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ABSTRACT
Random forests use ensembles of decision trees to boost accuracy
for machine learning tasks. However, large ensembles slow down
inference on platforms that process each tree in an ensemble individ-
ually. We present Bolt, a platform that restructures whole random
forests, not just individual trees, to speed up inference. Conceptually,
Bolt maps every path in each tree to a lookup table which, if cache
were large enough, would allow inference with just one memory ac-
cess. When the size of the lookup table exceeds cache capacity, Bolt
employs a novel combination of lossless compression, parameter
selection, and bloom filters to shrink the table while preserving fast
inference. We compared inference speed in Bolt to three state-of-
the-art platforms: Python Scikit-Learn, Ranger, and Forest Packing.
We evaluated these platforms using datasets with vision, natural
language processing and categorical applications. We observed that
on ensembles of shallow decision trees Bolt can run 2–14X faster
than competing platforms and that Bolt’s speedups persist as the
number of decision trees in an ensemble increases.
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• Software and its engineering → Allocation / deallocation
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1 INTRODUCTION
Random forests, deep forests [30], and gradient-boosted forests [8]
combine predictions from multiple decision trees, i.e., an ensemble.
Compared to individual trees, ensembles can boost accuracy for
classification and regression tasks by reducing overfitting errors
caused by bias in the modeling algorithm. Extant platforms for
random forests process each tree in the ensemble independently.
While correct and easy to understand, this approach causes inference
speed to slow down as ensemble size grows. Even though trees
are created independently, multiple trees within an ensemble use
the same sequence of features for prediction, leading to wholly or
partially redundant paths. By processing each tree independently,
platforms waste resources during inference on redundant paths.

Decision trees can be transformed into lookup tables and sub-
sequently stored in processor cache to speed up inference. Each
path maps to one or more entries in the lookup table and each entry
stores a leaf-node result. During inference, input data is encoded
as a lookup table entry to retrieve the correct leaf node. To ensure
that input data maps to exactly one lookup table entry, the encoding
scheme must use every feature in the decision tree. That is, the encod-
ing scheme produces the address in the lookup table that stores the
correct leaf-node result, and during inference, this path is retrieved
using this address. Henceforth, we use the terms lookup table entry
and lookup address interchangeably.

Lookup tables require only one memory access for inference
on a given decision tree. In comparison, breadth-first processing
of decision trees requires one memory access for each node along
the path from root to leaf. Lookup tables also avoid conditional
control flow, alleviating pressure on the branch predictor. While
transforming decision trees to lookup tables has benefits, it also has
severe drawbacks for random forests:
1. Lookup tables have large storage demands: Lookup tables

require distinct addresses for each possible input. The address
space is 2f where f is the number of features in the tree. The
address space can easily exceed the size of processor cache,
such that inference requires slow accesses to main memory.

2. Random forests use ensembles, multiplying storage de-
mands: Ensemble models, such as random and deep forests [30]
use many decision trees to achieve high accuracy and, as a result,
further increase storage demands.

3. Redundant paths between trees inflate storage demands:
Lookup tables encode paths in one or more addresses. If trees in
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a random forest ensemble have redundant paths, each path may
produce multiple entries in lookup tables.

Prior work has used lookup tables sparingly to manage storage
demands. Forest Packing [7] restructures trees so that hot paths
can be processed in one access to processor cache. Other paths are
processed using standard, breadth-first tree traversal. Ranger [26]
batches multiple inputs together for inference, accessing cache once
to process multiple input data. However, inference workloads in-
creasingly demand low response times and cannot wait to batch
queries. Python Scikit-Learn, the most widely used platform for
random forests, exploits the Intel MKL library for efficient layout
optimizations for tree structures.

We present Bolt [20], a platform for fast inference in ensemble
models. Bolt transforms fully trained random forests from an en-
semble of decision trees to an ensemble of lookup tables. Unlike
prior approaches, Bolt enumerates paths for every tree in a random
forest and clusters similar paths. Redundant paths can be stored in
the same lookup table entry. Bolt also partitions lookup tables to
fit in processor cache by limiting the number of features and using
parallel cores for concurrent access. We implemented Bolt in C++,
transforming random forests trained using Python Scikit-Learn. The
majority of our evaluation focuses on random forests, although we
also tested deep forest workloads. Further, since Bolt does not affect
training, techniques used by Bolt on random forests are generalizable
to all decision tree ensembles. Using widely used machine learning
datasets, we found that Bolt executes inference 2X faster than Forest
Packing, the current state-of-the-art platform, and at least 14X faster
than Python Scikit-Learn on ensembles consisting of shallow - i.e.
limited height - decision trees.

Specifically, we make the following contributions:
• We present a method to manage storage and processing demands

to transform random forests into ensembles of lookup tables
using clustering and bloom filters.

• We present a method for exploring parameters, searching for
inference latency given a forest and available cores.

• We present an efficient C++ implementation and evaluate these
methods in terms of inference speed on multiple types of random
forests and datasets.

• Our evaluation shows the strengths and weaknesses of our ap-
proach. Bolt’s speedup over Forest Packing persists as ensembles
grow to include more trees. However, Forest Packing provides
faster inference as the height of trees within the ensemble in-
creases.

The remainder of this paper is structured as follows: Section 2
describes related work. Section 3 provides a motivation for the
alternative approach Bolt takes. Section 4 provides background on
random forests and presents the design of Bolt. Section 5 presents
our implementation of Bolt and a networked classification service.
Section 6 presents empirical evaluations of Bolt, and Section 7 draws
conclusions.

2 RELATED WORK
Explainable machine learning (ML) models allow humans to un-
derstand the factors that influence the models’ output given input
data [4, 12, 14]. Explain-ability is increasingly important when

a models’ output directly affects the cyber-physical world with
little or no human intervention, e.g., automated edge and cloud
workloads [3, 10, 16, 19], Internet of Things [29], and autonomous
vehicles [6, 22]. Explainable models help humans audit and trust
software-driven systems. In particular, decision trees, a ML model
structured as a tree wherein each node represents a test on an feature
of the input data [25], support innately explainable characterizations,
e.g., salience maps [15, 17]. Random forests, ensembles of deci-
sion trees, are also explainable [4]. The ability to explain automated
resource management decisions was a primary reason to employ tree-
based models in recent research. For example, Maji et al. [16] use
decision trees to detect the presence of cloud interference. Grohmann
et al. [10] showed that random forests can provide accurate models
of key performance indicators that can enable monitor-less perfor-
mance management.

Random forests build each tree within an ensemble independently,
normally by sub-sampling the training data and set of features avail-
able as internal nodes. Machine learning experts structure the trees,
choosing parameters like the maximum height and thresholds for
splitting nodes and/or declaring leaf nodes. The structure of trees
within a random forest matters for explain-ability and classification
accuracy. Explainable trees should respect the limits of the human
brain [11]: fewer variables (i.e., shallow trees) are easier to explain.
Gradient-boosted forests [8] and deep-learning forests [30] achieve
state-of-the-art results for classification and regression accuracy. The-
oretical studies suggest that these approaches benefit from forests
composed from shallow trees [2]. Thus, establishing the importance
of improving inference time for short trees.

2.1 Approaches to speed up inference
Forest Packing is the closest related work. Browne et al. also seek to
speed up response time for AI inference services [7]. Their approach
implicitly creates a partial lookup table by storing trees in depth-first
order. Nodes in the same path are loaded into the same cache line and
checked against input data. Paths are organized by how frequently
they are accessed in testing data, prioritizing cache lines for hot
paths. However, testing data may not reflect the statistical path distri-
bution observed when a forest runs inference as a service. Test data
is meant to broadly cover a wide range input data, whereas inference
services target narrow use cases. For complex data used on a wide
range of services, hot paths will likely differ. By explicitly mapping
all paths into lookup tables, Bolt forests can cache whichever paths
are used most frequently by a service. Another key difference is that
Bolt does not follow pointers from node to node. By using a dictio-
nary, Bolt reduces branch mispredictions and separates compute and
cache capacity concerns. Further, Bolt is less dependent on system
scheduling and instruction-level parallelism. While Browne et al.
note that random forests support explainable inference, they do not
evaluate local explanation workloads. Bolt uses associative arrays to
track salient features. Bolt can do such tracking with one memory
access per tree inference, meaning that Bolt can produce a list of
salient features as inference is produced, but it seems a compara-
ble implementation in Forest Packing would require an additional
memory access for node. Besides this difference, Forest Packing
also compresses nodes and uses cache efficiently during inference.
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Furthermore, their approach seems more effective for deeper deci-
sion trees in which even partial lookup tables are hindered by the
number of features.

Similarly, Ranger [26] also focuses on creating an efficient version
of Random Forests. However, Ranger processes trees in a breadth-
first order, and does not differ in principle from traditional tree
execution, instead, it optimizes storage by “avoiding copies of the
original data, saving node information in simple data structures and
freeing memory early” [26]. Other optimizations of Ranger, apply
to training time, rather than inference as a service. Consequently,
Ranger performs inference at similar or only slightly better times
than other libraries, such as Scikit-learn, that also perform tree in-
ference through branching on each node. When using Ranger as a
service, the absence of lookup tables hurts the performance, however,
when batching queries Ranger can benefit from its optimizations and
achieve very low response times.

Prior work has explored deterministic finite automaton (DFA)
on custom hardware [23, 24] and for processing XML and JSON
files [1]. These efforts share our goals of efficiently using processor
resources for DFA workloads. Xie et al. optimize random forests for
execution on GPUs, using similar concepts as Bolt, e.g., redundancy
elimination [27]. While the two approaches target different types
of processors and are not directly comparable, we note that both
approaches achieve state of the art speedup with comparable absolute
throughput for low-latency inference serving. The choice of GPU
versus CPU depends on many contextual factors. However, Bolt
and Tahoe [27] clarify some performance tradeoffs. Bolt includes
unique implementation optimizations targeted at random forests.
Design ideas for Bolt were published previously without substantial
evaluation [21]. Joshi et al. [13] characterized the design of machine
learning optimizations on the edge as levering model compression
and/or conditional computation. Bolt employs both.

3 APPROACH
As described before, ensembles of decision trees are more accurate,
while also slower and often redundant. Other solutions, approach the
efficiency problems of ensemble models by maintaining frequently
visited nodes in cache, thus profiting from redundancies, while pay-
ing a cache miss penalty in the remaining nodes. Mapping the tree
into a lookup table, on the other hand, considers all possible paths of
a tree, thus avoiding branching, but may not be faster than branch-
ing if the final lookup table is too large. Our approach profits from
redundancy by first, merging identical paths across multiple trees,
then clustering similar paths across trees - as opposed to adjacent
paths in the same tree as other approaches - and during inference
quickly discarding irrelevant groups of paths while maintaining
storage requirements low.

For clarity, consider the case of a school bus which must drop off
students in their respective homes. An inefficient approach would
ask each student where to go, and drop them off before proceeding
to the next student, without considering that some students might be
neighbors. If dropping off a student is equivalent to loading a node
in memory, this approach is equivalent to breadth-first processing,
branching at every node. Alternatively, establishing a route that
visits every street in the city, even those in which no students live,
may route more efficiently and take advantage of the existence of

trained
forest

lossless
compression

Phase 1 Phase 2

Lookup 
Tables

Dictionaries
parameter
selection

Phase 3

Bloom 
filters

Bolt Forest

Lookup 
Tables
Dict & 
Filter

Figure 1: Bolt (1) compresses a given trained forest, (2) explores
parameters to reduce storage demand and latency and (3) uses
filters to reduce memory lookups.

neighbors. However, if there are many more streets than students,
this may be slower than the first approach. If driving through a
street is equivalent to testing if a path matches input features, this is
equivalent to naïvely creating large lookup tables. Bolt mixes the two
approaches, by doing the equivalent, in our metaphor to establishing
a bus route, but quickly discarding streets in which no students live.
Section 4 will formally describe the idea presented by this metaphor.

Not only is Bolt more efficient because of the previously de-
scribed approach but also, it allows for more flexibility with scaling.
With Bolt’s clustering of paths, a single sample can be parallelized
across multiple nodes in a distributed system, by assigning tables to
different processors. Other approaches allow for multiple samples
to be executed in parallel or to execute groups of trees in the forest
in different nodes. Bolt can still do the previous two parallelization
methods while permitting further splitting of a single sample.

4 DESIGN
We focus on binary trees where nodes are features, and edges indi-
cate boolean values associated with a feature and a threshold value
(0 or 1). Given an input sample, at every node, the input feature is
compared to the threshold-value, and an edge is taken accordingly. A
matching path from root to leaf nodes means that each feature-value
pair in the path is also present in the input data. Each tree has exactly
one matching path for a given input. The terminal node (leaf node)
of the path represents the inference result (classification). Results
from each tree are aggregated to produce a final classification.

Bolt: Figure 1 presents our approach for processing forests that
safely1 transforms trees into lookup tables, manages storage demand
and speeds up inference and explanation workloads. Bolt accepts
three inputs: a trained forest, number of available CPU cores, and
cache capacity of each core. The output is a collection of structures
that we call dictionaries2 and trees mapped into lookup tables ready
for inference and corresponding to the original forest.

Bolt consists of three phases. Phase 1 splits the entire forest into
several tree paths and clusters similar paths (among all trees) into
tables to reduce storage demands. Phase 2 evaluates the outcome of
Phase 1 against the expected size of each table (storage) and of each
dictionary (latency) and searches for parameters that reduce infer-
ence latency. Phase 3 speeds up path matching by quickly filtering
out tables that comprise only non-matching paths, thereby avoiding
unnecessary memory accesses.

1Informally, safety means that transformations preserve classification results for all
inputs.
2These are not traditional dictionaries in the sense of associative maps withO (1) lookup.
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Features form
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Figure 2: Lookup tables encode each path in a tree as an address
that directly maps to a classification result. Features that are
irrelevant for particular path in a tree must be considered in
the table.

4.1 Phase 1: Clustering and Compression
Recall from Figure 2 that naïve mapping forms a lookup table ad-
dress from every feature present in a tree and the possible values that
feature can take on (here only 0 or 1). In that figure, even though the
highlighted path formed by (fa, 0) → (fb , 1) does not include fc , fc
still must be present in the address formed from the features, since
addresses (lookup table indexes) are of fixed length. This results
in two duplicate entries in the lookup table with the same result,
where fc is treated as a “don’t care” in the address. This approach
wastes space and inflates storage demand exponentially, since it ne-
cessitates 2n table entries for n binary features, thus making lookup
tables untenable for forests comprising complex trees. Note here that
n comprises all distinct features used in all trees in the forest (not
all trees use the same features), so it can grow quite quickly. Even
for modest n > 25, the memory used by the lookup table (225 entries
≃ 32MB) will easily outstrip the capacity of a modern machine, e.g.
the 20MB L3 cache on an Intel Xeon E6-2620. We propose an alter-
native memory-mapping approach to manage storage demands. The
key insight we leverage for our approach is that several trees within
a forest may share paths, presenting an opportunity for compression.

Figure 3 shows how Bolt transforms an input random forest com-
prising two decision trees into a set of data structures we can use for
fast, cache-friendly inference. First, paths (consisting of a series of
feature-value pairs) for each tree in the forest are enumerated and
sorted lexicographically ( 1 ). The sorted paths from the trees are
then merged into a single, sorted list of paths for the entire forest
( 2 ). Clusters are formed by incrementally adding paths from this
sorted list. This is done until a tunable threshold for the number of
uncommon feature-value pairs is reached. In the example, (b, 1) and
(h, 0) in the second and third rows in the table at ( 2 ) both represent
pairs that have not yet been seen, so we add them to our first (green)
cluster. We set our threshold to 2 in this example, so we cannot add
more paths to this cluster. We begin a new (yellow) cluster and repeat
the process. Note that this clustering threshold is a hyperparameter
of our model, and it will be tuned during optimization (§4.2).

The important thing to note about the clusters is that, at this stage,
each cluster will have its own compressed lookup table (as opposed
to a single large table for the whole forest). We can see the path
clusters superimposed on the original forest ( 3 ) in the third column

of Figure 3. By design, each cluster shares a unique set of feature-
value pairs common to all paths in that cluster. In the figure, (a, 0)
is common for the green cluster, (a, 1) is common for the yellow
cluster, and (h, 1) is common for the blue cluster. The commonality
of these features within the cluster allows us to extract them out and
use them as an identifier that determines membership of inputs in
cluster-specific lookup tables ( 5 ). This is accomplished using our
“dictionary” data structure ( 4 ). When an input vector arrives, its
features are compared against entries in the dictionary to match it to
an appropriate lookup table. For example, an input of 0100 would
match the first dictionary entry (storing the common pair (a, 0)). The
lookup would then be directed to the first (green) lookup table. Note
that now we only have ten lookup table entries and three dictionary
entries; “don’t care” entries are almost entirely eliminated. This is
in contrast to the 16-entry table that would be used in the naïve
approach, shown on the right side of the figure.

In general, this approach reduces demand significantly when the
number of features in the tree grows. Let a full, binary, trained deci-
sion tree be given, and let h be its height. Let no node be repeated in
different subtrees. A naïve lookup table of this tree would require
22

h−1 entries. Let a dictionary extract the first k features from every
path (assume h > k). Then, the dictionary would create 2k lookup
tables, each mapped in its corresponding dictionary entry. Each of
these mappings would have 22

h−k−1 entries in the table. Thus, the
total entries in the table required by the dictionaries approach is
22

h−k−1 × 2k = 22
h−k+k−1 < 22

h−1. Therefore, for any positive
integers h > 1,k where h > k, the dictionary approach leads to a
smaller table. However, increasing the dictionary size also increases
lookup latency, as each input must be compared to each entry of
the dictionary (again, this is not a traditional dictionary in the sense
of constant-time lookup). This size/latency trade-off is explored in
the next section. After clustering, and compression, Bolt outputs
a dictionary in which every entry maps to a unique lookup table.
However, these tables must be recombined into one single table to
help identifying false positives (more details in §4.3), and to avoid
the use of pointers and the consequent branch misses. That is, Bolt
hashes every entry in each of the lookup tables, corresponding to
each dictionary entry, into one big recombined lookup table. These
paths from the smaller lookup tables are hashed using their feature
values and the entry ID corresponding to the dictionary entry that
maps to the sub-table. After recombination, this stage has one dictio-
nary and one lookup table for the entire forest. Each dictionary entry
has an entry ID and a set of feature-value pairs, and the lookup table
contains all paths in the forest.

4.2 Phase 2: Parameter Selection
As described in the previous section, Bolt makes use of dictionaries
to reduce the storage demands of lookup tables. However, during
inference each inputs must be compared to every entry in the dic-
tionary. While this lookup does not require memory accesses and
uses fast bit-wise operations in lieu of branching, a large number of
dictionary entries can become the bottleneck during inference, partic-
ularly if the lookup table already fits in cache (fast memory accesses).
Given the inverse proportionality between number of entries in the
dictionary and the size of the lookup table, the clustering threshold

97



Bolt: Fast Inference for Random Forests Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

f.c

f.a

f.b

yes no no yes

0 1

11 00

f.c

f.h

f.a

no yes no yes

0 1

11 00

(a,0) (b,0)
(a,0) (b,1)
(a,1) (c,0)
(a,1) (c,1)

(h,0) (a,0)
(h,0) (a,1)
(h,1) (c,0)
(h,1) (c,1)

(a,0) (b,0)
(a,0) (b,1)
(a,0) (h,0)
(a,1) (c,0)
(a,1) (c,1)
(a,1) (h,0)
(c,0) (h,1)
(c,1) (h,1)

input forest path enumeration

f.c

f.a

f.b

yes no no yes

0 1

11 00

f.c

f.h

f.a

0 1

11 00

clustering

no yes no yes

table generation

(a,0)
(a,1)
(h,1)

f.b f.h result
0 0 [yes,no]
0 1 [yes]
1    0 [no, no]
1    1 [no]

f.c f.h result
0 0 [no, yes]
0 1 [no]
1 0 [yes, yes]
1 1 [yes]

f.c result
0 [no]
1 [yes]

dict.

lookup tables
f.a f.b f.c f.h result
0 0 0 0 …
0 0 0 1 …
0 0 1 0 …
0 0 1 1 …
0 1 0 0 …
0 1 0 1 …
0 1 1 0 …
0 1 1 1 …
1 0 0 0 …
1 0 0 1 …
1 0 1 0 …
1 0 1 1 …
1 1 0 0 …
1 1 0 1 …
1 1 1 0 …
1 1 1 1 …

naïve mapping

1

2

3

4

5

Figure 3: Compression of input forests in Bolt.

  --features--   result  dict.ID
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core0 core1

core2 core3

lookup table

core0 core1

core2 core3

(a,0) (a,1)    (h,1) (h,1)(e,1)

dictionary

Figure 4: Four core example of parallelization on Bolt. This ex-
ample shows two partitions of the lookup table in and two par-
titions of the dictionary.

described in the previous section, which controls dictionary size,
must be carefully tuned.

However, tuning this parameter is not trivial. The ideal value
depends on many factors, such as the number of paths in the for-
est with features in common, time consumed by a memory access,
cache size, number of dictionary entries that would lead to a lookup
in memory, among others. Furthermore, the possibility of scaling
to multiple cores adds even more complexity. Figure 4 shows one
possible division of a Bolt forest across four cores. In this example,
both the lookup table and the dictionary are split into two partitions
each. Partitioning lookup tables requires running two copies of the
dictionary. For any input, a comparison is made with the key features
of the dictionary entries. If there is a match, a memory lookup is
attempted (a binary sequence is generated with the mapped features
and the address is mapped to an index of the lookup table using
the entry ID of the dictionary), if the address searched is within the
partition of the lookup table that corresponds to that core, a result is
computed. Lookup table partitioning decreases storage demand per
individual core but may only indirectly affect latency. Dividing the
lookup table only improves latency if cache misses have a big impact
on performance of the specific workload. Figure 4 also shows the
division of the dictionary. When the dictionary is partitioned, a copy
of each lookup table is made. During inference, each core compares
the input with the key features of the available dictionary entries,
and performs the corresponding memory accesses. The partitioning

of the dictionary directly impacts latency, but the overhead of ag-
gregating results must be considered. Different values for inter-core
communication latency and different methods for result aggrega-
tion can lead to different partition strategies. The combination of
lookup table size, dictionary size, the number of splits of these data
structures across cores, and the overhead of partitioning complicates
modeling the ideal strategy given a workload. Bolt searches the
space given by these parameters by running the forest with different
parameter settings and selecting those partitioning strategies that
lead to best results. Bolt can explore values within a given set of pa-
rameters, or given specific parameters, it can test the effect of small
deviations from the given settings. In general, if the lookup table
already fits in cache, parameter changes that lead to less dictionary
entries will yield better results. Bolt explores different parameter
strategies and outputs a set of lookup tables and dictionaries that
give the best performance (latency) given a forest and the specified
hardware.

4.3 Phase 3: Improving Lookup Table Selection
The use of dictionaries to compress a lookup table renders many
entries in the dictionary irrelevant for a particular input. For the
dictionaries to be effective in reducing latency, the decision to access
a lookup table given the features in a dictionary entry must be a fast
one. To solve this, Bolt uses bloom filters [5], a probabilistic data
structure used to query set membership. Unlike perfect hashing that
correctly labels inputs and non-members, bloom filters can report
false positives; some non-members can be labeled members but
members are never labeled as non-members (i.e. no false negatives).
When non-members greatly outnumber members, like in a Bolt
forest with many dictionary entries, bloom filters can afford fast,
resource-lean membership lookups.

During inference, for every dictionary entry, Bolt uses bit-wise
operations to simultaneously decide if the dictionary entry is rele-
vant to the input, and compute the location of the lookup table that
would be accessed if the dictionary entry is relevant to the input.
As shown in Figure 3, Bolt dictionaries distinguish between com-
mon and uncommon features. Common features are those that are
present with the same value (same node and same edge) in every
path that was clustered into a particular entry in the dictionary, or
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more precisely, into the lookup table, pointed at by the dictionary
entry. Uncommon features are all other features that are present in
any path that was clustered in that particular dictionary entry. Given
input features, Bolt uses common and uncommon features to create
a binary sequence representing a mapping of the input in the cor-
responding lookup table. Then, Bolt uses a bit-mask representing
the common features to decide membership of the input in the table
mapped by that entry. If the input matches the common features,
then the generated sequence is hashed into the recombined lookup
table described above and the response is retrieved; otherwise, the
dictionary entry is ignored.

The approach described above suffices when the dictionary entries
map entire subtrees. However, because Bolt allows for grouping of
paths from different trees or subtrees, and because of the greedy
algorithm for clustering, false positives are possible. As shown in
Figure 5, a false positive in entry i of the dictionary implies the
common features of entry i are a subset of the common features of
some other entry j, and the entry j would lead to a correct memory
access. The example on Figure 5 shows an expanded dictionary from
Figure 3 in which an extra entry ( 2 ) has been added. This entry’s
common features are a superset of the previous entry’s common
features: (fh, 1). Therefore, any input that matches the bit-mask
corresponding to ( 2 ) will also match a bit-mask for (fh, 1). To
correct for this, Bolt uses the entry ID of the dictionary entry when
hashing the binary sequence into the recombined lookup table.

Additionally, every table entry contains the entry ID of the dic-
tionary entry that would map to that portion of the table. When a
response is retrieved from the recombined lookup table, the entry
ID of the dictionary which produced the lookup is compared to the
entry ID in the lookup table. A response is only counted if there is a
match.

Figure 6 illustrates the process of transforming the lookup tables
of each dictionary entry into one combined table. Using the entry
highlighted in ( 1 ), the entry ID and the values of all features ( 1 )
are used to hash into another table. During inference, an input that
matches ( 1 ) will be mapped into ( 4 ), and upon comparison of
the entry ID in ( 1 ) and ( 4 ), (both equal to 3) the lookup will be
labeled a true positive. The same input, would also cause a lookup on

dict.
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2
3

dict.
IDs

(a,0)
(a,1)
(h,1)

(h,1)(e,	1)
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0			1			0			0					…								3
0			1			0			1					…
									...
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Figure 6: Recombining tables.

the entry 2 of the dictionary, however, upon hashing,the lookup will
be labeled as a false positive once it finds a mismatch in dictionary
IDs.

Using the entry ID as part of the hashing function and matching
such entry ID with the path found in the lookup table correctly
identifies false positives. This extra step highlights the need for
combining tables. Given the recombined lookup table, when erring
on imposters, Bolt bloom filters only pay the penalty for one memory
access, but after performing the memory access, Bolt can be certain
about the relevance of the lookup made.

4.4 Correctness of Bloom Filters
Section 4.3 describes how bloom filters are used to achieve fast
and correct memory accesses. Here, we present an argument for
why the described approach is correct. Recall from the previous
section that Bolt distinguishes common and uncommon features of
dictionary entries. Thus, a true positive is generated by an input
sample that matches all features in a path belonging to the dictionary
entry, not just those that are common to the dictionary entry. While
a false positive matches only the common features but does not
fully match any path in the entry. Also, recall that during inference,
a binary sequence is generated by comparing input features with
features in the dictionary entry. The hashing function takes both this
binary sequence and the dictionary entry ID as inputs, and outputs
an address in the lookup table. Thus, the approach above is correct
if true positives are always hashed to the unique path with which
all features are common and false positives are hashed into lookup
table entries that are not marked by the entry ID of the dictionary
entry that triggered the lookup.

The first condition above follows from (a) the definition of true
positive and (b) the path expansion described in Section 4.1. Note
that (a) does not suffice since the binary address produced by input
evaluation may be longer than the original path in the decision tree.
However, since all paths in a dictionary entry are expanded in the
lookup table to include all possible values of irrelevant features, one
of the lookup table entries must match input. Thus, for a true positive
input, the binary address will match that of the desired path and the
entry ID will also be identical. Since those are the only two inputs
to the hashing function, the correct lookup table entry will be found.
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The second condition - that false positives are not hashed into
lookup table entries with the same entry ID, depends on the num-
ber of conflicts of the hashing function. If many distinct paths are
mapped to the same location, then the probability that a false pos-
itive will not be identified is increased. However, it is already a
requirement that the final lookup table not have any conflicts so
that entries can be accessed quickly. Further, by design, the final
lookup table is much larger than the tables in dictionary entries. At a
minimum the final lookup table must be 2 ⌈log2 p ⌉ where p is the total
number of paths to be assigned to the table. Typically this would
be much larger than any individual dictionary entry. The probabil-
ity of incorrectly accounting for a false positive is the same as the
probability of having two distinct binary sequences mapping into the
same location, while using the same entry ID and the same hashing
function. Further, the probability of having a false positive is already
restricted by the probability of having two dictionary entries where
one set of common features is a subset of the other. Even for small
ensemble models, we found this to be unlikely.

4.5 AI Inference with Bolt Forests
Figure 7 depicts the workflow for an inference service that uses
Bolt forests. Before the inference begins, the processing engine has
access to a dictionary in which each entry corresponds to a group
generated during compression (one of the small lookup tables). Each
entry in the dictionary has a list of feature-value pairs present in the
paths of that dictionary entry. Additionally, the processing engine has
access to a lookup table (the recombined lookup table) that contains
results corresponding to each path (its data) and the dictionary entry
ID of the dictionary entry that should map to that result (used to
identify false positives during probabilistic hashing). Input data is
sent via network to a front-end. The front-end calls the inference
processing engine of each core. The inference processing engine
of each core iterates over all dictionary entries. The processing
engine performs hashing using bloom filters as described above to
avoid unneeded memory lookups. Dictionary entries with matching
values on common features trigger results lookup. The location of
the lookup table given by the bloom filter is only accessed if the
corresponding entry is located in the partition of the lookup table
that corresponds to the current core. Recall from Figure 4 that cores
may only have access to a portion of the dictionary and a portion of
the lookup table. Therefore, it is possible that the dictionary on one
core leads to a hashed location not contained in the core’s lookup
table.

If a dictionary entry on a core leads to a portion of the lookup
table not in said core, the dictionary entry is ignored by the current
core. This does not imply loss of accuracy because, if this happens,
another core is guaranteed to produce a match, so the result will be
counted in aggregation. The guarantee comes from the duplication
of the lookup table upon splitting the dictionary or viceversa. For-
mally, consider the following: Let the dictionary be split in d1, ...,dn
partitions and the lookup table in t1, ..., tm partitions. Let there be
C = nxm available cores. Suppose in some core ck with partitions
di and tj an input matches a dictionary entry located in di which
points to a location in partition tp where j , p. In this case, core
ck can safely discard the lookup because there exists a core cq with
partitions di and tp which will add the appropriate result. If the result

7

seven

input 
data

front end

inference processing

for each e in Dictionary
  d = data  e⊗ .features.key
  if (d == e.features.key.values)
    addr= data  e⊗ .features
    results.add(lookup(addr)) 

BOLT Dictionary[]

Struct Entry e 
   Features:[<1,1><5,7>…]
   Key:
     Features:[<1,1>…]
     Values:[0…]
   Collision: #FFAA33

lookup tables

Struct Result j 
         data:[5,10,8…]
         table: i

main memory storage

result aggregation

Response = mean(results)output

Figure 7: Workflow for AI inference using Bolt forest. This ex-
ample shows digit recognition where input data is a 28 x 28 im-
age.

is looked up in the correct partition, a check that the dictionary entry
ID stored in the table matches the dictionary entry that prompted the
lookup is performed. If the two ID numbers do not match, the result
is discarded as a false positive. If the ID matches, then, the result of
that lookup is saved. After looking up all relevant results (paths) in
all cores, the results are aggregated into the final output. Note, Bolt
forests provide one implementation. Alternatively, the front-end can
connect to other forest implementations. In this paper, we hypothe-
size that Bolt forests will reduce processing time, measured between
front-end receipt and aggregation output.

4.6 Discussion
Bolt uses novel data structures, i.e., dictionary entries with embed-
ded filters and lookup tables, to speed up random forest workloads.
Figure 7 depicts workflow for a standard random forest where match-
ing paths contribute equally to the output. In Section 6.3, we will
extend this infrastructure to support complex forests. For example,
deep forests [30] use multiple layers of forests to improve accuracy.
Bolt can be applied to each layer to speed up processing.

Bolt restructures random forest workloads to (1) achieve strong
cache locality (via compression, predictable dictionary access pat-
terns, and fewer main memory accesses), (2) avoid branch mis-
predictions (via bit mask operations and eschewing breadth-first
traversal) and (3) make full use of hardware available (via exploring
the space of parameters to yield minimal latency). Additionally, for
a given forest and hardware, Bolt can diagnose bottlenecks caused
by limited LLC cache capacity and too slow architectural process-
ing speed (GHz). The former occurs when storage demand exceeds
cache capacity; the latter when clustering yields too many entries
in the dictionary. This analysis makes Bolt useful for capacity plan-
ning problems, such as, given a forest workload, which processor
provides best performance and trend analysis; such as, given fu-
ture processors, what forests will achieve fast inference and local
explanation.

5 IMPLEMENTATION
The MNIST data set trained using Python Scikit-learn with 100
constituent trees can yield over 5M leaf-node results. Verbose data
layouts for lookup table and dictionary entries can inflate storage
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Figure 8: Our implementation compresses memory-mapped
data structures to reduce storage demand. Results shown are
for the MNIST data set.

demands. We implemented efficient data layouts for Bolt that (1)
compress data in memory and (2) use fast, bit-level operations for
decompression.

We implemented tools for parameter exploration that lead to par-
simonious storage demand and optimize latency given hardware and
a trained forest. Our tools iterated over three parameters: Threshold
of uncommon features per entry, table partitions and dictionary par-
titions. The threshold of uncommon features dictates the size of the
final lookup table and of the dictionary. Table partitions dictate how
many cores will be used to reduce memory demand, and dictionary
partitions indicate how many cores will be dedicated to checking the
dictionary entries. The final number of cores must be t × d, where
t is the number of lookup table partitions and d is the number of
dictionary partitions.

In all experiments we used Python Scikit-Learn to train the forests.
Given a trained tree, we converted each tree in the forest to DOT
files [9], an edge-oriented textual layout. To be sure, Python Scikit-
Learn produces binary trees by default. We implemented tools that
extracted paths from root to leaf nodes from the DOT files. We then
clustered similar paths and expanded them to create a dictionary and
lookup tables. At this stage, our tools discovered key properties of
the trained forest:

- Largest value used in binary split: While features on different
datasets can take on any value, information gain is often maximized
by splitting on relatively smaller values. Dictionary entries reserved
only enough bits for feature values to represent the maximum value
used in a split. Recall each dictionary entry must store multiple
feature-value pairs to capture paths from root to leaf node. Com-
pared to naïvely using integers to represent features and values, this
approach can save 80 bytes per entry on MNIST (see Figure 8),
for example. For other datasets, normalization and other small ad-
justments can be used to achieve the above result. For instance, the
LSTW dataset [18] contains location data for traffic incidents. North
and South coordinates only have a range of values that span 180
degrees, so, by shifting the scale (from [-90,90] to [0, 180], all of
the information can be stored in one byte without losing prediction
power.

- The largest feature set across all dictionary entries: Our implemen-
tation creates bitmaps to capture key features and their corresponding
binary value. This property determines the right size of bitmasks. Fig-
ure 8 compares against the simple approach of using Boolean arrays
(1 byte) to implement masks.

- 99th percentile results value: Most results can be represented with
few bits, but a few results can require many bits. When storing results
in the lookup table, we eschewed standard integer data types that,
while large enough to represent all results, often wasted precious
bits. Our scripts found knee-points; a number of bits that represented
a large fraction of the results. The typical result was represented
using those knee-points. Atypical results used additional space. This
approach compressed table entries by 3X.

- Dictionary entry ID: When storing dictionary entry ID in the
lookup tables, some optimizations were possible due to the specific
features of the bloom filter that we used. Since every tree was binary,
we were able to perform all operations using integers and perform-
ing bit-wise operations. Thus, as described in the previous section,
when comparing an input sample with all the feature-value pairs in
a dictionary entry, the result is a binary address (sample address).
The generated binary sequence is encoded according to the Boolean
value of the original root-leaf path of the tree (lookup address). This
address can be interpreted as an integer, thus an index of the lookup
table. The properties of this encoding are exploited by reducing the
entry ID in each lookup table’s entry to one byte per ID. Recall from
Section ?? that true positives cannot be missed by our approach
and that false negatives have a low probability of being incorrectly
considered. Also, recall from Section 4.3 that false negatives only
occur if the dictionary entry’s common features for the entry that
produced the lookup are a subset of some other entry, and the latter
is the entry in which a correct lookup would be triggered. Finally,
considering our clustering approach described in Section 4.1, entries
in which common features are subsets of each other are likely to
be adjacent dictionary entries. Thus, a false negative only exist in
dictionary entries adjacent to those in which a true positive would
occur. So, distinguishing between adjacent dictionary entries in the
lookup table is more important than uniquely identifying dictionary
entries. Therefore, the entry ID stored by the table in our implemen-
tation is just one byte (mod 256 of the original ID). This helps with
storage demands and the probability of error is kept low.

Bolt for Complex Forest Structures: Recent research has shown
that complex forest structures can improve classification accuracy.
Gradient-boosted trees, e.g., XG-Boost [8], apply weights to trees
within a forest. Bolt does not affect the training process and thus can
support gradient-boosting by simply adding the corresponding tree
weight to each path.

Deep forests, e.g., gcForest [30], use multiple layers of random
forests to learn “deep” concepts that translate to improved final
accuracy. Precisely, the output of each layer is appended as a feature
for subsequent layers. We implemented multi-layer deep forests in
Bolt. We compress each layer in isolation, creating a lookup table
and a dictionary. Since the output of latter layers depends on previous
layers, the dictionaries can be loaded sequentially. Features passed
from previous layers are appended to input data.

6 EVALUATION
In this section, we compare Bolt to competing forest platforms.
Our evaluation uses Python scripts for front-end processing. The
front-end communicates to inference processing engines on a UNIX
domain socket. Input samples are executed sequentially without
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Figure 9: Bolt execution times across different architectures.

batching and without parallelizing across samples, i.e. all cores exe-
cute at least partially, every input sample. Time is measured from the
time input samples are received to the moment inference finishes, not
including network delays. Bolt is implemented in C/C++, allowing
for low level control of data layout and bit operations. All forests
in Bolt experiments are trained, and evaluated using Scikit-Learn.
Forests are then compressed by Bolt and evaluated independently.
The code made available by Forest Packing does not allow for arbi-
trary forests as input. Instead, Forest Packing accepts pre-set forests
already included in their code. For comparison across number of
trees and tree depth, we artificially limit the number of trees and
nodes in Forest Packing by stopping after reaching the tree setting.

6.1 Datasets
We tested all of our models on MNIST, LSTW [18], and the Yelp
Restaurant Review Dataset [28]. MNIST is a common digit recogni-
tion workload. Input data to MNIST are 28 × 28 images of handwrit-
ten digits. Each pixel is a feature (784 in total). The output classifies
the image as a digit (0–9). MNIST consists of 60000 images used
for training and 10000 images used for testing. All inference results
for MNIST are reported on the performance of Bolt on the 10000
testing samples. Additionally, the Large-Scale Traffic and Weather
Events (LSTW) dataset was used [18]. Input data in LSTW is het-
erogeneous, including numeric and categorical features related to
traffic conditions. LSTW has 11 input features. The output is a cate-
gorical assessment of traffic conditions. In general, LSTW requires
more data (25M samples) and is harder to predict than MNIST (70K
samples). For prediction in LSTW, we used 700000 testing samples,
while the rest was used for training. Finally, we used the Yelp Restau-
rant Review Dataset [28]. This is a Natural Language Dataset with
5200000 user reviews on 174000 businesses from 11 metropolitan
areas. For classification, we used the review text as input and the
number of stars in the review as output. The text field was processed
to remove stop words, take word stems and tokenize into a vector
of 1500 features indicating number of appearances of each of the
most common 1500 words. Thus, the final input was 1500 numerical
features and the prediction target is one numerical feature indicating
number of stars of the review.
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Figure 10: Bolt perform better than competing approaches for
small Random Forests

6.2 Hardware
We tested Bolt on multiple processors with varying cache size and
clock frequency. Unless noted otherwise, we used an Intel Xeon(R)
E5-2650 v4 @ 2.20GHz with 12 cores, 30 MB of LLC and 132
GB of memory. We also used 2 Google Cloud instances. (1) E2-
standard-4 with 4 vCPU’s and 16 GB of memory (EC Small), and
(2) E2-standard-32 with 32 vCPU’s and 128 GB of memory (EC
Large), both running Debian GNU/Linux 10. Unless noted other-
wise, we report response time with single-threaded Bolt executing
on one core. Our default platform runs stock Linux kernel version
3.10.0, Python 3.6.8 and Scikit-Learn 20.

6.3 Results
First, we tested Bolt’s performance on one small Random Forest
with 10 individual decision trees and a maximum height set to 4.
This forest was tested on MNIST’s 10000 samples. The reported
time is the average response time in microseconds of all samples.
On this forest, Figure 9 shows how Bolt achieved a response time in
the hundreds of nanoseconds in all three platforms.

Next, we compared the performance of Bolt with alternative
approaches on the same small Random Forests. Figure 10 shows the
execution time of Bolt, Scikit-Learn, Ranger and Forest Packing on
MNIST given a modest forest with 10 trees and a maximum height
of 4, when running on one core on our default server. As shown
in Figure 10 Bolt can process samples in an average time of 0.4µs
against the 0.9µs of Forest Packing, while Scikit-Learn achieves
1460µs and Ranger 160µs. Thus, Bolt outperforms state-of-the-art
models for small forests by a factor of at least 2×.

Figure 11 shows a performance comparison of all models on
our default servers when the size of the ensemble model varies.
Figure 11 (A) shows the effect of increasing maximum depth of each
tree, while maintaining the number of trees in the forest constant.
The x-axis shows the maximum tree height setting, while the y-
axis shows the average response time. All forests have 10 trees. Bolt
outperforms Scikit-Learn and Ranger by several orders of magnitude
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Figure 11: Effects of increasing tree size in all models

on all settings. However, Bolt outperforms Forest Packing on heights
up to 8. For larger forests, the lookup tables and the dictionaries can
become too large. Even in these scenarios, Bolt outperforms other
models, but Forest Packing still performs better on deeper trees.

On the other hand, Figure 11 (B) shows a similar comparison of
different forest sizes, however, in this case, the number of individual
trees in the forest grows while maintaining maximum height constant.
In Figure 11 (B) Bolt and Forest Packing outperform Scikit-Learn
and Ranger by multiple orders of magnitude, while Bolt outperforms
Forest Packing in all settings. Bolt achieves a average response
times of 0.4, 0.5, 0.7, 0.9, 1 and 1.2 microseconds on all settings in
Figure 11 (B) respectively, while Forest Packing achieves average re-
sponse times of 0.9, 0.9, 1, 1.1, 1.3 and 1.9 microseconds. This result
not only shows that Bolt outperforms other state-of-the-art models,
but together with Figure 11 (A), it helps clarify the reasons for the
slowdown in Figure 11 (A). When the number of trees increases, the
total paths also increase, however they increase linearly. In contrast,
when the length of each path increases, a full mapping of this path
would increase exponentially. While Bolt’s data structures mitigate
this increase in memory requirement, tree mapping approaches such
a Bolt are still more affected by depth of each tree than number of
trees.

Instructions Branches taken Branch misses Cache misses

1

1000

1000000

1000000000

1000000000000

BOLT Scikit Ranger FP

Metrics of Execution Efficiency

C
o

un
t

(l
o

g
 s

ca
le

)

Figure 12: Execution metrics executing MNIST

Continuing the analysis of the causes of Bolt’s improved perfor-
mance, Figure 12 shows performance metrics that illustrate Bolt’s
effectiveness in managing cache and branching. Figure 12 shows the
total instructions, branches taken, branch misses and cache misses
on Bolt, Scikit-Learn, Ranger and Forest Packing, when running all
10000 samples of MNIST in a forest with 10 trees and a max depth
of 4.

First, Bolt executes MNIST inference in the test set with 40000
instructions versus the 110000 of Forest Packing and the orders of
magnitude higher instruction counts of Scikit-Learn and Ranger.
Thus, achieving close to a 3× improvement over Forest Packing. Fur-
ther, Bolt also reduces the total number of branches, thus showing the
efficacy of alternative data structures such as Bloom Filters to avoid
branching at every node. Bolt achieves a 2× reduction in branches
taken with respect to Forest Packing, and 6 orders of magnitude
with respect to Scikit-Learn. The reduction of total branches directly
affects branch misses, and consequently, Bolt also achieves a lower
count of branch misses (556) than all other models. A notable result,
is that the percentage of branch misses with respect to branches
taken, is highest in Bolt among all other models, despite still main-
taining a lower total of branch misses. For instance, Scikit-Learn
misses 2.2% of the branches taken, while Bolt has a 4.6% branch
miss percentage. This increase could indicate that Bolt might benefit
from a better, or more suitable branch predictor, increasing further its
advantages. Finally, Figure 12 shows the total cache misses during
inference. While both Scikit-Learn and Ranger had cache misses
in the order of millions, and Forest Packing was in the order of
1000 cache misses, on this setting, Bolt was able to achieve under
20 cache misses. This result, further highlights the importance of
Bolt’s data structures to prevent the excessive growth of the path
tables and dictionaries, as well as the importance of carefully tuning
hyperparameters to achieve the ideal settings.

Such hyperparameter tuning is explored in Figure 13. Here, Fig-
ure 13 (A) shows performance times of Bolt when parallelizing
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across different numbers of cores for a modest random forest. As
previously discussed, Bolt can parallelize not just by executing mul-
tiple trees in different nodes, or different samples in different nodes,
but also, a single sample on a single tree can be executed in paral-
lel thanks to the splitting of data structures. Here, parallelization
is done by exploring combinations of dictionary and lookup table
splits as discussed in Section 4. As demonstrated in Figure 13 (A)
parallelization can linearly reduce the execution time previously
presented, up to at least 4 cores for a small forest. Bolt can execute
the MNIST testing set in 4 cores in an average time of 0.11µ per
sample. In this setting, when parallelizing across 8 cores or more, the
overhead offsets the advantages of splitting the dictionary and the
lookup tables. For small forests, generally, splitting the dictionary
tends to be more effective than splitting the lookup tables, since the
size of the lookup tables is small enough to fit in cache.

Figure 13 (B) shows some execution times of Bolt when arbi-
trarily setting both thresholds for dictionary and lookup table sizes
discussed in Section 4. As seen in Figure 13 (B), the execution time
can vary by as much as 4× based on these parameters. This high-
lights the importance of Bolt’s hyperparameter exploration phase,
and the careful tuning of table and dictionary sizes.
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Next we show the execution times of Bolt on different datasets
representing a variety of workloads. Figure 14 shows the effec-
tiveness of Bolt’s approach on heterogenous datasets. We compare
Bolt’s performance with that of Scikit-Learn on these datasets. On
the left, we see the performance of LSTW, while on the right, we see
the YELP dataset. On both of these datasets, Bolt achieves a under
microsecond average response times for modest forest.

Finally, Figure 15 compares the performance of Bolt when im-
plementing a deep forest [30] compared to Scikit-Learn. The left
side of shows the performance of a deep forest on MNIST while
the right side shows LSTW. All of this forests are two layer deep
forests, in which the output of one forest is passed to the second
forest. Both forest also have identical number of trees and maximum
depth, differing only in the number of input features. The executions
times are higher than in Random Forests as the time to copy over
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the results and run two forests, however, we still observe single digit
microseconds execution times for modest forests. As before, Bolt
is affected by the depth of the trees, however, it still outperforms
Scikit-Learn on all deep forests.

7 CONCLUSION
Decision trees can be transformed to lookup tables to speed up
inference, but the drawback is an exponential increase in storage
demands. Random forests exacerbate storage demands by using en-
sembles of multiple trees to boost prediction accuracy. However,
they also present an opportunity: random forests benefit from shal-
low trees that use few features. Further, trees in random forests often
contain redundant paths that can be combined in lookup tables. Com-
bined with growing processor caches, many core parallelism, and
the growing demand for low-latency microsecond inference speeds,
we contend that lookup tables should be revisited. In this paper, we
presented Bolt, a platform that transforms trained random forests
into ensembles of lookup tables. The key insight is to enumerate all
paths across the random forest, cluster them, and create lookup tables
that consolidate redundant paths. Bolt manages remaining storage
demand using a novel combination of bloom filters, optimization,
lossless compression, and parallelization. It achieves faster inference
speeds than competing state-of-the-art platforms for random forest
inference and its speedups persist as ensembles grown in the number
of trees. Bolt is not the fastest platform for all forests. In particular,
Bolt’s latency degrades significantly as tree height increases, because
storage demands can not be mitigated.
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