
Performance Modeling for Short-Term Cache Allocation
Nathaniel Morris

AMD & The Ohio State University
United States

Christopher Stewart
The Ohio State University

United States

Lydia Chen
TU Delft

Netherlands

Robert Birke
ABB Future Labs

Switzerland

ABSTRACT
Short-term cache allocation grants and then revokes access to pro-
cessor cache lines dynamically. For online services, short-term allo-
cation can speed up targeted query executions and free up cache
lines reserved, but normally not needed, for performance. How-
ever, in collocated settings, short-term allocation can increase cache
contention, slowing down collocated query executions. To offset
slowdowns, collocated services may request short-term allocation
more often, making the problem worse. Short-term allocation poli-
cies manage which queries receive cache allocations and when. In
collocated settings, these policies should balance targeted query
speedups against slowdowns caused by recurring cache contention.
We present a model-driven approach that (1) predicts response
time under a given policy, (2) explores competing policies and (3)
chooses policies that yield low response time for all collocated ser-
vices. Our approach profiles cache usage offline, characterizes the
effects of cache allocation policies using deep learning techniques
and devises novel performance models for short-term allocation
with online services. We tested our approach using data processing,
cloud, and high-performance computing benchmarks collocated
on Intel processors equipped with Cache Allocation Technology.
Our models predicted median response time with 11% absolute per-
cent error. Short-term allocation policies found using our approach
out performed state-of-the-art shared cache allocation policies by
1.2–2.3X.

ACM Reference Format:
Nathaniel Morris, Christopher Stewart, Lydia Chen, and Robert Birke. 2022.
Performance Modeling for Short-Term Cache Allocation. In 51st Interna-
tional Conference on Parallel Processing (ICPP ’22), August 29-September 1,
2022, Bordeaux, France. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3545008.3545094

1 INTRODUCTION
Processor caches use SRAM cache lines to speed up main memory
accesses. Modern processors can now allocate individual cache lines
to specific workloads directly [5]. Such cache allocation can speed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9733-9/22/08. . . $15.00
https://doi.org/10.1145/3545008.3545094

up workload execution, conserve cache lines during normal exe-
cution and enable workload collocation where multiple workloads
share the CPU cache [28]. For example, online services can allo-
cate a few cache lines for most query executions but allocate many
lines to speedup targeted queries. However, if collocated services
contend for shared cache lines or if a workload is allocated too few
lines, performance suffers and response time goals, as stipulated in
a service level objective (SLO), may not be met [7, 26, 35].

Intel Cache Allocation Technology (CAT) supports dynamic
cache allocation for the last level cache (LLC). This enables short-
term allocationwherein a workload gains temporary access to cache
lines during its execution [5]. Online services can use short-term
allocation to speed up slow queries and meet response time goals.
Consider a social networking website [4]. A user query initiates
processing across multiple Docker containers. If the query is still
being processed after 800 milliseconds, the query execution could
be in danger of violating response time goals. Short-term cache allo-
cation policies may use a timeout mechanism to allocate additional
cache lines to the remaining Docker containers, speeding up their
execution. Of course, allocating additional cache to one workload
impacts other collocated workloads that share the cache [23]. Sys-
tems software can mitigate the slowdown by setting policies that
manage how often workloads request short-term cache allocation.

This paper presents a performance modeling approach that,
given a short-term allocation policy, predicts response time for col-
located workloads. Our models can be used to compare policies and
uncover settings that yield low response time for each collocated
workload. Our approach combines workload profiling, machine
learning and first-principles modeling, extending prior approaches
to model short bursts in computational power [8, 12, 13, 19, 20].
However, prior work did not consider a shared cache where a short
burst can speed up a target workload but also slow down collo-
cated workloads. If collocated workloads counter slowdowns by re-
questing short-term cache allocation more often, cache contention
increases and further degrades response time.

Our approach models effective cache allocation, i.e., speedup
under a short-term allocation policy normalized by the gross in-
crease in resource allocation. Intuitively, effective cache allocation
captures the effect of additional cache lines on response time. It is
sensitive to dynamic runtime factors including cache usage during
query execution, contention with collocated workloads, and queu-
ing delay from concurrent executions. These factors can have large,
non-linear effects [35]. For example, in some settings, we have ob-
served workloads that manage a 2X increase in LLC cache misses
without significant increases in response time. Linear models err on

https://doi.org/10.1145/3545008.3545094
https://doi.org/10.1145/3545008.3545094
https://doi.org/10.1145/3545008.3545094
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545008.3545094&domain=pdf&date_stamp=2023-01-13

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Nathaniel Morris, Christopher Stewart, Lydia Chen, and Robert Birke

such settings by conflating cache usage counters with the underly-
ing processes affecting response time. In our approach, we use deep
learning techniques to group combinations with similar effective
cache allocation but potentially disparate cache usage. We also use
representational learning to capture spatial relationships between
cache usage counters. Combined, deep and representational learn-
ing yield powerful, new machine-learning features that uncover
hidden but recurrent patterns of contention that capture the effects
of cache allocation on response time better than hardware counters
alone.

Our approach profiles cache usage for each collocated workload
in a test environment. We use this data to train deep learning mod-
els of effective cache allocation. While deep learning techniques
normally perform best with large training sets, online services may
be collocated for only a short period [6], limiting time for profiling.
A key challenge is to devise novel modeling techniques that have
low overhead, i.e., they model response time well with limited profil-
ing time. Specifically, our approach uses queuing theory principles
to convert effective cache allocation to response time. This lowers
the complexity of the deep-learning models and reduces profiling
time.

We used Intel CAT tools [5] to implement short-term cache al-
location by tracking query executions at runtime. We used Deep
Forests [36] for deep and representational learning. We evaluated
our modeling approach with a wide range of realistic online ser-
vices, including: (1) Apache Spark executing the k-means clustering
algorithm using iterative, parallelized stages. (2) Redis, a widely
used key-value store with fast response time (<1 second) response.
(3) Rodinia micro-benchmarks used to stress high performance
computers and individual processor components. And (4) Social,
a realistic macro benchmark that captures the workload of a so-
cial networking service. Social uses 36 micro-service components
spread over 30 Docker containers. We collocated these services on
Xeon processors, allowing them to share LLC cache, and evaluated
the accuracy of our modeling approach to predict response time.
We observed absolute percentage error (<12%). Our modeling ap-
proach reduced error by 4.1X and 1.6X compared to approaches that
eschew deep learning for simple linear regression and approaches
that employ only deep learning respectively. In terms of overhead,
our approach profiled workloads for 30 minutes. We observed that
lower (15 minutes) and higher (2.5 hours) overhead produced 14%
and 8.6% error.

We used our models to explore short-term allocation policies
in collocated settings. For each service, we used our models to
find policies with low response time. We compared response time
under our policies to static cache partitioning policies used widely
in practice. Our policies lowered 95th-percentile response time by
up to 2.6X. We also compared our approach to static allocation,
workload-aware cache partitioning [31] and IPC-driven dynamic
cache allocation [12]. Our approach sped up average response time
by 1.3X, 1.3X and 1.2X respectively. Social networking, Redis and
Spark workloads achieved up to 2X speedup. Finally, we used the
concepts learned by our deep-learning models to cluster workloads
with similar cache behaviors and identified a complex interaction
between arrival rate, service time and timeout that affects response

Memory access

 Legend

multi-
plexor

register

core
op

data
path

cache line

10000001 00

00
allocation policy

00
01

00
10

10
01

set offset byte
offset

memory
address

compute
index

tag v data

=
data

from MEM

way
select for
writeback

W.
E.

&
Miss?

cache way id 00

set length

allocation settings
0 1 2

Figure 1: Data path for dynamic cache allocation.

time for short-term allocation. Clustering using only the hardware
cache counters did not reveal the interaction.

This paper uses deep learning techniques to model and manage
increasingly dynamic processor caches. Our approach represents
cache usage as a large, multi-dimensional vector, richly characteriz-
ing the entirety of query executions. Deep learning techniques allow
us to extract patterns hidden in these vectors. Our contributions
are:
1. We consider short-term cache allocation, where dynamic cache

allocation speeds up a targeted query execution by providing
access to shared cache lines. This mechanism adds a temporal
dimension to cache allocation.

2. We present a modeling approach to predict response time for
workload collocation and cache allocation policies.

3. Our approach uses deep and representational learning to char-
acterize the complex relationship between cache usage counters
and response time.

4. We show that our model predicts response time well, can be
used to find good policies, and provides insight on key factors
affecting performance.

This paper is organized as follows: Section 2 is a primer on
dynamic cache allocation, the targeted workload and system man-
agement goals. Section 3 presents the design of our modeling ap-
proach. Section 4 describes our implementation. Section 5 evaluates
response time predictions, compares competing approaches and
studies model-driven policy selection. Section 6 presents related
work. Section 7 provides discussion and draws conclusions.

2 CACHE ALLOCATION TECHNOLOGY
Dynamic cache allocation manages which query executions can
use cache lines at runtime [28]. Figure 1 depicts digital logic for
dynamic cache allocation. Memory accesses trigger TLB translation,
then the address is split into set (index), tag and offset. Cache lines
with matching sets are called ways. A cache hit occurs when a
cache line in a way stores a tag matching the memory address. On
a miss, the cache installs the data read from memory. Dynamic
cache allocation controls write enable (WE) logic. In Figure 1, query
executions can write to contiguous cache ways defined by way

Performance Modeling for Short-Term Cache Allocation ICPP ’22, August 29-September 1, 2022, Bordeaux, France

offset and length. The first allocation setting installs data to cache
way 00 or 01. The second setting allows writes to ways 00, 01 and
10.

The allocation policy decides which allocation setting applies.
For static allocation, systems software can map a process id to an al-
location setting, creating classes of service. For dynamic allocation,
systems software can change settings at runtime.
Short-Term Cache Allocation for Online Services: Query exe-
cutions that complete slowly can hurt revenue for online services.
Increasingly, online services use response time objectives to drive
resource management [7, 27, 32]. LLC cache is a valuable resource
that reduces response time by reducing main memory lookups [25].

Online services can monitor query executions, flag slow exe-
cutions and try to speed them up. For example, computational
sprinting methods use short, unsustainable bursts from DVFS and
core scaling [2, 8, 33]. Short-term cache allocation speeds up queries
by granting temporary access to additional cache lines, for exam-
ple, by switching from allocation setting 0 to 1 in Figure 1 for the
remainder of a query execution.

Short-term allocation presents two competing goals: (1) slow
query executions should receive short-term cache allocation and
(2) baseline response time for normal query executions should not
be affected by short-term allocations for collocated workloads. To
achieve these goals, allocation settings should support (1) private
LLC cache lines that ensure baseline performance and cannot be
accessed by collocated workloads and (2) shared lines that can be
allocated to speed up slow executions.
The Impact of Contiguous Cache Allocation: With Intel Cache
Allocation Technology, cache allocation settings must be contigu-
ous. This design has important consequences if collocated work-
loads reserve private cache for baseline performance.
Conjecture: Under contiguous allocation, private cache are disjoint.
Proof: Let A reflect the finite, set of cache allocation settings sup-
ported on a processor. Each contiguous allocation can be repre-
sented as an order pair of offset and length (oa, la)where 0 ≤ a < |A|.
A short-term allocation policy is a pair of allocation settings (𝑎, 𝑎′, 𝑡)
where a timeout 𝑡 triggers a temporary switch from default 𝑎 to
𝑎′. The proofs below elide the dynamic timeout 𝑡 to simplify the
notation for static analysis. Intuitively, private cache lines must be
allocated in 𝑎 and 𝑎′. Further, collocated workloads can not access
the private cache lines in (𝑎, 𝑎′). Equation 1 describes these proper-
ties for a cache line with offset 𝑣 in the set of private cache lines
𝑉(𝑎,𝑎′) .

𝑣 ∈ 𝑉(𝑎,𝑎′) → 𝑜𝑎 ≤ 𝑣 < (𝑜𝑎 + 𝑙𝑎) ∧
𝑜𝑎′ ≤ 𝑣 < (𝑜𝑎′ + 𝑙𝑎′) ∧ − − − − −
∀𝑎 ∈

[
𝐴 − 𝑎 − 𝑎′

]
(𝑣 < 𝑜𝑎) ∨ (𝑣 > 𝑜𝑎 + 𝑙𝑎) −− (1)

To prove by contradiction that private cache are disjoint, assume
there exists private cache in short-term allocation

(
𝑎, 𝑎

′
)
that falls

between private cache lines 𝑣0 𝑎𝑛𝑑 𝑣1 ∈ 𝑉(𝑎,𝑎′) . The following must
hold: ∃𝑣𝑐 ∈ 𝑉(

𝑎,𝑎
′
) : 𝑜𝑎 ≤ 𝑣0 ≤ 𝑜𝑎 ≤ 𝑣𝑐 < 𝑜𝑎 + 𝑙𝑎 < 𝑣1 < (𝑜𝑎 + 𝑙𝑎).

However, by Equation 1, 𝑜𝑎 can not fall within [oa, oa + la). QED.
Conjecture: If all policies include private cache then short-term allo-
cations share cache with at most two other settings.

Sketch of the proof: Since private caches are disjoint and shared
cache must immediately precede or proceed private cache (due to
contiguous allocation), it is not possible for two private caches to
both appear after (or before) an allocation’s private cache. One
setting can share cache lines preceding a private cache allocation
and another can share lines after the private cache.

Under contiguous allocation, 3 or more workloads can not share
cache while also reserving private cache for baseline performance.
This constrains the structure of cache sharing. First, cache con-
tention emerges from pairwise interactions of collocated work-
loads. Second, the size of reserved and shared cache regions can
affect performance. Also, we observe that the mapping of service
components to allocation settings affects performance. With Intel
Cache Allocation Technology, multiple OS processes and threads
can map to one allocation setting. In this context, private cache allo-
cation ensures baselines performance in aggregate for all processes
mapped to the setting. Sharing cache in this way is also relevant
to non-contiguous cache allocation because multiple workloads
interact with shared cache.

3 DESIGN
It is hard to set timeout values for short-term allocation in collocated
settings. Long timeout settings decrease the frequency of short-term
allocation and may reduce speedup for each query. But, short time-
out settings trigger short-term allocation more often, potentially
slowing down collocated workloads that share the cache lines used
for short-term allocation. In this paper, we present a model-driven
approach to find a vector of timeouts (one for each workload) that
provides low response time for all collocated workloads. We seek
to characterize the speedup achieved by our approach compared
to (1) baseline performance, (2) static and dynamic cache partition-
ing approaches and (3) competing timeout settings for short-term
allocation.

Figure 2 outlines our modeling approach. Stages 1 and 2 collect
profile data, employ deep and representational learning techniques
and train amodel that characterizes effective cache allocation across
policies. A key design challenge is to extract a large number of fea-
tures (i.e., multi-dimensional inputs) from online query executions.
Performance counters that capture cache usage data can produce
training data with large input dimensions 𝑑 but profiling runs 𝑛
is constrained in collocated settings (i.e., overhead), especially if
workloads are collocated for only short periods of time. Stage 3
integrates effective cache allocation into discrete queuing theory
simulation1 to predict response time. Effective cache allocation is a
key intermediate metric that: (1) can be learned using small 𝑛 and
(2) integrates with first principles models straightforwardly.

3.1 Stage 1: Profiling Cache Demands
As shown in Figure 2, our approach runs online services in a test
environment, captures cache usage during each query execution
and computes the slowdown caused by collocation. In the test
environment, we can control static runtime conditions, e.g., query
arrival rate, short-term allocation policies, query mix and workload

1Our queuing theory simulator extends a G/G/k model by adjusting the service rate
based on a short-term allocation policy (i.e. we use a timeout and a resource budget to
manage speedups.).

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Nathaniel Morris, Christopher Stewart, Lydia Chen, and Robert Birke

Trained
Model

Queuing
Simulator

Response Time
Prediction

Dynamic Runtime Factors

Wrkld:Cache
 Grp

w0 1
W1 1
W2 2
 W3 2

Predicted
Effective
Speedup

Collocation
Policy

Stage 1: Profile Cache Demands

Stage 2: Extend Profiles via Representational & Deep Learning

Profiles for Each Collocated Workload
 Runtime Conditions

ID Req/S STAP
w0 1 2

w0 5 3

Profile Data
Query# 1 2 … N
Cache x y z
Usage …
Trace a b c

Effective
Allocation
 1.5

4.3

Runtime Cond.
ID Req/S STAP
w0 1 2

Multi-
grained
Scan

Stage 3: First-Principles Modeling

For each workload w in p Aggregate response times

For each policy p in candidates Find best policy p’

Candidate Timeout Settings for
Short-term Allocation Policies (STAP)

< w0 ,w1 , w2 , w3 >
 5 , 6 , 2 , 3
 2 , 1 , 2 , 7

Cascade Labels
1 2… l
1.4 3… 2.1

 Profile Data

Profile Data
Query# 1 2 … N
Cache x y z
Usage …
Trace a b c

Effective
Allocation
 1.5

Figure 2: In stage 1, our approach collects cache usage data from each collocated workload and measures effective cache
allocation. In stage 2, profile data is used to train deep-learning models. Finally, stage 3 models response time and explores
policies.

type. Dynamic runtime conditions, e.g., queue length, can not be
controlled directly. Given runtime conditions, a profiling run uses
lightweight architectural performance counters to trace cache usage
during query execution. Depicted by the light gray box in Figure 2,
our profiler samples counters 12–60 times per minute during each
query execution.We fill zero values to pad traces and ensure profiles
are equally sized.

We flatten cache usage for each query, making a long 1𝑥𝐾 vector,
comprising the following sub-components:

P = <
−−−−→
static,

−−−−−−−→
dynamic,−−−−−→query0, ...,

−−−−−−→query𝑁 , eff. allocation >
𝑠 .𝑡 .|𝑃 | = 𝐾

(2)

Effective Cache Allocation: It is well known that cache alloca-
tion can speed up workload execution and that cache contention
can cause slowdown in collocated settings. Time series analysis
can reveal coincident spikes in last-level cache (LLC) accesses, i.e.,
contention. However, in practice, the effects of cache contention
vary greatly. The presence of contention alone is insufficient to
predict response time.

As a result, using contention alone to trigger short-term cache al-
location may not provide much speedup. For example, collocations
between memory-bound workloads can tolerate larger spikes in
LLC misses. Likewise, under low arrival rates, response time is less
sensitive to contention. Even though the effects of cache contention
can be explained intuitively, it is hard to find the exact runtime con-
ditions where short-term allocation can provide speedup. Dynamic
factors, e.g., queuing delay, also affect the point in execution where
short-term cache is allocated. The time a query spends queuing
can trigger the SLO warning before execution or have a combined
effect with service time that triggers it during execution.

Effective cache allocation (EA) is the ratio of (1) speedup from a
short-term allocation policy (STAP) and (2) increased resource allo-
cation during short-term allocations, Equation 3. Here, servicetime
reflects average processing time for query execution under short-
term allocation settings and timeout settings.

EA =

(
servicetime

(
W(a,a′,t)

)
𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒

(
𝑊(𝑎,𝑎,0)

)) /(𝑙𝑎′
𝑙𝑎

)
(3)

Effective allocation varies depending on: (1) the amount of cache
allocated, (2) the frequency of short-term allocation requests and
(3) contention from collocated executions. Heavy cache contention
drags effective allocation below 1, whereas low contention and high
data reuse produce values close to 1.

As shown in Figure 2, effective cache allocation aggregates re-
sponse time for all queries under a tested runtime condition. How-
ever, dynamic cache allocation has temporary effects that can be
amortized over long runs. Our profiling runs capture dynamic run-
time conditions during execution, allowing us to split long running
tests into multiple smaller measurements of effective cache alloca-
tion. This increases the number of rows (𝑁) in our profile data.

3.2 Stage 2: Deep Learning
Our profiling approach yields feature-rich images of collocated
online services. The effects of short-term allocation and cache con-
tention are represented but hidden within these profiles. Repre-
sentational and deep learning techniques, widely used in artificial
intelligence, enhance multi-dimensional data by adding features
that capture non-linear patterns in the data.

Deep and representational learning improve many machine
learning approaches, from neural networks to support vector ma-
chines to decision trees. The design of our model can be imple-
mented with any underlying learning approach. Still, the proceed-
ing discussion may be influenced by our implementation based on
deep forest [36].
Deep Learning:Machine learning uses historical (training) data
to map input to a target output. For this paper, input are runtime
conditions and cache usage demands and target output is effective
cache allocation. With multi-dimensional data, machine learning
struggles to find accuratemappings on training data that do not over
fit test data. Deep learning addresses this challenge by first mapping
input to concepts, i.e., groups of input with similar output attributes,
and then mapping input and concepts to target output [16].

Figure 3 illustrates deep learning on our profile data. The input
data comprises 3 features (query arrival rate, timeout and last-
level cache misses). Machine learning approaches bound by these
features look for settings where all matching input data exhibit
anomalous effective allocation. To avoid over fitting, at least 2

Performance Modeling for Short-Term Cache Allocation ICPP ’22, August 29-September 1, 2022, Bordeaux, France

2

4

2

4

2

 Requests/Sec
 0 1 2 3 4 5

 S
TA

P
 T

im
eo

ut
 4

 3

2

 1

 0

12

3 1

4 2

1

3

2

4

2

4

2

 Requests/Sec
 0 1 2 4 5

LL

C
 M

is
se

s
 4

 3

2

 1

3

1 1

3

Req/S TO LLC EA
 4 0 1
 4 1 2
 5 0 4
 5 1 3
 2 2 2
 2 3 1
 2 4 2

Input Data Set

Concept
Training

Req/S TO LLC Concept EA
 4 0 1
 4 1 2
 5 0 4
 5 1 3
 2 2 2
 2 3 1
 2 4 2

Data Extended
Via Cascading

Model
Training

Legend: Effective Allocation (EA) > K Effective Allocation < K

LLC: Observed Cache Misses in LLC (per 1K)
TO: Short-Term Cache Allocation Timeout Setting
Concept: Predicted speedup from cascade layer

IF Concept ==

Figure 3: Deep learning uncovers concepts that reveal rich
patterns and avoid over fitting.

observed executions are required to label a group of settings. The
dotted lines surround settings that may be labeled anomalous by
classic machine learning. No setting achieves over 50% accuracy.

Deep learning first learns concepts. For example, the result of
the machine learning described above can be considered a concept.
Concepts combine input data that seem far away in the initial
feature space, but produce similar outcomes (e.g., anomalous EA).
Using the concept as a feature, the deep learning approach can
avoid over fitting and improve accuracy.
Representational Learning: Convolutional neural networks have
become the standard bearer in computer vision. Representational
learning, implemented via convolutions, underlies their success. A
convolution computes a kernel, i.e., a function defined over a set of
features. These kernels produce new features for machine learning.
In computer vision, convolutions can capture the presence of simple
object components, e.g., handles, eyes or logos. In our context,
convolutions capture correlated events that impact effective cache
allocation, e.g., an L1 miss and an LLC cache access or multiple LLC
miss events happening to collocated executions.

A convolution extracts spatial-temporal information from fea-
tures. The spatial relationship between features affects the effective-
ness of the convolutional process. Structuring features such that
highly correlated features are close to each other in the data can
increase the number of patterns extracted by representational learn-
ing. Our evaluation will compare the impact of ordering features
for spatial representation.
Simple Modeling Approaches Don’t Work: Deep and repre-
sentational features are transformations of data collected during
profiling. A reader may ask why these transformations are impor-
tant. Can a non-linear but simple modeling approach, e.g., decision
trees, replace Stage 2 in our approach (Figure 2)?

Simple modeling approaches are prone to over fit for effective
cache allocation, because these approaches tie concepts to rigid, in-
flexible representations. Consider a concept that captures the avail-
ability of short-term cache resources. Key features would include
arrival rate, service time and timeout for each collocated workload.

Simple models use hard parameters to represent the concept, over
fitting when hidden factors like micro-service queuing delays affect
response time. In contrast, deep learning approaches learn multiple
representations of each concept and prioritize the most robust rep-
resentations. On training data, deep learning representations may
be less accurate than a simple model, but they generalize well, out
performing under rigorous K-fold cross validation schemes.

In the evaluation section, we will show that simple modeling
approaches are much less accurate in predicting response time and
yield allocation policies that perform worse than our approach.
We will also show that deep learning concepts can provide useful
system insights.

3.3 Stage 3: First Principles Modeling
We consider a system that uses a queue to store incoming requests.
Requests are removed from the queue and executed using a set
of compute resources. First principles queuing theory enables the
modeling of distributions for queuing delay and response time.
This modeling is possible by representing the queuing problem as
a Markovian process. A Markov process assumes past events and
future events are independent. Short-term cache allocation breaks
this fundamental assumption by creating interdependence between
the queuing delay and service rate. Traditional closed-form queuing
models exploit interdependence to compute average queue length
and response time. However, enforcing similar assumptions for
short-term cache allocation produces diverging results between the
empirical data and the model output.

We overcome this limitation with a discrete event simulator
that models the speed up afforded by short-term allocation. The
simulator accepts the workload conditions, the cache-allocation
policy, queuing delay, and the effective cache allocation as input
and generates a simulation trace, i.e., processing needs, processing
rate, short-term allocation processing rate and arrival time. This
structure pairs with an internal structure that captures simulated
events relative to the query, e.g., its current execution state, allo-
cated cache, etc. Our full implementation jumps multiple steps at
time to the next execution event affecting a query in the trace.When
a query begins processing, the time waiting in the system (current
time minus arrival time) is checked at each step and compared to
the response time warning. A total time exceeding the response
time warning triggers a speed up for the remaining execution (i.e.,
short-term allocation processing rate). The simulator stops once a
predetermined number of queries complete. The response time for
each query is computed from execution events and the instanta-
neous queuing delay is outputted as dynamic condition feedback
for future simulations.

4 IMPLEMENTATION
Our profiling system comprises software for runtime condition
sampling, workload generation, short-term allocation and query
executionwith performance counter tracking. Our first implementa-
tion used uniform random sampling without replacement to assign
settings. However, random sampling over sampled some settings.
With limited time for profiling, we turned to stratified sampling
to cover a wide range of representative samples. Specifically, our
implementation randomly selected experiment settings as seeds.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Nathaniel Morris, Christopher Stewart, Lydia Chen, and Robert Birke

After executing seed experiments, we clustered them according
to effective cache allocation and computed the centroid settings
for each cluster. We created random settings near each centroid,
executed them and updated cluster centroids. In our tests, stratified
sampling reduced profiling time by 67%.

A workload generator sent runtime conditions, collocation set-
tings, and the cache-allocation policy to our management software.
Collocated executions ran in Docker containers bound to specific
processor cores and ports. Configuration settings also defined cache
lines for default allocation, cache lines for short-term allocation
and the timeout settings for each collocated execution. The work-
load manager also sent queries at the configured arrival rate. We
implemented a proxy service for each collocated execution. Proxy
services queued queries waiting to access CPU resources.

Intel CAT was used to dynamically assign cache lines to process
ids represented by Docker images. During configuration, we de-
fined two service classes on each processor core: default allocation
and a short-term allocation (see Figure 1). The proxy service moni-
tored the response time of each outstanding query. When the STAP
timeout was triggered, the class of service was switched. To keep
the overhead low, if multiple queries were outstanding for the same
online service, all had access to short-term cache. Upon completion
of the targeted query, i.e., a reply was received by proxy, the service
class switched back to default.

We collected architectural performance counters related to cache
usage throughout query execution. Counters were sampled as fre-
quently as once per second by process id. The proxy service further
differentiated counters by query execution. Cache usage counters,
response time and computed effective cache allocation were cap-
tured as profile data.

4.1 Deep Forest
Deep and representational learning can be implemented in many
machine learning algorithms. We used deep forests [24, 36]. Deep
forests use an approach called cascading to implement deep-learning
atop random forests. Representational learning in deep forest uses
random-forest kernels with sliding window inputs, an approach
called multi-grain scanning. In this section, we describe our appli-
cation of deep forest for modeling effective cache allocation from
profile data.
Multi-Grain Scanning (MGS): Figure 4 depicts inference. First,
cache usage profile data is transformed to spatially correlated repre-
sentational features. Each feature predicts effective cache allocation.
A random forest implements a convolutional kernel, mapping the
window to a predicted value. Before inference, deep forests train
the random forest. Sliding windows are computed and paired with
corresponding effective cache allocation. Classic machine learning
algorithms for random forests and decision trees are then used to
create the forest.

As seen in Figure 4, sliding windows are used to scan the raw
features. Suppose there is an input matrix of size 29 features x 20
query executions and a window size of 5x5. Sliding the window for 1
feature across spatial-temporal data produces a 5x5-dimensional fea-
ture matrix. A complete scan generates 400 (25x16) 5x5-dimensional
feature matrices. Multiple sliding windows can be used to extract
different details from the features. Figure 4 shows 2 sliding windows

Layer10x10 1

Layer
5x5

 1

Layer
5x5

 N

Layer10x10 N

P
rofile D

ata
20

 Q
u

e
ry E

xe
cu

tion
s

29 Cache Usage Counters{ {Sliding P
rofile D

ata
20

 Q
u

e
ry E

xe
cu

tion
s

29 Cache Usage Counters{ {Sliding

400
5x5 Windows

Random Forest (RF)

400 Ft.580 Original
Features (Ft)

220
10x10 Windows

220 Ft.580 Original
Features (Ft.)

580 Ft.

4 Concepts580 Ft. 220 Ft.

4+4 Concepts580 Ft. 400 Ft.

4+4*N Concepts580 Ft. 220 Ft.

4+4*(N+1) Concepts580 Ft. 620 Ft.

220 Ft.

Effective Allocation

RF

RF RF RF RFRF

RF RF RF RF

RF RF RF RF

RF RF RF RF

RF RF RF RF

Figure 4: Multi-grained scanning and cascading support deep
and representational learning in deep forests.

scanning the raw data. The instances generated by 1 sliding window
are inputs to a random forest. Each instance has a corresponding
predicted value that is concatenated to the transformed feature
vector. The new representation of the features is propagated to
each layer in the cascaded structure. Instances generated by other
window sizes are transformed using an identical process but with a
different random forest.
Deep Forest Cascades: Cascade Modeling is a form of deep learn-
ing. Deep learning learns complicated functions by building repre-
sentations that are expressed in terms of simpler representations.
This layering of representations is known as cascades. Cascade
modeling automatically learns representations at different levels of
abstraction (e.g., colors->edges->objects) which allow a model to
directly map the input to the output of a complex function without
depending on human-crafted features. Each cascade is an ensemble
of learners that specializes in identifying certain patterns in the
input. The output from one cascade acts as additional information
for the next ensemble of learners.

Deep forest employs a cascade structure where each level of
cascade is an ensemble of decision forests. Feature information
processed by a cascade and the transformed features are passed to
the next cascade for further processing. Different type of forests
are used to encourage diversity. Diversity is important to ensemble
models to avoid over fitting. Each forest within a cascade level may
contain 100s of trees. Some forests have random trees while others
have completely random trees. Each completely-random forest

Performance Modeling for Short-Term Cache Allocation ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Training
 Error(%)

Validation
Error(%)

Training
Time(Sec)

0.1 %

1 %

10 %

100 %
Deep Forest
CNN

O
bs

er
ve

d
In

st
a

bi
lit

y
 (

M
ax

 –
 M

in
)/

M
ax

2%
2.5%

11%
11.5%

62.9
63.6

42.4
43.4

25.8%
6.7%

25.2%
6.6%

Figure 5: Random variation affects training accuracy, valida-
tion accuracy and training time for deep forests and CNNs.
Numbers atop each bar reflect min and max.

contain 100s of completely-random trees, generated by randomly
selecting a feature at each node for split. Trees are grown until all
leaves are pure, that is leaves contain 1 value for regression or the
same class for classification. Each random forest also contains 100s
of trees. A tree is generated by randomly selecting

√︁
𝑓 (where 𝑓 is

the number of input features) features with the best gini value for
split. This process is repeated for each node until pure leaves are
obtained.

Each forest produces an estimate distribution function learned
from training samples. In Figure 4, a 29x20 feature sample is trans-
formed to a 400x1 feature sample. The first cascade level receives
the extended feature data containing 580 original features plus 400
transformed features. The number of sliding windows determine
how many layers are in a cascade level. For example, using 2 sliding
windows produces 2 separate feature vectors that are passed in at
different points in a cascade level. The first layer uses the samples
with 580 original features plus 220 transformed features to make
inferences. The outputs from that layer are combined with the orig-
inal samples and passed to the next layer. The second layer has
samples with 980 (580 + 400) features plus 4 concepts, where the
additional 4 come from the 4 random forests from the first layer,
and makes additional inferences. The output from the second layer
is 4 more concepts added onto samples from the second sliding
window. The final output from the first cascade level is 980 (580 +
400) features plus 8 concepts, which is passed to the second level.
This process is repeated for N levels. The output from the cascade
structure is passed to 4 more random forests where their results
are averaged to give the effective cache allocation.
Choosing Between Deep Forest and CNN: CNNs are widely
used for deep and representational learning. There is a wide range of
tools that simplify their use. However, CNNs are subject to random
variation, especially on relatively small datasets and if hyper param-
eters are not known. Through back propogation, neural networks
overwrite prior weights during the learning process which causes
variability in accuracy and training time. In contrast, deep forests
are trained layer by layer, i.e., each layer appends to the results of
prior layer. As reported in Figure 5, we trained and evaluated CNNs
and deep forests on profiled data 100 times. For the CNNs, we used
PipeTune [22] to find good hyper parameters. The best training
results for neural networks can outperform deep forests, but deep
forests reliably provide low error. The worst training results for neu-
ral networks can be twice as inaccurate as deep forests. We chose
deep forests for their stability. Note, our evaluation compared only
traditional CNNs. In future work, we will explore the reliability and

Query Execution Workloads

Wrk ID Description Cache Access Pattern

Jacobi Solves the Helmholtz equation

KNN K-neaest neighbors

Kmeans cluster analysis in data mining

Spkmeans Spark cluster analysis

Spstream Spark extract words from stream

BFS Breadth-first-search

Social

Redis

Memory intensive
Moderate cache misses
High data reuse
Low cache misses
High data reuse
Low cache misses
Higher cache misses
b/c of tasks execution
I/O intensive
High cache misses
Limited data reuse
Moderate cache misses

Social network implemented with
loosely-coupled microservices

Moderate data reuse
Moderate cache misses

YCSB: Session store recording
 recent actions

Low data reuse
High Cache misses

Table 1: Benchmarks used in our experiments.

Static Runtime Conditions for Each Online Service

Description Supported Settings

Collocated services
sharing cache lines

Jacobi, NN, Kmeans, Spkmeans,
Spstream, BFS, Social or Redis

Query inter-arrival rate
(rel. to service time)

25% – 95%

Timeout policy
(rel. to service time)

0% (always use shared cache) – 600%
(never use short-term allocation)

Cache usage sampling 1 Hz – every 5 seconds

Table 2: Runtime conditions studied.

accuracy tradeoff with more complicated neural network structures,
e.g., residual and long short-term memory (LSTM) networks.

5 EVALUATION
Table 1 shows the micro- and macro-benchmarks used in our eval-
uation. Collectively, these benchmarks have diverse cache usage
profiles, computational demands, parallelism, and software com-
position. We ran experiments on an Intel Xeon E5-2683 processor
with 16 cores, 40 MB of last-level cache and 64 GB main memory.
For baseline performance, we provisioned 2 cores and 2 MB LLC
cache.
Social [11]: This realistic macro-benchmark composes 36 microser-
vices running in 30 Docker containers and mimics the behavior of
a social networking site where users are composing and posting
messages. The service supports up to 2000 requests per second.
Baseline response time is 7.5 ms. All microservices in Social shared
one short-term cache allocation policy. As such, we use social to
study the effect of 36 concurrent processes sharing cache.

Spark Spkmeans and Spstream [29]: These benchmarks use the
Apache Spark platform for parallel data processing. They execute
16 concurrent threads. For Spkmeans, these threads partition cluster
assignment in the k-means algorithm. For Spstream, these threads
execute windowed word count. Like Social, all threads share alloca-
tion settings. The k-means algorithm reuses cached data more often
than windowed word count. The Spark executor was configured
with 1 thread which managed worker threads. The worker received
text from one raw network-stream that generated data at 10 MB/s.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Nathaniel Morris, Christopher Stewart, Lydia Chen, and Robert Birke

Baseline response time for Spkmeans was 81 seconds. For Spstream,
it was 1 sec.

Redis:We used the YCSB benchmark suite to generate a realistic
trace for Redis, a widely used key-value store. Under this workload,
Redis exhibits low data reuse and high cache misses. There were
200,000 records comprising of 1KB of data. The baseline response
time for Redis is 1 ms per query.

Rodinia [3]: The Rodinia benchmarks used OpenMP, a shared
memory multi-processing API, to create parallel threads for Jacobi,
KNN, Kmeans, and BFS. These benchmarks were configured to run
with 16 OMP threads. These benchmarks capture computational
demands in HPC environments. Note, Rodinia also includes a im-
plementation of the k-means algorithm that does not use the Spark
platform. KNN and Kmeans exhibited high cache hit rates. Jacobi
and BFS are memory-intensive workloads with moderate cache
miss rates.

For each experiment, we fully utilized processor cores by collo-
cating concurrent services and allowing each service to use 2 cores
and 2 MB LLC for baseline performance. Recall, Intel CAT requires
contiguous cache allocation. Proxy service scripts configured pair-
wise shared cache lines. For example, if Jacobi is collocated with
BFS, Jacobi could reserve private cache lines #1 & #2 and BFS could
reserve cache lines #5 & #6. During short-term allocation, query
executions for either or both services could use cache lines 3 & 4 in
addition to their private cache. We defined query inter-arrival rate
and short-term allocation timeout for each online service relative
to its average service time. If timeout was 150% and service time
was 100 seconds, then short-term allocation would trigger at 150
seconds. Cache allocation is changed when a query times out.

We sampled L1 data cache stores andmisses; L1 instruction cache
stores and misses; L2 requests, stores and misses; LLC loads, misses,
stores; and other architectural counters related to cache usage (29
in total). We used the official Deep Forest implementation [10]. Our
Deep Forest contained 4 cascade layers with each layer hosting 4
random forests. Each random forest was configured to have 100
estimators. The MGS component consisted of 4 sliding windows
with window sizes 5x5, 10x10, 15x15, and 35x35. We used 1 random
forest per window with 50 estimators each.

We report two types of experiments. First, we investigate the ac-
curacy of our modeling approach. For given runtime conditions, we
executed online services and measured average and 95𝑡ℎ percentile
response time. We compare the average response time against the
prediction from ourmodeling approach using the same runtime con-
ditions. Note, that our modeling approach could not use an observed
profile from the runtime condition to train the deep forest. We also
compare our approach to competing modeling approaches using
the same methodology. The second type of experiment calibrated
our model with training data and then the computed expected re-
sponse time for a wide range of randomly sampled conditions. We
examined the performance gains from having a model available.

5.1 Model Accuracy
We profiled 14,220 runtime conditions that included every pair-
wise collocation of our benchmarks and a wide range of runtime
conditions and timeout settings. Profile data was separated into

Linear
Reg.

Tree CNN Queue
Model

0%
10%
20%
30%
40%
50%
60%

25th percentile median 95th percentile

ab
so

lu
te

 p
er

ce
nt

 e
rr

or

|p
re

d-
 o

bs
| /

 o
bs

Our
Approach

(338%) (195%)

Queue w/
Concepts

Figure 6: Accuracy of response time predictions for our ap-
proach, simple models, CNN, queuing simulator and a queu-
ing simulator with concepts.

distinct training and testing sets. Testing data was not used during
training to ensure models accurately extrapolated to new, unseen
conditions.

For our model, testing data outnumbered training data by 2 to 1,
i.e., 33% training data and 66% testing data. For competing models,
we used 70% training data and 30% testing data. We placed our
approach at a disadvantage to ensure low profiling overhead. Later
in this section, we evaluate accuracy of our approach under high
profiling overhead.
Accurate Response Time Prediction: In Figure 6, we used abso-
lute percent error (accuracy) to compare our modeling approach
against competing approaches. Our full modeling approach achieved
11% median error and 12% error at the 95𝑡ℎ percentile.

Figure 6 arranges competing approaches from simple to complex.
First, we compared to a linear regression model. As expected, this
approach produced median error of 50% and the 95𝑡ℎ percentile
error was greater than 300%. A decision tree model achieved 20%
median error and 95𝑡ℎ percentile error above 100%.

Recall, our approach combines deep and representational learn-
ing with first-principles queuing theory. In contrast, the CNN ap-
proach reported in Figure 6 uses only deep and representational
learning to map directly from runtime conditions to response time.
We used PyTorch to train a CNN. Unlike our model that is cal-
ibrated using only one collocation pairing, the CNN had access
to all training data. Further, unlike our deep forest, the CNN had
many hyper parameters affecting accuracy. We used TUNE [17] to
explore the following hyper parameters: epoch, batch size, learning
rate, number of neurons and drop rate. The best setting, which
we reported in Figure 6, achieved 26% median error. The Queuing
Model approach used only our queuing simulator as described in
section 3.3. This approach had 23% error.
Generalization: Figure 7(a) details our model’s error for each
workload in Table 1. Collocated workloads are listed in parenthesis.
To be sure, the targeted collocation settings are not included in
training for test. For example, the label jac(bfs) is the median error
for predicting response time for Jacobi with BFS collocated, and
bfs(jac) is the opposite meaning. Our model predicted average re-
sponse time with median error below 15%. In Figure 7(b), we tested
generalization across processor architectures. In addition to our
default platform Xeon E5-2683 (40 MB LLC), we ran experiments
on a two socket Xeon Platinum 8275 (72 MB LLC and 59MB LLC),
Xeon 2650 (30 MB LLC) and on a Xeon 2620 (20 MB LLC). In all

Performance Modeling for Short-Term Cache Allocation ICPP ’22, August 29-September 1, 2022, Bordeaux, France

72MB
LLC

59MB
LLC

30MB
LLC

20MB
LLC

3MB/
Core

4MB/
Core

0%

4%

8%

12%

16%

20%

0

5

10

15

m
ed

ia
n

er
ro

r

#
 C

o
llo

ca
te

d
 W

rk
s

0%
5%

10%
15%
20%

m
ed

ia
n

er
r.

0.5 Hz:
0.2 Hz:

spatial locality:
no locality:

620 MGS feat:
2480 MGS feat:

small forests:
large forests:

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x
(a) (b) (c)

jac
(bfs)

bfs
(jac)

nn
(km)

km
(nn)

spk
(sps)

sps
(spk)

soc
(red)

red
(soc)

0%

4%

8%

12%

16%

20%
m

ed
ia

n
er

ro
r

Collocated Benchmarks Architectural Features

x

x

x

x

Figure 7: (a) Accuracy of response time predictions for specific collocations. (b) Accuracy (black bar) and number of collocated
workloads (striped bar) across processor cache sizes (c) Evaluation of multi-grained scanning parameters (sampling rate, spatial
locality, window size and forest size).

cases, we fully utilized processor cores by running workloads con-
currently (secondary Y-axis). We also changed collocation settings
by allowing each workload to reserve 3 MB and 4 MB of LLC with
respect to the latter two processors. Only 3 MB of LLC was reserved
per workload for the Xeon Platinum 8275 (left two columns). The
other processors reserved 2 MB of LLC. In all cases, our median
error for response time prediction remained below 15%.
Profiling Time: We also studied profiling time and model accu-
racy. For collocated Apache Spark workloads, profiling cache usage
under a short-term allocation policy took 3 minutes. We profiled 3
collocations in parallel. Our full model profiled workloads for 30
minutes and acquired roughly 100 profiles for training and valida-
tion. However, longer profiling time provided additional data and
improved results. We observed that with 2.5 hours for profiling, the
median error fell to 8.6%. In general our approach was robust to
reduced profiling time because (1) the use of first-principles queu-
ing simulation bounded model error and (2) stratified sampling
improved accuracy given limited samples. Our approach can profile
collocations briefly and still yield predictions that perform better
than other modeling techniques, as shown shown in Figure 6.
Implementation of Multi-Grain Scanning Strategy: Multi-
grained scanning (MGS) learns representational features from the
cache usage trace. In Figure 7(c), we studied (1) the organization
of performance counters in the cache usage trace, (2) the MGS
window size and (3) the sampling rate for cache usage data. Recall,
multi-grained sampling exploits spatial locality. In computer vision,
spatial locality is inherent. However, for effective cache allocation,
performance counters may not be organized to exhibit spatial lo-
cality. Figure 7(c) compared two approaches to order cache usage
traces. The first ordering randomly shuffled performance counters,
removing locality. The second ordering grouped counters by type
(spatial locality). For example, L1 load misses and L3 load misses
for collocated service A appeared close to each other in the cache
usage trace whereas L1 store misses and L3 store misses for service
B were a separate group. We also studied the effect of changing the
window size to quadruple the number of MGS features from 620
to 2480. We also compared performance counter sampling rates of
0.5 Hz and 0.2 Hz. Finally, we also studied the impact of the model
size, defined as the number of estimators used in the deep forest

model. Estimators constrain the number of features included for
deep learning.

Figure 7(c) shows median error in the predicted response time
across MGS settings. The categories at the bottom of the figure
represent multi-grain settings used during response time prediction.
The "X" directly below a bar plot indicates the settings applied to
achieve the corresponding response time error. Only 4 settings can
be used for any bar, i.e., 1 setting per category. The response time
error for our model incurred a 2% increase by collecting cache-
counters at 1 sample every 5 seconds compared to every 2 seconds.
Our model error increased from 5% to 15%, if an spatial ordering
among the cache-counters was removed. A 4X decrease in window
size doubled response time error, but also reduced training time
significantly. Lastly, we observed that using too few estimators
(small forests) yielded accuracy comparable to the Queue Model
approach.

5.2 Managing Short-Term Allocation
We used short-term cache allocation to speed up slow query execu-
tions. The short-term allocation policy (STAP) set a timeout defined
using Equation 4.

response time
exp. service time

> 𝑇 (4)

Here, service time normalizes the timeout across workloads. Our
model-driven approach allowed us to explore settings for 𝑇 under
given collocation and runtime conditions. We explored 25 settings
for 𝑇 for each pair of cache-sharing collocated workloads, i.e., 5
independent settings per workload. We set the query arrival rate
to 90% of each workload’s service time. Query inter-arrival times
were exponential.

Recall, we seek a vector representing settings of 𝑇 for each col-
located workload. To balance performance for each workload, we
implemented a simple SLO-driven matching policy. Step 1: We
searched for settings of 𝑇 where the response time was within 5%
of the lowest response time found across all settings. Step 2: we
chose policies that intersected both collocated services.

In Figure 8, we reported speedup from our model-driven ap-
proach against competing cache allocation approaches across mul-
tiple collocations. The competing allocation approaches are:

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Nathaniel Morris, Christopher Stewart, Lydia Chen, and Robert Birke

1. No cache sharing: Each workload has access to only its private cache.
In Figure 8(a–d), all results are normalized to this baseline.

2. Static allocation: Services can (1) share cache lines fully or (2) use
only private cache— whichever yields best performance.

3. Workload-aware allocation (dCat): Shared cache is allocated to the
workload that achieves the greatest speedup (i.e., throughput profiling
with fixed workload phases). Other collocated services use only private
cache [31].

4. Dynamic-allocation based on IPC (dynaSprint): Timeout𝑇 is used
to allocate shared cache for maximum performance, like our model-
driven approach. However, the settings found under low arrival rate
are reused (ignoring queuing delay) under high arrival rate.

5. Dynamic-allocation based on simple ML models: In this approach,
we hide deep and representational features, i.e., a random forest. These
results show the effects of using simpler machine learning models.

In Figures 8(a–d), we reported speedup in 95𝑡ℎ percentile re-
sponse time across 4 collocation settings that include Redis, Spark,
Rodinia and micro-service workloads. Compared to the default set-
ting, our model-driven approach achieved median speedup of 2X,
speeding up the Spark Kmeans workload by up to 2.6X. Compared
to state of the art approaches (dCat and dynaSprint), our approach
achieved speedup of 1.3X while speeding up the micro-service so-
cial networking site and Redis by 1.38X and 1.4X respectively. Under
heavy arrival rate, Redis has low effective cache allocation with
micro-services in Social. dynaSprint fails to capture increased vari-
ability in Social, leading to a poor timeout setting. Further, Redis
benefits greatly from additional cache lines. dCat allocates addi-
tional cache lines to Redis to achieve a high speedup but does not
speed up social. Our approach sets a low timeout for Redis and mod-
erate timeout for Social. This finds an excellent balance by speeding
up Redis but affording short-term allocation when Social suffers
from high queuing delay. We also compared our full approach to
an approach based on simple models. Even though simple models
yield greater absolute percentage error, Figure 8(e) shows that, for
most workloads, simple ML models can exceed dCat and match
dynaSprint. Our approach outperforms dCat in most scenarios and
achieves greater speedups.

6 RELATEDWORK
Cache allocation that considers workload needs can often improve
performance compared to workload agnostic allocation. Prior work
studied cache allocation to reduce interference, maximize through-
put and improve tail latency. Recently, dynamic cache allocation
allows systems software to assign cache at runtime [5]. This section
overviews prior work.
Cache Management for Online Services: Albonesi et al. [1]
proposed the idea to disable select cache ways during periods of
low demand and re-enable them during intense memory periods.
Their goal was to reduce energy consumption with a small per-
formance degradation. Our work uses a technique that increases
performance for a query execution by accessing additional cache
shared with collocated executions. We focus on reducing response
time not reducing energy. Xu et al. [31] presented a dynamic cache
allocation approach for query executions sensitive to noisy neigh-
bors. Their dynamic approach offered a strong cache isolation while
maintaining a minimum performance bound. Our approach relaxes

0 0.5 1 1.5 2 2.5
0

0.2
0.4
0.6
0.8

1

o
d
s

Speedup vs DCAT

C
D

F
 (

a
ll

w
rk

ld
s)

short-
term

static
alloc

dcat dyna
sprint

simple
model

0

1

2
social redis combined

n
o

rm
. 9

5
th

 %
til

e

 r

e
sp

o
n

se
 ti

m
e

short-
term

static
alloc

dcat dyna
sprint

simple
model

0

1

2

3 spark kmeans spark stream
combined

n
o

rm
. 9

5
th

 %
til

e

 r

e
sp

o
n

se
 ti

m
e

short-
term

static
alloc

dcat dyna
sprint

simple
model

0

1

2
nn kmeans combined

n
o

rm
. 9

5
th

 %
til

e

 r

e
sp

o
n

se
 ti

m
e

short-
term

static
alloc

dcat dyna
sprint

simple
model

0

1

2
jacobi bfs combined

n
o

rm
. 9

5
th

 %
til

e

 r

e
sp

o
n

se
 ti

m
e

(a)

(b)

(c)

(d)

(e)

short-term
dynasprint
simple

Figure 8: Comparing speedup in 95th percentile response
time for competing cache allocation techniques.

the cache isolation requirement during periods when query exe-
cutions are suffering performance loss. Chen et al. [4] proposed
a resource manager that dynamically adjusts resources including
cache for online services suffering from performance loss. Zhang
et al. [34] propose a similar software-oriented solution. While their
solution finds good online policies, their solution cannot explore
policies a priori. Our work can quickly explore collocation settings
and policies online and offline after the profiling stage. In contrast,
Chen et al. requires performance feedback during online operation.
Kulkarni et al. [15] proposed an online resource manager that uses
machine learning to determine the performance and power for a
core and cache configuration. They find the best configuration to
reduce latency and increase throughput.
Cache Modeling Approaches: First principles modeling can pre-
dict response time for a query’s execution as a function of the
arrival and service time distributions [14]. However, modeling the
effects of cache on response time with first principles is challenging.
The cache behavior is hardware dependent which changes from

Performance Modeling for Short-Term Cache Allocation ICPP ’22, August 29-September 1, 2022, Bordeaux, France

one processor to the next. Collocating executions further compli-
cates this problem by introducing cache interference in the LLC
[9, 30]. Prior works measure cache interference online [12, 18] and
make decisions at an execution phase granularity.Qureshi et al. [21]
implemented utility based cache allocation at the hardware level.
This work ignores queuing delay since it is implemented below the
software stack. Huang et al. [12] presented a runtime software that
managed cache allocations dynamically by predicting cache-utility.
Similarly, our work uses hardware performance counters to profile
cache-utility. However, we rely on offline profiling to collect the
data needed for training our model.

7 CONCLUSION
Short-term cache allocation grants and then revokes access to pro-
cessor cache lines dynamically. Online services can use short-term
cache allocation to speed up queries as they execute, targeting
queries likely to suffer high response time. However, when multi-
ple services collocate by sharing cache, their query executions can
contend for short-term allocation, causing recurring slowdowns
that degrade response time. This paper presented a model-driven
approach to choose cache allocation policies that yield low response
time for collocated services. Our approach uses deep learning to
extract subtle relationships between application-level metrics (re-
sponse time, query arrival and service rate) and micro-architectural
metrics (cache misses and LLC allocation). Given 30 minutes to
profile workloads, our approach can be used directly to manage
short-term allocation. Our approach can also provide insights that
yield better first-principles models.
Acknowledgments:We acknowledge NSF grants #1730043 and
#1350941. We also thank Jayson Boubin, Eduardo Romero Gainza,
Jianru Ding and Ruiqi Cao for their assistance.

REFERENCES
[1] D. H. Albonesi. 1999. Selective cache ways: on-demand cache resource allocation.

In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium
on Microarchitecture. IEEE, Israel, 248–259.

[2] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2018. Cedule: A
scheduling framework for burstable performance in cloud computing. In Interna-
tional Conference on Autonomic Computing (ICAC). IEEE, IEEE, Italy, 141–150.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In International
Symposium on Workload Characterization (IISWC). IEEE, USA, 44–54.

[4] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services. In ASPLOS. ACM,
USA, 1–10.

[5] Intel Corporation. 2015. Improving real-time performance by utilizing cache
allocation technology. https://01.org/cache-monitoring-technology. (2015).

[6] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the International Symposium on Operating Systems Principles (SOSP).
ACM, USA, 1–14.

[7] Jianru Ding, Ruiqi Cao, Indrajeet Saravanan, Nathaniel Morris, and Christopher
Stewart. 2019. Characterizing Service Level Objectives for Cloud Services: Re-
alities and Myths. In International Conference on Autonomic Computing. IEEE,
Sweden, 1–6.

[8] Songchun Fan, Seyed Majid Zahedi, and Benjamin C. Lee. 2016. The Computa-
tional Sprinting Game. In ASPLOS. ACM, USA, 561–575.

[9] Alexandra Fedorova, Sergey Blagodurov, and Sergey Zhuravlev. 2010. Managing
Contention for Shared Resources on Multicore Processors. Commun. ACM 53, 2
(Feb. 2010), 49–57.

[10] K Fengji. 2018. gcForest Version 1.1.1. https://github.com/kingfengji/gcForest.
(2018).

[11] Gan, Yu et al. 2019. An Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud and Edge Systems. In ASPLOS.

ACM, New York, NY, USA, 1–6.
[12] Ziqiang Huang, José A. Joao, Alejandro Rico, Andrew D. Hilton, and Benjamin C.

Lee. 2019. DynaSprint: Microarchitectural Sprints with Dynamic Utility and
Thermal Management. In International Symposium on Microarchitecture. IEEE,
USA, 1–12.

[13] J. Kelley, C. Stewart, N. Morris, D. Tiwari, Yuxiong He, and S. Elnikety. 2015.
Measuring and Managing Answer Quality for Online Data-Intensive Services. In
IEEE ICAC. IEEE, France, 1–10.

[14] David George Kendall. 1959. Stochastic processes occurring in the theory of
queues and their analysis by the method of the imbedded Markov chain. Matem-
atika 3, 6 (1959), 97–112.

[15] N. Kulkarni, G. Gonzalez-Pumariega, A. Khurana, C. A. Shoemaker, C. Delimitrou,
and D. H. Albonesi. 2020. CuttleSys: Data-Driven Resource Management for In-
teractive Services on Reconfigurable Multicores. In 53rd International Symposium
on Microarchitecture. IEEE, Global Online Event, 1–12.

[16] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[17] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv preprint arXiv:1807.05118 1 (2018), 1–12.

[18] Amiya K. Maji, Subrata Mitra, Bowen Zhou, Saurabh Bagchi, and Akshat Verma.
2014. Mitigating Interference in Cloud Services by Middleware Reconfiguration.
In Proceedings of the 15th International Middleware Conference. ACM, USA, 1–12.

[19] N. Morris, S. M. Renganathan, C. Stewart, R. Birke, and L. Chen. 2016. Sprint
Ability: How Well Does Your Software Exploit Bursts in Processing Capacity?.
In 2016 IEEE International Conference on Autonomic Computing (ICAC). IEEE,
Germany, 173–178.

[20] NMorris, C Stewart, L Chen, R Birke, and et al. 2018. Model-driven computational
sprinting. In Eurosys. ACM, Portugal, 1–12.

[21] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, USA, 423–432.

[22] Isabelly Rocha, Nathaniel Morris, Lydia Y Chen, Pascal Felber, Robert Birke,
and Valerio Schiavoni. 2020. PipeTune: Pipeline Parallelism of Hyper and Sys-
tem Parameters Tuning for Deep Learning Clusters. In Proceedings of the 21st
International Middleware Conference. ACM/IFIP, Global Online Event, 89–104.

[23] Jennie Rogers, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal. 2011. Per-
formance prediction for concurrent database workloads. In SIGMOD International
Conference on Management of Data. ACM, USA, 337–348.

[24] Eduardo Romero, Christopher Stewart, Angela Li, Kyle Hale, and Nathaniel
Morris. 2022. Bolt: Fast Inference for Random Forests. In Proceedings of the 23rd
ACM/IFIP International Middleware Conference. ACM, Canada, 94–106.

[25] Alan Jay Smith. 1982. Cache Memories. ACM Comput. Surv. 14 (1982), 473–530.
[26] Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. 2013. Zoolander:

Efficiently Meeting Very Strict, Low-Latency SLOs. In IEEE ICAC.
[27] C. Stewart, T. Kelly, and A. Zhang. 2007. Exploiting Nonstationarity for Perfor-

mance Prediction. In EuroSys Conf.
[28] G Edward Suh, Larry Rudolph, and Srinivas Devadas. 2004. Dynamic partitioning

of shared cache memory. The Journal of Supercomputing 28, 1 (2004), 7–26.
[29] Yangjun Wang et al. 2016. Stream processing systems benchmark: Streambench.

In MS Thesis. Aalto University, Finland, 1–66.
[30] Chi Xu, Xi Chen, Robert P. Dick, and Zhuoqing Morley Mao. 2010. Cache

Contention and Application Performance Prediction for Multi-Core Systems.
(2010).

[31] C Xu, K Rajamani, A Ferreira, W Felter, and et al. 2018. dCat: dynamic cache
management for efficient, performance-sensitive infrastructure-as-a-service. In
ACM Eurosys. ACM, Portugal, 1–12.

[32] Zichen Xu, Christopher Stewart, Nan Deng, and Xiaorui Wang. 2016. Blending
On-Demand and Spot Instances to Lower Costs for In-Memory Storage. In IEEE
INFOCOM.

[33] Seyed Majid Zahedi, Songchun Fan, Matthew Faw, Elijah Cole, and Benjamin C
Lee. 2017. Computational Sprinting: Architecture, Dynamics, and Strategies.
ACM Transactions on Computer Systems (TOCS) 34, 4 (2017), 12.

[34] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th ACM
European conference on Computer systems. ACM, Germany, 89–102.

[35] Qin Zhao, David Koh, Syed Raza, Derek Bruening, andWeng-Fai Wong. 2011. Dy-
namic cache contention detection in multi-threaded applications. In International
conference on virtual execution environments. ACM, USA, 1–12.

[36] Zhi-Hua Zhou and Ji Feng. 2019. Deep forest. National Science Review 6, 1 (2019),
74–86.

https://01.org/cache-monitoring-technology
https://github.com/kingfengji/gcForest

	Abstract
	1 Introduction
	2 Cache Allocation Technology
	3 Design
	3.1 Stage 1: Profiling Cache Demands
	3.2 Stage 2: Deep Learning
	3.3 Stage 3: First Principles Modeling

	4 Implementation
	4.1 Deep Forest

	5 Evaluation
	5.1 Model Accuracy
	5.2 Managing Short-Term Allocation

	6 Related Work
	7 Conclusion
	References

