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Abstract—Control firmware in unmanned aerial vehicles
(UAVs) uses sensors to model and manage flight operations,
from takeoff to landing to flying between waypoints. However,
sensors can fail at any time during a flight. If control firmware
mishandles sensor failures, UAVs can crash, fly away, or suffer
other unsafe conditions. In-situ model checking finds sensor
failures that could lead to unsafe conditions by systematically
failing sensors. However, the type of sensor failure and its timing
within a flight affect its manifestation, creating a large search
space. We propose Avis, an in-situ model checker to quickly
uncover UAV sensor failures that lead to unsafe conditions.
Avis exploits operating modes, i.e., a label that maps software
execution to corresponding flight operations. Widely used control
firmware already support operating modes. Avis injects sensor
failures as the control firmware transitions between modes – a
key execution point where mishandled software exceptions can
trigger unsafe conditions. We implemented Avis and applied
it to ArduPilot and PX4. Avis found unsafe conditions 2.4X
faster than Bayesian Fault Injection, the leading, state-of-the-
art approach. Within the current code base of ArduPilot and
PX4, Avis discovered 10 previously unknown software bugs that
lead to unsafe conditions. Additionally, we reinserted 5 known
bugs that caused serious, unsafe conditions and Avis correctly
reported all of them.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) hover, fly to set way-

points and perform complex aerial operations. Without a hu-

man aboard, UAVs can handle missions that are too dangerous,

too long or otherwise unprofitable for traditional aircraft. For

example, UAVs can enter wildfires and war zones [3], [20].

UAVs can also survey large crop fields at low altitudes to as-

sess damage caused by natural disasters, pests and contagious

crop diseases [43], [44]. UAVs use software, called control
firmware, to read from sensors, model the state of the aircraft,

respond to pilot commands, and control pitch, thrust and yaw

for navigation. As the global market for UAVs will soon

exceed $42B [32], control firmware is increasingly crucial

system software. It underlies every major UAV use case and

must support a growing number of flight operations. Software

bugs in UAV control firmware can have serious consequences,

such as crashes.

UAVs use a myriad of sensors, including inertial mea-

surement units (IMUs), global positioning systems (GPSs),

compasses, and barometers. Sensors can fail for many reasons.

GPSs can be disrupted by Carrington events that affect the

Earth’s magnetic field [33]. Alternatively, sensors can be

disconnected from their power source due to turbulence or

motor vibrations. Control firmware, by design, accounts for

sensor failures via (1) failing over to redundant sensors,

Fig. 1: Execution analysis of a mishandled sensor failure that

can cause a crash.

(2) discarding invalid readings and (3) employing multiple

methods with diverse input needs to model the state of the

aircraft. Despite these precautions, sensor failures can cause

unsafe flight conditions where control firmware executes flight

operations that crash the UAV or disrupt its mission. Unsafe

flight conditions occur when fault handling logic does not

anticipate the context surrounding a sensor failure.

Figure 1 depicts an unsafe condition that stemmed from a

sensor failure in ArduPilot. At the end of a landing operation,

IMU sensors failed. The control firmware detected the failure

and began to return to home using GPS driven flight. At

normal flight altitudes, these actions are safe; the GPS would

measure altitude less precisely than an IMU but sufficiently

to conduct simple maneuvers when used with other models.

However, the control firmware triggered GPS-driven flight

under the incorrect assumption that the UAV could safely

navigate to a new altitude using the GPS alone. At low

altitudes, such as the end of a landing operation, GPS is

too imprecise to guide major altitude adjustments. We can

repeatedly trigger this crash in simulation by failing IMU

sensors when the UAV is fewer than 2 meters above ground.

Sensor bugs are segments of control firmware source code

that, if fixed, could eliminate an unsafe flight condition caused

by a sensor failure. Figure 1 was caused by a sensor bug. If

control firmware checked altitude before switching to GPS

flight, the crash could have been avoided. Instead, the landing

routine could have been allowed to complete normally.

Our analysis of public Github repositories reveals that

sensor bugs represent 40% of source code patches intended

to fix UAV crashes. Further, sensor bugs often lead to crashes

or other serious consequences. However, the source code for

control firmware is large and complex. In practice, software

developers wait for users to report sensor bug manifestations

before trying to understand root causes. The severity of sensor

bug manifestations necessitates more preemptive approaches.
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In-situ model checking systematically injects faults during

simulated executions, searching for faults that cause the system

to violate invariant properties. While in-situ model checking

enables preemptive analysis, UAVs present unique challenges

for its application. First, control firmware accesses sensor

readings frequently (103–104 times per second). Also, one

or multiple types of sensors can fail at any moment. This

failure space is immense. Second, sensor bug manifestations

depend on the timing and type of failure. Figure 1 depicts

the narrow window where an IMU failure can cause a UAV

to crash. Practical in-situ model checking approaches must

balance these conflicting concerns. While statistics-driven fault

injection seems necessary given the magnitude of the search

space, the sampling approaches could miss fault injections that

trigger time-sensitive bugs.

This paper presents Avis, an aerial-vehicle in-situ model

checker. Avis exploits a common sentiment among control

firmware developers: Sensor bugs often stem from failure

handling logic that is too narrowly tailored to specific oper-

ating modes. These bugs are hard to detect because failure

handling logic is implemented in different locations in the

firmware [24]. Avis uses custom in-situ workloads that

exercise transitions between operating modes and carefully

injects failures, across all types of sensors, near the transitions

between operating modes. By exploiting operating modes,

Avis finds a nice balance. It prioritizes injection sites likely

to reveal bugs, but also captures time-sensitive issues at the

critical boundaries between operating modes. Compared to

Bayesian Fault Injection (BFI) [15], a statistically guided

model checker for autonomous vehicles, Avis does not rely

on statistical inference. BFI is more likely to trigger unsafe

conditions that occur in the main flight mode, especially if

unsafe conditions have occurred in the past. In contrast, Avis

does not require training data and can comprehensively explore

fault handling logic that spans operating modes.

We implemented Avis and applied it to two open-source

control firmware: ArduPilot and PX4. We compared it to BFI

in terms of efficiency (unsafe conditions found per simulation)

and efficacy (bugs uncovered). Avis found unsafe conditions

2.4X more efficiently than BFI. When we re-inserted 5

previously known software bugs that caused serious, unsafe

conditions, Avis found unsafe conditions caused by each bug.

BFI did not find any. When we studied unsafe conditions that

Avis found in the current code base, we found 10 previously

unknown software bugs related to IMU and GPS failures (2

of which have been confirmed by developers).

To summarize, our contributions are:

• A study characterizing the frequency and impact of sensor

bugs in widely used open-source control firmware.

• A fault injection approach that exploits operating modes

in UAV for stratified breadth-first search.

• A framework for building UAV workloads that exercise

operating modes.

• A prototype of Avis and experimental results on ArduPi-

lot and PX4 that reveal the efficiency and efficacy of our

Fig. 2: ArduPilot uses support for multiple threads to query

sensors and asynchronously update its main control loop.

approach by capturing previously known sensor bugs and

uncovering new, previously unknown bugs.

The rest of the paper is organized as follows. §II provides

background on sensor bugs and UAVs. §III shows the impact

of sensor bugs on UAV reliability. §IV presents the design

of Avis, including our framework to create workloads that

exercise operating modes and our stratified approach for fault

injection. §V describes implementation details. In §VI, we

present our evaluation of Avis and a study analyzing sensor

bugs and their manifestations in UAVs. We discuss related

work in §VII. Finally, we conclude in §VIII.

II. BACKGROUND

Figure 2 depicts runtime execution for ArduPilot, a widely

used software system for controlling UAVs [5]. Created in

2007 by hobbyists, ArduPilot is now used by more than 65

companies in industrial applications. It supports a wide range

of aircraft from large fixed-wing planes to copters that weigh

less than a kilogram. The code base now exceeds 700K lines

with nearly 100 developers contributing to its maintenance.

PX4 is another popular, open-source framework for autopilot

control firmware [28]. PX4 has over 6M lines of code and is

used by the production-grade PixHawk UAV.

As shown in Figure 2, ArduPilot uses multiple parallel

threads to read from sensors and manage flight dynamics.

Pilots can provide input with a remote control or with a laptop.

Throughout this paper, we refer to pilot inputs as the UAV

workload, i.e., a sequence of flight commands. For example,

ArduPilot supports flight commands to (1) directly adjust

thrust, yaw or pitch, and (2) fly to a waypoint coordinate.

The code used to execute these commands differs. An oper-
ating mode encompasses all code execution associated with a

pilot command. Today, the ArduPilot code base supports 25

operating modes including takeoff, landing, manual piloting,

fly to waypoint, return home, auto avoidance and acrobatics.

In addition, developers can add custom modes to create

automated flight maneuvers.

During every iteration of the simulation, an operating mode

translates user inputs and sensor signals to actuation in the

motor systems. To help developers, ArduPilot includes models

to estimate the state of the aircraft. For any operating mode,

it is important to know the position, altitude and attitude of

the aircraft before adjusting motor systems. However, sensor
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Fig. 3: Analysis of reported bugs for ArduPilot and PX4.

failures can render these models useless because (1) fault

handling logic may not realize that state models differ from

normal flight conditions (as in Figure 1) and (2) sensor failures

may lead to incorrect state models that diverge from reality.

When developer expectations, state models and reality differ,

the UAV is flying in an unsafe condition that could have

serious consequences.

III. THE IMPACT OF SENSOR BUGS

We reviewed bugs reported and resolved on the public

GitHub repositories of ArduPilot (206 cases) and PX4 (188

cases) from 2016-2019. In total, we reviewed 394 bugs.

We excluded bug reports related to software development

environments and tools (29). We also removed duplicates,

false reports, reports unrelated to control firmware and bugs

that were described too vaguely to repeat or understand (150).

After pruning, we were left with 215 bugs.

We classified bugs by their root causes: Semantic bugs were

caused by logically incorrect behavior of the UAV without

a preceding hardware fault; Memory bugs stemmed from

incorrect memory allocation or invalid accesses; Sensor bugs,

as described earlier, were triggered by a sensor fault. Finally,

we grouped all remaining bugs, including concurrency bugs,

under the label other.

We also classified bugs by the flight conditions where they

manifested. Some bugs were easy to reproduce, because they

could be triggered under default settings, i.e., with standard

environment and hardware configurations. We distinguished

bugs that required special settings. Finally, we also classified

bugs by their symptoms. Some bugs were asymptomatic.

Others had transient affects, such as jerks during flight. The

most serious bugs resulted in a crash or the UAV flew away.

Finding 1: Sensor bugs account for 20% of control
firmware bugs.

We found that semantic bugs accounted for 68% of reported

bugs. Sensor bugs were second most common, accounting for

20% of reported bugs. However, as shown in Figure 3(A),

sensor bugs represented 40% of reported bugs that caused the

UAV to crash.

We believe sensor bugs are common for a several reasons.

(1) ArduPilot and PX4 have adopted Valgrind [26] to detect

memory bugs during in-house testing [6], [29], depressing

the frequency of such bugs. (2) Semantic bugs were often

asymptomatic (90%). Common symptoms include improper

messages appearing in logs, unimplemented commands, grad-

ual vehicle drift, and mishandled unit conversions resulting

in the vehicle navigating to an incorrect location. These bugs

reflected the growing number of contributors to the code base,

but they were resolved without serious consequences. (3) As

of this writing, ArduPilot and PX4 did not adopt tools for

rigorous fault injection. Code paths related to handling sensor

failures are checked by unit tests, but are not comprehensively

checked across multiple environments.

Finding 2: 47% of the sensor bugs are reproducible under
default settings.

Figure 3(B) examines the 44 sensor bugs in our study.

47% could be reproduced under default environment and

hardware settings. In a nutshell, these bugs followed a simple

template (1) trigger a sensor failure and (2) check the vehicle’s

behavior for symptoms. Wind and humidity contributed to

bugs that required special environmental conditions. However,

new aircraft also introduced bugs. For example, PX4-12758

in PX4 describes a sensor bug where the fault handling logic

in a new copter used the wrong interface to set return to home

mode on the aircraft.

Finding 3: About 34% of the sensor bugs have serious
symptoms.

Not only were sensor bugs the most common root cause

for bugs manifesting as a crash, Figure 3(C) shows that

most reported sensor bugs displayed symptoms. A significant

portion of sensor bugs are serious (34%). This finding demon-

strates the importance of detecting sensor bugs in RVs. Sensor

bugs are prone to serious outcomes because UAV depend on

sensors for safe flight. We noticed that, for many root causes,

developers applied default actions, like return to home, as-

suming they can be executed effectively. When sensors failed,

these assumptions–i.e., the difference between expectations,

modeled state and reality— had severe consequences.

IV. AVIS DESIGN

As shown in Figure 4, Avis consists of three major com-

ponents: workloads, a fault injection engine, and an invariant

monitor. Avis tests a UAV by simulating its behavior in a

physical environment under a workload. Workloads issue flight

commands to the UAV, as shown in Figure 4. While the UAV

runs, the fault injection engine monitors the vehicle’s mode

transitions. The fault injection engine uses mode transitions to

schedule injections. Meanwhile, the invariant monitor checks

the UAV’s simulated physical state to detect unsafe conditions.

If an unsafe condition occurs, the invariant monitor generates

a detailed report to help reproduce and diagnose the bug.

UAV simulation involves executing mostly unmodified UAV

source code while simulating hardware. The only two modi-

fications are the use of simulated sensor and actuator drivers.

The sensor drivers read from the simulator instead of hard-

ware. The original firmware source code uses the simulated
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Fig. 4: An overview of Avis. Arrows denote the direction of

information flow.

sensor inputs to determine its next motor controls. The actuator

drivers communicate the motor controls to the simulator (not

shown). The simulator uses these controls to generate the ve-

hicle’s new physical state. One iteration of this communication

is called a simulation time-step.

Avis relies on simulation instead of real UAV flights for

three reasons. First, recall that sensor bugs can have serious

symptoms; simulating the behavior of the UAV under a fault

injection scenario allows Avis to expose a sensor bug without

suffering from the bug’s symptom, e.g., crashing the vehicle.

Second, simulations can be performed faster than real experi-

ments, improving test throughput. Last but not least, all UAV

firmware modules (except for drivers) are identical to the ones

used in real systems, enabling Avis to use simulation to check

real UAV firmware. Next, we discuss the three components of

Avis in more details.

A. Workloads and Environments

Pilots send commands using a ground-control station to

control a UAV’s movements. A sequence of pilot commands

constitutes a workload. UAVs typically communicate with

the ground-control station using the MAVLink [21] protocol.

Ideally, all control firmware would support the same MAVLink

messages and strictly implement their semantics. In practice,

implementations have subtle quirks that make it difficult for

users to develop portable workloads. To mitigate this issue,

Avis provides default workloads that work on both ArduPilot

and PX4. We also provide a high-level framework developers

can use to extend our workloads and build their own.

We design our workloads to exercise common commands

such as takeoff, fly-to-waypoint, and land. Each command

maneuvers the vehicle in a simple way, e.g. along a polygon.

This allows Avis to trigger bugs that UAV pilots are most

likely to experience.

The simulator provides an environment, a model of the

physical world that contains obstacles and weather effects.

Workloads navigate the UAV in the environment. Some unsafe

conditions can only be recreated in specific environments, e.g.

due to adverse weather or obstacles such as trees. Avis uses

an environment without hostile weather or obstacles.

B. Fault Injection Engine

Avis injects sensor failures during simulated flights to

expose bugs in control firmware that lead to unsafe conditions.

The main challenge Avis faces is exploring a huge fault space.

Exhaustively injecting every possible fault is not feasible and,

GPS, Baro

Baro

Ø
t1 t4 t5

Takeoff Auto

t2 t3

Land

GPS

Fig. 5: UAV modes and the corresponding UAV code executed

at different times ti during a test run. Each circle represents

the failure state of the GPS and barometer. Similar states are

colored black.

in most cases, would yield normal executions that do not aid

root cause analysis. In this subsection, we first elaborate on

this challenge. Then, we propose a new search strategy, called

SABRE, for fault injection based on the UAV’s operating

mode. Finally, we show how to avoid fault injections that yield

redundant states to further improve search efficiency.

Fault Model and Challenges: Avis models clean sensor
failures, where a sensor instance stops communicating with

the firmware and the driver reports the instance has failed.

Any sensor instance can fail at any time (controlled by Avis).

Moreover, a failed sensor will not recover during the same test

run. Avis focuses on such a simple fault model because it is

realistic. More importantly, UAVs are expected to handle this

simple fault model.

Usually, a UAV samples its sensors thousands of times each

second. Consequently, there are far too many fault injection

sites to exhaustively cover. Moreover, since UAV workloads

usually take minutes to execute, effectively exploring fault

injection sites becomes even more important. On a simple

vehicle with 7 onboard sensors and no backups, there are more

than (27 − 1)× 103 ≈ 105 fault injection sites each second.

To maximize the number of unsafe scenarios identified as

we search the fault space, we rely on a key observation: there
are many similar fault injection sites within each mode.

Figure 5 demonstrates this observation using an example.

Since injecting the same failures in the same mode likely leads

to the same UAV behavior, injecting sensor failure at t3 can

be similar to injecting failures at t2. However, injecting sensor

failures at t4 exposes different UAV code to failures, likely

causing different UAV behaviors.

This observation motivates us to prioritize fault injection

at mode boundaries. Consider the bug described in Figure 1.

In a narrow window while the UAV has low altitude but has

not yet landed, it is vulnerable to an IMU failure blinding the
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firmware to the effects of its own actuation. By considering

the area between landing and disarming early in the injection

space exploration, Avis quickly triggers this scenario.

Search Strategies: Inspired by the previous observation, we

propose SABRE—a stratified breadth-first search. SABRE ex-

plores the space of sensor failures using injection sites across

all modes. Before we describe SABRE, we first consider two

common search strategies to understand their drawbacks.

Figure 5 shows the fault space that should be explored given

two sensors (GPS and Barometer) and a workload with five

time-steps. Depth-first search is an intuitive way to search

the fault space, which results in the following sequence of

executions:

〈∅, ∅, ∅, ∅, ∅〉
〈∅, ∅, ∅, ∅, {GPS}〉
〈∅, ∅, ∅, ∅, {Baro}〉

〈∅, ∅, ∅, ∅, {GPS,Baro}〉
〈∅, ∅, ∅, {GPS}, {GPS}〉

. . .

In each sequence 〈F1, . . . , F5〉, Fi denotes the set of sensors

that are failed at time ti. This search is ineffective because

similar fault injection scenarios (e.g. failing the GPS at t4 and

failing the GPS at t5) are explored before the scenarios in

different modes (e.g., failing GPS at t3). Given a limited test

budget, depth-first search tends to test a small area of the UAV

firmware.

An alternative approach is to use breadth-first search to

explore the fault space. We explore the fault space across time

to reach dissimilar moments faster. This approach results in the

following sequence of executions:

〈∅, ∅, ∅, ∅, ∅〉
〈{GPS}, {GPS}, {GPS}, {GPS}, {GPS}〉
〈{Baro}, {Baro}, {Baro}, {Baro}, {Baro}〉

〈{GPS,Baro}, {GPS,Baro}, . . . , {GPS, Baro}〉
〈∅, {GPS}, {GPS}, {GPS}, {GPS}〉

. . .
〈∅, ∅, {GPS}, {GPS}, {GPS}〉

. . .

However, this strategy is ineffective because it also explores

similar fault scenarios first. Specifically, after injecting failures

at t2, breadth-first search considers similar failures at t3
next. This delays exploration of complex fault scenarios (i.e.,

failing different sensors at different times) until all the simple

scenarios are checked. Given the limited test budget, complex

fault scenarios may never be explored by breadth-first search.

In contrast to depth-first search and breadth-first search,

SABRE prioritizes exploring the most different states in the

fault space by considering the UAV’s mode. Specifically,

SABRE first explores the scenarios that inject sensor failures

around mode transitions, allowing SABRE to consider fault

scenarios that fail different sensors at different modes before

the aforementioned two strategies. Note that SABRE only

Algorithm 1: SABRE

Workload: the workload to execute

Failures : the sensor failures to inject

1 transitionQueue ←
Queue(ProfileExperiment(Workload));

2 seenBugs ← {};
3 while transitionQueue is not empty do
4 timestamp, injectedFailures ←

Dequeue(transitionQueue);

5 for failureSet in PowerSet(Failures) do
6 if CanPrune(timestamp, failureSet, seenBugs,

injectedFailures) then
7 continue;

8 end
9 failures ← injectedFailures ∪ {(failure,

timestamp) : failure ∈ failureSet};
10 result ← RunExperiment(Workload, failures);

11 if Ok(result) then
12 for modeTimestamp ∈

result.modeTransitions do
13 Enqueue(transitionQueue,

(modeTimestamp, failures));

14 end
15 else
16 reportBug(failures, result);

17 seenBugs ← seenBugs ∪ {failures};
18 end
19 end
20 Enqueue(transitionQueue, (timestamp + 1,

injectedFailures));

21 end

prioritizes the search to uncover bugs earlier – exhaustive

search is still possible, but is prohibitively expensive.

Algorithm 1 shows how Avis uses SABRE to guide its

fault-space exploration. Here, we walk through the algorithm

using the example shown in Figure 5. Avis first executes the

workload to determine when mode transitions occur (Line 1).

Mode transitions are discovered at t1, t2, and t4. As a result,

Avis initializes its transition queue to 〈(t1, ∅), (t2, ∅), (t4, ∅)〉,
where each (ti, set) means to inject new faults at ti alongside

the fault combinations 〈sensor, timestamp〉 in set. Next,

Avis dequeues the injection scenario (t1, ∅) from the queue

(Line 4) and applies all possible sensor failures to this point

(Line 5) but only if they are not redundant (Lines 6-8). Thus,

Avis tests the following executions:

〈{GPS}, {GPS}, {GPS}, {GPS}, {GPS}〉
〈{Baro}, {Baro}, {Baro}, {Baro}, {Varo}〉

〈{GPS,Baro}, {GPS, Baro}, . . . , {GPS, Baro}〉
Avis also re-enqueues each bug-free scenario it tests for

generating new fault scenarios in later runs (Lines 11-14). Fi-

nally, Avis re-enqueues the dequeued scenario with a changed

timestamp so that it will explore injecting faults at different
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times in later runs. The next tuple dequeued by Avis is (t2, ∅)
since it is the second mode transition discovered during the

profiling run. So, Avis injects faults at t2 as it did at t1.

Next, Avis dequeues the mode transition (t4, ∅). So, rather than

conducting fault injection at t3 next like breadth-first search,

Avis considers this fault combination:

〈∅, ∅, ∅, {GPS}, {GPS}〉.
In this way, Avis prioritizes injecting faults around the mode

transitions. This process repeats until the queue is exhausted.

1) Redundancy Elimination: While SABRE guides the or-

der that injection sites are searched, it does not avoid redundant

injection scenarios. Avis uses two policies, i.e., found bug
pruning and sensor instance symmetry, to eliminate these

redundancies.

In the found bug pruning policy, if injecting a sensor failure

F0 at time t triggers a bug, Avis will not try to inject F0 plus
other failures at time t in the later test runs. The intuition

behind this policy is that if a vehicle cannot handle a single

sensor failure then it is unlikely to correctly handle multiple

failures in the same program context.

The sensor instance symmetry policy exploits the role of

a sensor, i.e., primary or backup, to reduce the combinatorial

size of the fault space. UAV systems are usually equipped

with multiple sensor instances of the same sensor type to

tolerate sensor failures. One of these redundant sensors is

the primary, while the other instances are the backups. We

find that, when handling sensor failures, the UAV’s behavior

depends on the role of the failed sensors instead of which

instances fail. Therefore, Avis skips a sensor failure scenario if

the same failed sensor roles have been tested before, regardless

of the actual instances.

Figure 6 illustrates the sensor instance symmetry policy with

an example. Consider a UAV with three compasses labeled as

“P,” “B1,” and “B2,” corresponding to the primary and the two

backups respectively. Assume Avis is injecting sensor failures

at time t. In the first two runs, Avis fails sensor P (Figure

6a) and sensor B1 (Figure 6b), respectively. These are two

different scenarios since P is a primary sensor while B1 is a

backup sensor. Then, Avis considers failing B2 but decides

to skip it (Figure 6c). This is because B2 is a backup sensor

and Avis has tried failing one backup sensor in a previous

run (Figure 6b). Later, Avis injects failures at “P” and “B1”

simultaneously, since it has not yet injected a failure of a

primary with a backup (Figure 6d). When Avis considers

injecting a failure of “P” and “B2” in Figure 6e, it sees that it

has already failed “P” and “B1” and skips this combination.

In general, if a vehicle is equipped with N instances of a

sensor, sensor instance symmetry reduces the number of faults

that must be injected from N × (2N − 1) (e.g. N primary

instances of a sensor with 2N subsets to fail minus the empty

set of failures) to 2N − 1 (e.g. N − 1 ways to fail the backup

sensors with or without the primary, plus one way to fail the

primary alone) thus diminishing the effects of state explosion.

For the above example, sensor instance symmetry reduces the

number of checks from 21 to 5.

C. Invariant Monitor

At the end of each simulation iteration, Avis’s invariant

monitor checks two simple rules:

• Safety - The UAV does not collide with an obstacle.

• Liveliness - The UAV must always make progress to-

wards its goal. This may be compromised under special

circumstances to preserve safety.

1) Safety: The invariant monitor detects both software

crashes and physical collisions for the safety rule. To detect

software crashes, the invariant monitor checks if the firmware

process is still running. To detect physical collisions inside

the simulator, the invariant monitor checks if (1) the vehicle

rapidly (de)accelerates but (2) has the same position as another

simulated object, e.g, the ground.

2) Liveliness: Checking the liveliness condition is chal-

lenging for two reasons. First, the behavior of the UAV may

change in the presence of sensor failures or non-determinism

introduced by the operating system scheduler (e.g. slight

delays between the workload sending and the firmware re-

ceiving messages), although the mission is still correctly being

executed. Second, liveliness sometimes must be sacrificed in

the presence of sensor failures to preserve safety. Avis must

detect when this has occurred and not report an error.

To combat the first issue, Avis detects liveliness violation

by measuring the differences in the UAV’s behavior between

the test run and a set of correct profiling runs. If the test run

significantly diverges from the correct runs, then liveliness is

violated. We assume runs without sensor failures are correct.

To measure the difference between two runs, Avis compares

the states of the vehicle at the same time offset t in both

runs. The state of the vehicle is represented using the tuple

(P, α,M), where P ∈ R
3 is the vehicle’s position, α ∈ R

3

is the vehicle’s acceleration, and M is the vehicle’s mode.

Velocity is excluded because it is redundant: if the difference in

velocity is large, then the difference in acceleration or position

must also be large. We could detect liveliness violations

using position alone. However, it takes tens of seconds to

detect liveliness violations with this approach. Using multiple

variables lets us detect violations in seconds. The invariant

monitor reports a liveliness violation if the state in the test

run deviates from the states in the profiling runs.

Before defining the distance between two states, we first

define the distance of each component in the state tuple. For

both the position P and the acceleration α, we use Euclidean

distance (de). For example, the distance between two positions

P1 and P2 is computed as

de(P1, P2) =
√

(P x
1 − P x

2 )
2 + (P y

1 − P y
2 )

2 + (P z
1 − P z

2 )
2,

where P x
i , P y

i , and P z
i are the three coordinate values of

Pi. To define the distance between two modes, we utilize

the mode graph. A mode graph is a directed graph, where

each node represents a mode and each edge represents a

mode-change event. The mode graph is constructed from the

observed transitions between modes in the profiling runs. Note

that not every mode is adjacent in the mode graph – for

476

Authorized licensed use limited to: The Ohio State University. Downloaded on May 21,2023 at 02:05:51 UTC from IEEE Xplore.  Restrictions apply. 



explored 
failures@t

(a)

explored 
failures@t
- P

(b)

explored 
failures@t
- P
- B1

(c)

explored 
failures@t
- P
- B1
- B1, B2

(d)

explored 
failures@t
- P
- B1
- B1, B2
- P, B1,, B11

(e)

Fig. 6: The process of pruning redundant faults. Compasses colored red are candidates for fault injection; colored black are

not under current consideration; colored blue are considered but pruned. Not shown: {P, B1, B2} and {B1, B2}.

instance, a drone cannot land before it is flying. The distance

between modes (denoted dm) is defined as the length of the

shortest path between them in the firmware’s mode graph.
We also normalize the distance of each component before

computing the distance between two states. Intuitively, we

want to transform the distance between the acceleration and

position components to measure “on a scale from 0 to the

longest path in the mode transition graph, how far apart are

these values?” To normalize the distance on positions, we first

compute P , the largest distance between any two positions

that occur at the same time t of two different runs. Let Pi,t

denotes the position of the vehicle in simulation i at time t.
Then, P can be computed as

P = max {de(Pi,t, Pj,t)|1 ≤ i, j ≤ N ∧ 1 ≤ t ≤ T} ,
where N is the number of profiling runs and T is the duration

of the profiling runs. To ensure that every profiling runs have

the same duration, we repeat the last state an appropriate

number of times for the shorter runs. Then the normalized

position distance can be computed as

dP (Pi,t, Pj,t) =
de(Pi,t, Pj,t)D

P ,

where D denotes the length of the longest path in the mode

graph. Similarly, the normalized distance of two accelerations

can be computed as

dA(Ai,t, Aj,t) =
de(Ai,t, Aj,t)D

A ,

where Ai,t denotes the acceleration of the vehicle in simulation

i at time t, and

A = max {de(Ai,t, Aj,t)|1 ≤ i, j ≤ N ∧ 1 ≤ t ≤ T}
is the largest distance between any two accelerations at the

same time t of two different runs.
Finally, the distance between two state tuples is defined as

d(Si,t, Sj,t) = ‖(dP (Pi,t, Pj,t), dA(Ai,t, Aj,t), dM (Mi,t,Mj,t))‖
where Mi,t denotes the mode of the vehicle at time t in

simulation i and ‖.‖ denotes the Euclidean norm.
With this distance defined, we can compute τ , the largest

distance between any two states at the same time t of two

different runs to be

τ = max {d(Si,t, Sj,t|1 ≤ i, j ≤ N ∧ 1 ≤ t ≤ T )} .

Avis

Invariant Monitor

Simulator

workload 
calls step()

sim. 
advances time

sensors
simulated

faults injected

actuator 
outputs to sim.

vehicle state updated

Fault Injection 
Engine

Workload

Vehicle

Sensor Drivers

State Estimator

Navigator

Fig. 7: An overview of one step in the Avis process.

Avis considers the liveliness to have been violated in simula-

tion SF if

∀i : d(SF,t, Si,t) > τ. (1)

That is, liveliness is violated at time t if the state is further

from all profiling runs than the maximum seen distance.

To allow UAVs to preserve safety at the expense of live-

liness, we allow developers to specify safe modes that are

always permitted. For instance, we provide a safe return to

launch location mode. If a vehicle enters a safe mode, Avis

does not signal that a bug has been found, even if liveliness

has been violated. Additional invariants must be supplied for

safe modes. For example, a vehicle executing in the return to

launch mode must make progress back to the launch site.

D. Replaying Bugs

Avis records the failures that it injects. Avis saves the fail-

ures for replay if an unsafe condition is found. To reconstruct

the unsafe condition, Avis re-executes the mission, injecting

the same faults at the same time offsets from mode transitions.

Even in the presence of minor non-determinism this technique

is successful since failures are injected at the same time

relative to the modes they affect.

V. IMPLEMENTATION

Avis contains several components: (1) a high-level frame-

work for building UAV workloads, (2) a fault injection engine

for generating fault injection scenarios, and (3) an invariant

monitor for detecting incorrect firmware behaviors. Avis’

source code is available at [22].
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Figure 7 shows an overview of one time-step of the sim-

ulator. The goal of Avis is to test the UAV’s firmware under

different sensor failure scenarios. At the start of each test,

Avis provisions a new instance of the simulator and firmware.

Next, Avis launches its invariant monitor and its workload.

The workload executes until it returns control back to Avis

by calling the step() RPC (Step 1). Typically, workloads

created using our framework only need to call our high-level

APIs, e.g., takeoff(), which call step(). When step()

is called, Avis notifies the simulator to advance its time by

a fixed unit (1ms) and to permit the firmware to retrieve its

current state (Step 2). The simulator then generates synthetic

sensor readings based on the UAV’s physical state (Step 3).

After reading the sensor values, instrumented code in sensor

drivers report the readings to the fault injection engine and

inject sensor failures as directed (Step 4). Then the firmware

continues executing and eventually sends the actuator outputs

to the simulator (Step 5). The simulator uses this information

to compute the next physical state of the vehicle (Step 6) and

it informs Avis the step has completed. At the end of each

step, the invariant monitor checks the vehicle’s state is safe.

A. Workload Framework and Workloads

UAVs communicate a workload’s commands using the

MAVLink protocol [21], [30]. However, MAVLink is chal-

lenging for developers to use to create workloads. The UAV

is responsible for controlling most interactions between the

ground-control station and the vehicle. For instance, to upload

new missions the ground-control station first communicates

the number of mission items to the vehicle and then waits for

the vehicle to request each item. This presents two problems.

First, it introduces the possibility of deadlock during model

checking. Since the vehicle’s execution is carefully synchro-

nized with both the simulator and Avis, both parties must avoid

simultaneously waiting on messages from each other. Second,

this makes even simple missions difficult to implement.

Avis’s workload framework provides high-level APIs that

safely abstract the most common MAVLink transactions. By

default, we provide two workloads that we show are effective

at triggering bugs with Avis. Developers can create additional

workloads using our Python framework.

We show an example of a simple workload that uses our

framework in Figure 8. First, the workload waits 40 seconds

for the UAV to initialize (Line 1). Next, the workload uploads

takeoff and land commands (Line 2). Then, the workload arms

the UAV (Line 8) and enters the fly-to-waypoint mode (Line

9). Finally, the workload waits for the vehicle to reach its

target altitude (Line 10) and then for the vehicle to land (Line

11). The final step of the workload is to communicate the test

succeeded to AVIS (Line 12).

Our first workload uses a manual mode that holds the

vehicle’s position. First, the UAV ascends to an altitude of 20

meters (m). Then, the UAV flies the perimeter of a 20mx20m

box. Finally, the UAV lands at its launch point.

This mission is sufficient to test manual modes. Other man-

ual modes maintain the vehicle’s orientation (e.g. pitch/rol-

1 class AutoWorkload(workload_framework.Target):
2 def test(self):
3 self.wait_time(40000)
4 self.upload_mission(
5 self.takeoff_mission(20,self.cur_lati,
6 self.cur_longi,self.home_alti) +
7 self.land_mission())
8 self.arm_system_completely()
9 self.enter_auto_mode()

10 self.wait_altitude(20)
11 self.wait_altitude(0)
12 self.pass_test()

Fig. 8: An example workload built with Avis’s workload

framework.

l/yaw) or altitude. Holding the position requires holding ori-

entation and altitude. UAV firmware typically reuses the code

that implements this behavior. So, by testing the position

mode, we test these two modes as well.
UAV firmware also provide stunt and race modes. We

choose to leave these modes untested. Stunts and race modes

relax the firmware’s safety guarantees. This places more trust

in the UAV’s operator. A sensor failure at this time cannot

expose a new bug.
Our second workload uses waypoints and a fence. Fences

are used to prevent the UAV from entering restricted airspace.

Fences can also be used to contain a UAV. First, the UAV

ascends to an altitude of 20m. Then, our workload guides the

UAV along a 20mx20m box. The box overlaps with a fenced

area the UAV must avoid. The UAV lands at its launch site.
We do not consider the effect of special workload details or

environments on bug manifestation. We observe that known

sensor bugs are not sensitive to these factors. Nevertheless,

future work may rigorously pursue this direction to establish

the absence of this class of bugs.

B. Fault Injection Engine
Avis’s fault injection system is composed of two com-

ponents. The first component is libhinj (Hardware Fault

Injector), a library for instrumenting UAV firmware. The

second component is the scheduler. The scheduler injects fail-

ures by communicating with simulated drivers instrumented

with libhinj. Here, we discuss (1) the implementation of

libhinj and (2) the implementation of the scheduler.
1) libhinj: We implement libhinj, a library that functions

as the interface between Avis and the UAV firmware. libhinj

reports the firmware’s mode transitions and sensor readings to

Avis and injects sensor failures. libhinj is available at [23].
libhinj reports the firmware’s mode to Avis through its

hinj_update_mode() API. UAV firmware has a specific

function that updates the vehicle’s mode. We simply insert

the hinj_update_mode() call within this call site. As a

result, whenever the mode changes, hinj_update_mode()

is invoked to report the updated mode to Avis.
We use libhinj to instrument the firmware’s driver mod-

ule. This allows Avis to inject faults on-demand. We insert a
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Features Avis Strat. BFI BFI Rnd
Targets operating mode transitions � � � �
Prior bugs inform injection sites � � � �
Search dissimilar scenarios first � � � �

TABLE I: Distinguishing features of Avis versus competing

fault-injection approaches.

libhinj API call in the read() procedure of each sensor

driver. The API call queries the scheduler to determine if the

read should fail. The API call returns the scheduler’s decision.

If the sensor should be failed, the API overwrites the sensor

reading and the instrumented code executes the firmware’s

error-handling code. libhinj supports fault injection for

various types of sensors including gyroscopes, accelerometers,

GPSs, compasses, and barometers.

To facilitate testing UAVs, we integrate libhinj into two

dominant open-source UAV firmware, ArduPilot and PX4

(available at [1] and [2]). libhinj also provides a C interface

so that developers can instrument other UAV firmware.

2) Scheduler: The scheduler is responsible for determining

if a sensor instance should be failed and for recording mode

transitions. The scheduler uses RPCs to communicate with

libhinj. Here, we discuss how the scheduler implements

Algorithm 1.

The scheduler records the fault injection scenarios it has

already explored to prevent redundant exploration. The fault

scheduler represents a fault injection scenario as a set of tuples

(Timestamp, Fault), where the fault component describes the

injected fault (e.g. sensor and instance) and the timestamp is

the simulation time when the fault was injected. We store each

scenario in a hash-set. The scheduler simulates a scenario if

it does not already appear in the hash-set.

The scheduler uses algorithm 1 to determine the next fault

scenario. When it is time to insert a failure, the scheduler

responds to the RPC from libhinj indicating to fail the

sensor read operation.

C. Invariant Monitor

At the end of each step, Avis’s invariant monitor checks

that the vehicle is operating correctly. Besides the UAV’s

mode reported by libhinj’s APIs, the invariant monitor also

requires the vehicle’s physical state, i.e., the position and the

acceleration, for detecting invariant violation. The physical

state of the vehicle is reported from the vehicle’s Gazebo

plugin over a Unix socket. We apply equation 1 to detect when

liveliness is violated. Safety violations are reported using a

simple crash detector.

VI. EVALUATION

We evaluated Avis using two popular UAV platforms:

ArduPilot’s ArduCopter-3.6.9 [5] and PX4-1.9.0 [28]. We

selected these systems because they are popular, sophisticated,

and open-source [27], [7]. We used the 3DR Iris quadcopter

[4] as the UAV in all experiments. We selected the Iris because

quadcopters are the most common body type used for UAVs

and both ArduPilot and PX4 have robust support for the

Iris. We conducted all experiments on a server equipped with

CentOS 7.3, 8 GB of memory, and a quad-core Intel Xeon

running at 2.66 GHz.

As shown in Table I, we compared Avis to three com-

peting approaches. Random fault injection (Rnd) chose fault

injection sites from all sensor readings with equal probability.

It also chose failure scenarios for simulation randomly. We

implemented Bayesian Fault Injection (BFI), a state-of-the-art

approach for injecting sensor faults in autonomous cars [15].

This approach used machine learning to predict which injec-

tion sites were most likely to trigger unsafe conditions. We

implemented BFI using depth-first search to explore injection

scenarios. However, BFI does not require depth-first search.

We also implemented an improved version of BFI called

Stratified BFI that uses SABRE to explore injection candidates

using BFI’s algorithm. While Stratified BFI improved upon the

state of the art, it missed a key feature of Avis. Specifically,

it did not exhaustively target the critical periods where UAV

transitioned between operating modes.

We ran each approach for 2 hours per workload (see V).

First, we studied unsafe conditions uncovered by Avis, looking

for previously unknown sensor bugs. We also studied the

unsafe conditions found by competing approaches to see if

they revealed the same sensor bugs. This analysis shows

the efficacy of Avis. We compared the number of unsafe

conditions found by each approach, a measure that reveals

the efficiency (i.e., unsafe conditions per unit time). We also

re-inserted known bugs into the code base, ran each approach

and looked for unsafe conditions caused by the known bugs.

Our evaluation also considered slowdown caused by Avis.

A. Detecting Unknown Bugs

Table II lists the bugs detected by Avis. For each bug,

the table also shows the affected firmware (Firmware), the

symptom of the bug (Symptom), the injected sensor failure

(Sensor Failure), and the starting time of the fault (Failure
Starting Moment).

In total, Avis discovered 10 previously unknown bugs: 6

affected ArduPilot and 4 affected PX4. These bugs were

serious – 2 that affected ArduPilot resulted in a vehicle crash

and 3 made the UAV ignore user commands and fly away. A

PX4 bug caused a crash and another caused a fly-away. The

system logs showing unsafe behavior are available at [22] in

the logs directory.

The unsafe conditions that Avis found revealed sensor bugs

triggered by GPS, accelerometer, barometer, compass and

gyroscope failures. Manifestations of the newly found sensor

bugs were also sensitive to timing conditions, a factor that

explained why competing approaches were unable to find

them. Avis reported no false positives. However, each bug can

manifest multiple unsafe conditions.

Case Study APM-16682: UAVs use fail-safe mechanisms

to survive sensor failures, but sometimes simply triggering

a fail-safe can yield unsafe conditions. Instead, the firmware

should check flight conditions to ensure fail-safe tasks can
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TABLE II: Unknown bugs found by Avis.

Report # Firmware Symptom Sensor Failure Failure Starting Moment Avis Stratified BFI
APM-16020 ArduPilot Fly Away GPS Takeoff → Autopilot � �
APM-16021 ArduPilot Crash Accelerometer Takeoff → Waypoint 1 � �
APM-16027 ArduPilot Fly Away Barometer Pre-Flight → Takeoff � �
APM-16967 ArduPilot Crash Compass Waypoint 1 → Waypoint 2 � �
APM-16682 ArduPilot Crash Accelerometer Return To Launch → Land � �
APM-16953 ArduPilot Crash Gyroscope Return to Launch → Land � �
PX4-17046 PX4 Fly Away Gyroscope Waypoint 3 → Return To Launch � �
PX4-17057 PX4 Crash Gyroscope Pre-Flight → Takeoff � �
PX4-17192 PX4 Takeoff Failure Compass Pre-Flight → Takeoff � �
PX4-17181 PX4 Takeoff Failure Barometer Pre-Flight → Takeoff � �

be supported. Recall Figure 1, an IMU fault during the

landing mode triggered a fail-safe that eventually caused a

crash. None of the competing approaches captured unsafe

conditions caused by this sensor bug within a 2-hour run. The

landing sequence represented less than 4 seconds of the 80

second scene (i.e. ≤ 5%). Random fault injection must run

for nearly 10 hours to achieve a 98% certainty of capturing

a manifestation of the bug. BFI also failed to uncover this

scenario, because the model learned by BFI did not include

training data where unsafe conditions arose during landing. In

contrast, AVIS uncovered this scenario in an hour.

Case Study APM-16021 Figure 9 shows APM-16021, a new

bug Avis found. The workload commanded the UAV to ascend

to a target altitude of 20m. Before the UAV reached 20m, Avis

injected an accelerometer fault (1). This caused the UAV to

overshoot the target altitude (2). The firmware responded by

landing (3). The firmware’s state model incorrectly predicted

a high altitude, causing it to allow the UAV to crash (4). The

firmware made a final attempt to prevent the crash that had

already occurred and unsafely actuated on the ground (5).

Without any fault injection, the UAV’s mode changed from

takeoff to guided after it ascends to 20m. Avis detected this

mode transition and injected faults around this time. Because

our workload held the altitude constant inside the guided

mode, an IMU fault at this time did not cause a crash. After

several unsuccessful fault injections, Avis injected a fault at

18m and triggered the bug.

Takeoff Land

0m

20m

A
lti
tu
de

1. Acc. fault at 18m

2. UAV overshoots target altitude

3. Firmware overcorrects

4. Crash

5. Late attempt at 
crash prevention

Fig. 9: Sequence of events in APM-16021. The black line

shows the altitude of the UAV under fault injection. The blue

line shows the altitude of the UAV during the golden run.
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2. Old compass state read

3. Emergency land

4. State estimate reset 5. Crash

1. Compass fault 
injected

Auto

Fig. 10: Sequence of events in APM-16967. The black line

shows the altitude of the UAV under fault injection. The blue

line shows the altitude of the UAV during the golden run.

Approach ArduPilot Unsafe # PX4 Unsafe # Total #
Avis 104 61 165

Strat. BFI 61 9 70
BFI 1 1 2

Random 2 3 5

TABLE III: Unsafe scenarios identified by each approach.

Case Study APM-16967: Figure 10 shows an unsafe con-

dition found by both Avis and Stratified BFI. This bug is

triggered if a compass fails anytime between waypoints. Avis

triggered this bug by injecting a compass failure after the

UAV reached waypoint 1 (1). Then, the vehicle turned to

fly towards its second waypoint. As the UAV turned, the

firmware continued to use old compass readings (2). This

caused the firmware to lose its heading estimate. The land fail-

safe activated (3). The firmware reset its state estimate near

the end of the landing procedure (4) which caused a crash (5).

Stratified BFI is able to trigger this bug because its training

data contains examples of compass failures in the body of the

auto mode, but vanilla BFI does not reach this state.

B. Comparison with Alternative Approaches

Table III reports the number of unsafe conditions identified

by each approach. Recall, each approach was run for two

hours. Avis found more than 2.4X more unsafe conditions

than stratified BFI, an improved implementation of the current

state-of-the-art. Avis found 82X more conditions than BFI

using standard depth-first search.

BFI did not uncover many unsafe conditions for two

reasons. First, depth-first search inefficiently checked fault
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Approach Takeoff # Manual # Waypoint # Land #
Avis 60 37 44 24

Stratified BFI 4 32 35 1
BFI 1 1 0 0

Random 0 2 3 0

TABLE IV: Number of unsafe scenarios identified by each

approach in each mode.

Bug ID Avis Strat. BFI
Found Simulations Found Simulations

APM-4455 � 10 � N/A
APM-4679 � 21 � 3
APM-5428 � 5 � N/A
APM-9349 � 4 � 5
PX4-13291 � 18 � N/A

TABLE V: Existing bugs triggered by Avis.

injection scenarios that were effectively redundant. The 3D

Iris sampled sensors 103 to 104 times per second. In our ex-

periments, BFI’s model took ∼ 10 seconds to label an injection

scenario. BFI was unable to explore even a single second of

data within its 2 hour budget. Stratified BFI addresses this

problem by using SABRE, Avis’s injection schedule. However,

Stratified BFI failed to correctly predict the behavior of sensor

failures during modes that were not executed long in the

workload. Table IV shows a breakdown of unsafe scenarios

found in each mode by each approach.

C. Detecting Existing Bugs

In order to approximate Avis’ false negative rate, we

evaluated Avis using bugs that were previously reported on

Github. We used 5 sensor bugs that (1) did not require special

environmental conditions, e.g., heavy winds, (2) applied to the

Iris quadcopter and (3) had serious symptoms. We reinserted

these bugs into the code base and used Avis to find unsafe

conditions. As shown in Table V, Avis found unsafe conditions

triggered by all 5 bugs. Stratified BFI found 2. BFI and random

found none. Further, Avis triggered the bugs quickly, using at

most 21 simulations. Stratified BFI, using the SABRE search

algorithm, also discovered bugs quickly when it was effective.

Table V shows that Stratified BFI does not identify bugs that

require multiple failures, like PX4-13291. PX4-13291 reports

that a fly-away occurs when the UAV’s battery drops to an

unsafe level without local position. Avis triggers this bug by

injecting a GPS fault. This causes the UAV to lose its local

position estimate. Then, Avis injects a battery sensor failure.

This causes the firmware to trigger the battery fail-safe. At

this point, Avis has triggered the bug. Stratified BFI does not

uncover this scenario because the UAV handles the GPS or

battery failure, but not both together. Having not seen the

effects of joint failures in the training data, the model is unable

to predict this outcome.

VII. RELATED WORK

Our work is related to in-situ model checking, cyber-

physical attacks and mitigation, sensor fault detection, and

empirical UAV bug studies.

a) In-Situ Model Checking: In-situ model checkers have

been successfully used to check many real systems such

as network protocol implementations [25] and file systems

[41], [42]. More recently, this technique has been applied to

distributed computing [13], [18], [40], [38], [12]. However,

existing in-situ model checkers are not effective in triggering

sensor bugs in UAVs because they do not consider the behavior

of the vehicle. As the first in-situ model checker designed for

UAVs, Avis injects sensor faults at mode boundaries to be both

effective and efficient at triggering sensor bugs.

b) Cyber-Physical Attacks and Mitigation: UAVs have

become a hot topic of security research in recent years. Sensors

have been shown to be a major attack vector for UAVs [34],

[37], [39]. These attacks work by disturbing the UAV’s sensors

to cause their models to diverge from their physical state

and actuate according to the attacker’s desires. RVFuzzer [16]

shows a method to measure the similarity between mission

executions by using state deviation, an idea that we refined in

our own fly-away detector. A large body of work demonstrates

how to use control semantics to detect or mitigate attacks

against vehicle [10], [8], [14]. We rely on similar principles

to design our pruning policies.

c) Detecting Sensor Faults: Prior research shows how

to detect byzantine sensor faults. Control semantics are used

for this in [14]. [31] and [17] leverage neural networks to

detect or mitigate sensor faults. Recently, [19] shows how to

use physical measurements to detect sensor faults. Prior work

shows how vehicles can survive our fault model [9]. Our work

demonstrates how to detect when a UAV fails to correctly

handle sensor failures.

d) Empirical RV Bug Studies: Both [11] and [36] look at

bug reproducibility. They find that UAV bugs are reproducible.

We provide similar data for sensor bugs specifically and show

they are reproducible. [35] shows that sensor bugs afflict

participants in the robotic soccer league.

VIII. CONCLUSION

Unmanned aerial vehicles rely on sensors to model their

physical states and must contend with sensor failures. Our

empirical bug study on ArduPilot and PX4, two popular open-

source UAV control firmware, showed severe consequences for

mishandling sensor failures, a.k.a, sensor bugs. We presented

AVIS: an in-situ model checking approach for UAVs. Even

though UAVs access sensors frequently and many sensor bugs

manifest only if failures occur within narrow timing windows,

we used AVIS to find 10 previously unknown sensor bugs of

which 2 have been reproduced by firmware developers. Avis

used modern firmware support for operating modes to inject

sensor failures at critical points during flight execution. Avis

provides a missing tool for software developers, enabling a

preemptive approach to diagnose sensor bugs and analyze their

root causes. We hope our work improves reliability for this

emerging technology and unlocks new UAV applications. In

addition, we hope our work can draw more attention to UAV

reliability in the community.
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cak. Predicting and preventing inconsistencies in deployed distributed
systems. ACM Trans. Comput. Syst., 28(1), August 2010.

[39] Chen Yan, Wenyuan Xu, and Jianhao Liu. Can you trust autonomous
vehicles: Contactless attacks against sensors of self-driving vehicle. DEF
CON, 24(8):109, 2016.

[40] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu,
Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou.
Modist: Transparent model checking of unmodified distributed systems.
In Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’09, page 213–228, USA, 2009.
USENIX Association.

[41] Junfeng Yang, Can Sar, and Dawson Engler. Explode: A lightweight,
general system for finding serious storage system errors. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, OSDI ’06, page 10, USA, 2006. USENIX
Association.

482

Authorized licensed use limited to: The Ohio State University. Downloaded on May 21,2023 at 02:05:51 UTC from IEEE Xplore.  Restrictions apply. 



[42] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.
Using model checking to find serious file system errors. ACM Trans.
Comput. Syst., 24(4):393–423, November 2006.

[43] Ming-Der Yang, Jayson G Boubin, Hui Ping Tsai, Hsin-Hung Tseng,
Yu-Chun Hsu, and Christopher C Stewart. Adaptive autonomous uav
scouting for rice lodging assessment using edge computing with deep
learning edanet. Computers and Electronics in Agriculture, 179:105817,
2020.

[44] Zichen Zhang, Jayson Boubin, Christopher Stewart, and Sami Khanal.
Whole-field reinforcement learning: A fully autonomous aerial scouting
method for precision agriculture. Sensors, 20(22):6585, 2020.

483

Authorized licensed use limited to: The Ohio State University. Downloaded on May 21,2023 at 02:05:51 UTC from IEEE Xplore.  Restrictions apply. 


