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ABSTRACT
Unmanned aerial vehicles (UAV) are revolutionizing critical indus-
tries. Their inexpensive and accessible nature makes them useful
for a number of broad applications including agriculture, infras-
tructure inspection, and more. In response to this popularity, UAV
manufacturers, hobbyists, and researchers have developed myriad
software packages for UAV control to simplify and automate UAV
flight. Recent advances have also led to autonomous UAV that com-
plete complex missions without human pilots and swarms of UAV
that work together to solve tasks. Recently, researchers have used
autonomy and swarms to allow UAV to cover wide areas quickly
and intelligently. Few software packages explicitly support either
autonomy and swarming for UAV, and none to our knowledge
combine these features. We present early work on SoftwarePilot
2.0, a UAV software package that supports swarms of autonomous
UAV. SoftwarePilot 2.0 improves on prior work to expand microser-
vice model designs which are easier to manage using cloud-native
technologies. SoftwarePilot 2.0’s edge-efficient design allows UAV
swarms to easily scale across the edge and cloud, and supports
cutting edge autonomy techniques.
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1 INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are inexpensive and maneuver-
able IoT devices which are quickly changing key industries. UAV
can sense over wide areas quickly in 3D space, access areas too
dangerous for humans, and can act in groups as swarms to distrib-
ute tasks and learn from one another. Recent work has shown that
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UAV contribute broadly to agriculture, construction, infrastructure
inspection, search and rescue, and more [9, 10].

While UAV are conventionally piloted by humans, improve-
ments in onboard hardware and control software have led to auto-
mated and autonomous UAV flights. Open source andmanufacturer-
provided software development kits (SDKs)[4, 8], support libraries [7],
and research middlewares [2, 6, 11, 12] provide features for UAV
flight control via waypoint missions, data capture, computer vi-
sion, and even complex decision-making. Autonomous UAV flight,
where UAV make complex decisions in-mission, has been shown
to speed up some mission types and allow for new more complex
UAV missions [3].

Despite their benefits, UAV suffer from critical bottlenecks. UAVs
have short flight times due to small batteries, and limited onboard
compute capacity. To cover wide areas, distribute intelligence, and
elongate missions, UAV are often flown in swarms. Swarms of UAV
can be dispatched across wide areas, learn from each other’s ob-
servations, and work together to solve complex problems. Swarms
of autonomous UAV can accomplish complex tasks quickly and
benefit from each other’s observations.

Few software packages provide even baseline UAV swarm capa-
bilities [5]. Similarly, few packages and SDKs provide capabilities
for autonomy [2, 11]. Some provide simple computer vision rou-
tines and automated flight, but none provide support for custom
autonomy policies, computer vision, inter-UAV communication, or
swarm control. Even complex research middlewares for UAV rarely
provide native swarm support or combine it with autonomy. This
is because autonomous swarms are hard to manage and scale. Sin-
gle autonomous UAV already necessitate complex edge hardware
and resource management practices [3]. Scaling up from a single
UAV to a swarm includes not only considering resource impacts of
additional swarm members, but how those impacts compound as
members share information and learn.

In this paper, we present our adaptations to an autonomous UAV
middleware, SoftwarePilot, which provides mechanisms for cre-
ating autonomous UAV. We modified SoftwarePilot to work with
cloud-native and edge-appropriate scalable deployment technolo-
gies. SoftwarePilot 2.0 leverages these capabilities to deploy, dis-
tribute, and manage autonomous UAV swarms across edge clusters.

2 DESIGN
SoftwarePilot [2] is a UAV middleware that allows users to imple-
ment autonomous missions. As shown in Figure 1, SoftwarePilot
decouples mission code into loadable microservices called routines
and drivers linked by the SoftwarePilot API. Drivers are applica-
tion specific APIs that control UAV from different manufacturers,
supply pathfinding and AI algorithms, and manage data. Routines
are user-code that access drivers via the SoftwarePilot COaP API.
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This design already includes scalable elements. By decoupling
APIs from user code, users can load and unload drivers dynami-
cally based on their needs. SoftwarePilot’s original design did not,
however, consider a number of important management concerns
relating to UAV swarms. First, SoftwarePilot 1.0 UAVs are controlled
by a single central virtual machine on which all microservices run,
making it portable but difficult to distribute. Second, while Soft-
warePilot was made to build autonomous UAV, it was not made to
operate swarms. It includes no deployment mechanisms for swarms
across edge clusters, network overlay features, or distributed sys-
tems management software. Third, it does not include any services
for leveraging swarm intelligence.

We addressed these three shortfalls in SoftwarePilot 2.0. First,
we converted all SoftwarePilot microservices from independent
applications to Docker containers. This change is significant in that
it allows for increased portability without virtual machine overhead,
it decentralizes microservices from inside the virtual machines
where they previously ran, and allows SoftwarePilot to benefit from
existing container deployment technologies. SoftwarePilot uses
Kubernetes to deploy its containers across clusters of edge devices.
Kubernetes features allow SoftwarePilot containers to communicate
via overlay networks, set resource limitations, deploy to specific
cluster nodes, and manage the experiment lifecycle in ways that
our prior virtualization technique did not.

SoftwarePilot has also added support for UAV swarms and multi-
agent reinforcement learning (MARL). SoftwarePilot 1.0 had no
inherent way to instantiate multiple UAV and allow them to com-
municate. Using the new SoftwarePilot Swarm Intelligence API,
users can instantiate and control multiple UAV, link them to mi-
croservices, and control them via centralized or distributed pro-
gramming logic. This new API and Python package can leverage
the kubernetes overlay network to communicate with UAV control
and autonomy microservices across the cluster.

Additional swarm intelligence APIs can use this inter-UAV com-
munication to implement global multi-agent reinforcement learn-
ing policies. SoftwarePilot 1.0 implemented autonomy policies on
a drone by drone basis. SoftwarePilot 2.0 now allows users to im-
plement MARL policies on top of single-UAV autonomy policies.
MARL policies can track reward and mission progress at a global
level. They combine observations from multiple agents to make
better decisions and retrain models over time.

3 EARLY EXPERIENCES
SoftwarePilot 2.0 has been used to implement UAV swarm applica-
tions in agriculture. In Autumn 2021, we flew over 150 UAV Swarm
missions using SoftwarePilot 2.0’s MARL and swarm features over
crop fields in Ohio [1]. We used a swarm of autonomous UAVs to
sample a crop field to assess soybean leaf defoliation, an important
crop health indicator. We used SoftwarePilot drivers for the DJI
Mavic UAV combined with custom drivers for defoliation detection
using DefoNet [13]. To build an intelligent UAV swarm, we devel-
oped SoftwarePilot’s swarm intelligence APIs. We implemented
APIs for multi-agent Q-learning and online model updating which
were containerized and distributed across our edge hardware using
Docker and Kubernetes.
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Fig. 1: SoftwarePilot 2.0 adds new swarm intelligence APIs
and deployment management.

SoftwarePilot 2.0’s new swarm mechanisms are efficient. For
our deployment configuration, we found that SoftwarePilot 2.0
used 2X less energy than a swarm created using SoftwarePilot 1.0.
This was due entirely to the use of our Kubernetes management
platform which automatically duty-cycles cluster resources during
resource troughs. We also found that the addition of MARL as sped
up missions by up to 2.1X via better decision-making. In the near
future, we plan to release SoftwarePilot 2.0 as an open source project
to help facilitate the building and deployment of fully autonomous
UAV swarms.
Acknowledgments: This work was funded by NSF Grant OAC-
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