadgets [139, 155]. Moreover, a number of
benchmarks do not rely on real data, but instead use simulation data based on the complexity of
the environments they benchmark (e.g., autonomous cars [156] or drones [24]).

iii. Emulated infrastructure: Real-world physical infrastructure is not easily accessible to
many researchers, and many lab-based experimental infrastructures are small in scale and do
not represent the characteristics of a real infrastructure. Therefore, various types of emulated
infrastructures have recently been proposed [62]. An emulated environment relies on deploying
edge servers on the cloud and configuring these servers, as well as the network and interconnects,
such that they represent real edge environments. However, this method assumes knowledge of
the parameters required to configure a realistic emulated edge environment, which can only be
acquired from a real-world edge infrastructure.

iv. Simulation infrastructure: A number of simulators, such as EdgeCloudSim [137], iFogSim [59],
FogExplorer [63, 64], and MyiFogSim [94], are available for edge computing and can provide
insights into basic design choices. However, more complex integration tests and application
component-specific analysis cannot be performed using such simulators. Therefore, such methods
should only be used as a fallback solution when real or emulated benchmarking infrastructures
are not available.

Observation #8. Following observation #5, we note that most edge performance benchmarking
is conducted on experimental, emulated, or simulation-based infrastructures that may not be rep-
resentative of large and geo-distributed real-world physical infrastructures.

7 FUTURE DIRECTIONS AND CONCLUSIONS

This survey provided a catalog of explicit edge performance benchmarks and a subset of implicit
edge performance benchmarking research to achieve objective O1 stated in Section 1.1. We pre-
sented a brief timeline of performance benchmarking for different computing systems and then
considered edge performance benchmarking to achieve objective O2 stated in Section 1.1. The key
dimensions for edge performance benchmark categorization include the system under test, tech-
niques analyzed, and benchmark runtime, which were examined to achieve objective O3 stated in
Section 1.1. In exploring the key dimensions of edge performance benchmarks, we addressed the
three key research questions posed in Section 1.1. Furthermore, we highlighted eight observations
relevant to the scope of this article. The final objective (O4 in Section 1.1) of presenting future
research directions is accomplished in this section. The eight observations will be mapped onto
future research directions, and the general areas of research will be discussed.

Eight avenues for pursuing future edge performance benchmarking are presented below.
i. Widening the scale of geo-distribution: Following Observation #8, most current edge per-

formance benchmarking research is not conducted on real test beds with geo-distributed
infrastructures. Many existing benchmarks are designed to capture the performances of in-
dividual cloud or edge resources in lab-based test beds. Therefore, these benchmarks do not
necessarily capture the performance of large-scale geo-distribution that will be observed in

27https://www.openedgecomputing.org/living-edge-lab/.
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an edge computing environment. The absence of comprehensive edge datasets has been also
reported previously [80]. Although existing performance benchmarks have provided important
insights, more comprehensive edge performance benchmarks must fully embrace geo-distributed
benchmarking for large-scale collections of cloud and edge resources.

ii. Developing edge-specific quality and performance metrics and measurement techniques on dif-

ferent platforms: As noted in Observation #2, current edge performance benchmarks do not capture
performance on different software platforms, such as orchestrators, schedulers, and service mod-
els. To evaluate such software platforms, multiple multi-instance workloads with workflows for
the relevant applications are required to test the resource provisioning and sharing capabilities of
edge platforms. Addressing this issue would provide researchers with a valuable tool for quanti-
fying the performance of edge applications that will run on a variety of platforms. Additionally,
current efforts largely focus on capturing metrics that are historically relevant to distributed sys-
tems, such as grids and clouds. Although such metrics are useful, it is likely that edge-specific
metrics considering the transient and massively dispersed nature of such environments have not
yet been developed. Additionally, novel techniques to capture these metrics may be required.

iii. Evaluating benchmarks on real-world infrastructures: Lab-based infrastructures are the most
common test beds used to evaluate edge benchmarks, as noted in Observation #5. At least in part,
this can be attributed to limited access to real test beds. Regardless, additional efforts are required to
evaluate existing benchmarks on real and resource-rich test beds to identify limitations in current
benchmarking approaches.

iv. Developing lightweight and rapid edge benchmarks that capture application performance in

multi-tenant environments: Generally, edge and mobile resources have limited capabilities to exe-
cute common and extensive benchmark applications designed for large data center servers. Many
HPC applications have been used to capture the performance of CPUs and accelerators for edge
computing, but such methods are very time consuming. Additionally, running unmodified Spark
or Hadoop applications for big data platforms requires significant time and resources to obtain
useful results. Therefore, lightweight benchmarking in terms of actual benchmarks and measure-
ment techniques must be designed and developed for edge platforms. As noted in Observation #4,
many current edge performance benchmarks execute a single application without considering vir-
tualization. Recent edge systems are designed to utilize virtual machines and containers to support
multi-tenancy [67]. Thus, there is a need to design and develop lightweight and rapid edge bench-
marks for multi-tenant edge environments that can quantify the impact of multiple concurrent
users competing for the same resources.

v. Developing standardized benchmarks across the entire resource pipeline for capturing offloading

performance and varying workload conditions: The premise of edge computing is to offload tasks
either from a cloud or devices to an edge to reduce the overall response time of an application and
improve energy efficiency. Most edge performance benchmarks do not capture the performance
of an entire resource pipeline (devices, edges, and clouds), as noted in Observation #7, meaning
they do not capture the performance of offloading coherently. Many evaluations presented in the
existing literature have used various workloads and metrics relevant to specific platforms or test
beds. Therefore, they are non-standard benchmarks and are not compatible across different infras-
tructures. Additionally, as noted in Observation #5, existing edge performance benchmarks have
limited flexibility in terms of capturing a wide range of workload conditions. Hence, a more com-
prehensive and standard approach for benchmarking offloading mechanisms and varying work-
load conditions must be considered.

vi. Maturing edge performance benchmarking: Current edge performance benchmarks typically
consider QoS metrics, while other relevant criteria, such as energy consumption, are not con-
sidered, as noted in Observation #3. Additionally, most metrics focus on CPUs, but additional
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research is required to quantify the performance of accelerators, storage, and networks at the edge,
as noted in Observation #1. A benchmarking suite that can holistically capture CPU, accelerator,
memory, storage, and network performance on edge platforms and generate performance scores
that are normalized against reference platforms is required. These are a few relevant areas that
must receive additional attention from the research community to advance edge performance
benchmarking research.

vii. Moving beyond performance in edge benchmarking: In addition to performance in bench-
marking, there are other quality dimensions such as elastic scalability, data consistency, security
and privacy, and availability that are typically in direct or indirect tradeoff relationships [10, 19].
Current edge benchmarking approaches do not consider quality dimensions beyond performance.
Benchmarking approaches from other closely related domains, such as cloud computing, can of-
ten be adapted or reused for edge environments. For example, there are large numbers of starting
points for elastic scalability [20, 53, 74, 82, 86, 116], availability [16, 18, 50, 65, 79, 129, 141], data
consistency [4, 10, 11, 14, 15, 55, 152, 163], and security and privacy [7, 17, 34, 77, 106, 112, 113, 131].
A more detailed discussion of additional quality dimensions for edge benchmarking is beyond the
scope of this paper.

viii. Security/privacy-specific edge benchmarks: Edge systems are significantly more complex
than previous iterations of distributed systems (volume of devices connected, heterogeneity of
resources and technological domains spanned, and edge resources that are accessible for comput-
ing, which were previously unavailable or concealed within networks). This complexity naturally
creates a large attack surface and multiple vulnerable spots in terms of data privacy. Therefore,
benchmarks that provide insights into identifying security mechanisms for orchestrating services
and suitable security standards for complex systems would be very useful.

Relevance of edge performance benchmarking to practitioners: Edge performance benchmarking
is a nascent topic within edge computing research. We anticipate that multiple practitioner groups
will benefit from edge performance benchmarks. We list four relevant groups below [19, 102]. (i)
Edge hardware vendors can tabulate and demonstrate the advantages of edge computing by using
performance benchmarks. (ii) System software administrators can investigate the effects on edge
applications when changes are introduced within an edge compute infrastructure, such as updates
or patches to operating systems, system software, or runtime libraries. (iii) Service providers can
select the most appropriate geographic locations for deploying micro and modular data centers
on the edge and can quantify the performance of specific applications to justifying their choice of
location. (iv) Network administrators may wish to quantify edge application performance when
changes are introduced in the network stack, such as a new network protocol or security patch in
a specific layer of the stack.

Additionally, real-time edge performance benchmarking can be integrated with automated edge
software development and adaptive edge orchestration platforms to select the most appropriate
edge resource for deployment based on current performance and network conditions. In this
context, edge performance benchmarks will be of significant interest to any edge application
developer.
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