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ABSTRACT

Energy production must continuously match demand on the
electric grid. A deficiency can lead to service disruptions,
and a surplus can place tremendous stress on grid compo-
nents, potentially causing major blackouts. To manage this
balance, grid operators must increase or lower power gener-
ation, with only a few minutes to react. The grid balancing
problem has also impeded the pace of integrating bounti-
ful renewable resources (e.g., wind), whose generation is in-
termittent. An emerging plan to mitigate this problem is
demand response, i.e., for grid operators to alter the elec-
tricity usage behavior of the masses through dynamic pric-
ing. But due to prohibitively high infrastructure costs and
societal-scale adoption latencies, tangible demand response
mechanisms have so far been elusive.

We believe that altering the usage patterns of a multi-
tude of data centers can be a tangible, albeit initial, step
towards affecting demand response. Growing in both den-
sity and size, today’s data center designs are shaped by the
increasing awareness of energy costs and carbon footprint.
We posit that shifting computational workloads (and thus,
demand) across geographic regions to match electricity sup-
ply may help balance the grid. In this paper we will first
present a real grid balancing problem experienced in the Pa-
cific Northwest. We then propose a symbiotic relationship
between data centers and grid operators by showing that
mutual cost benefits would be accessible. Finally, we ar-
gue for a low cost workload migration mechanism, and pose
overarching challenges in designing this framework.
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1. INTRODUCTION

Power grid operators face a challenging balancing act. Be-
cause electricity cannot be stored cheaply, it must be gener-
ated and consumed at roughly the same time. On one hand,
grid operators must orchestrate a set of power sources to
produce enough electricity to satisfy their customers’ load.
On the other hand, if too much electricity is generated, the
excess must be disposed via inefficient mechanisms, e.g., cir-
cuit breakers. A poor decision could cause power outages,
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leading to significant economic and societal impact.

Increased green energy penetration further complicates
grid balancing. The push to integrate large amounts of re-
newable energy has led to increased development of wind
fleets and solar photovoltaic farms. Although carbon free,
wind and solar resources are betrayed by their variability
and unpredictability, which adds hardship to the balanc-
ing operation. At the same time, emerging dynamic tech-
nologies like electric cars, lithium-ion batteries, and energy-
saving appliances will likely increase electricity demand and
disrupt load predictability. This further opposes the unre-
liability of green energy. In this variable demand and sup-
ply environment, grid operators must therefore track and
respond to customer load in even greater detail and faster
response time.

An approach to reconcile variable generation and demand
is two-fold: (1) Diversify renewable resources and (2) Al-
ter the load. To understand this vision, consider this sce-
nario: Morning is settling in on Eastern U.S. cities, and their
load is increasing as expected. In response, grid operators
must ramp up generation through traditional, albeit control-
lable, methods (e.g., burning coal/gas). Still deep into the
night, distant regions to the West may be experiencing great
amounts wind with little demand. Without cheap storage,
power authorities may be forced to waste an abundance of
wind energy. Ideally in this situation, the Western-based
utilities could instead transfer their excess wind energy at a
diminished cost to the East. Likewise, when wind generation
is lowered, or when the Western U.S. increases demand, the
costs could rise accordingly. Such dynamic pricing signals
serve as a mechanism to influence load.

While this so-called demand response is a key goal for the
Smart Grid [12], its implementation has been stifled by high
costs of restructuring the current transmission network:

e The electric grid was designed to confine major out-
ages to a region, specifically, the Eastern U.S., Western
U.S., and Texas Interconnects. Links between these in-
terconnects are therefore distant and weak, resulting
in transmission loss and prohibiting the integration of
geographically diverse resources.

e To truly realize a price driven demand-response mech-
anism will take a nontrivial amount of time. Societal-
scale appliance upgrades and acceptance of changes on
electricity usage behavior are prerequisite.

We argue, however, that our current infrastructure can



potentially manage demand response with minimally inva-
sive change. Our position is that electricity demand can be
geographically distributed via large-scale data center work-
loads, circumventing the above two challenges. We can affect
demand with cost incentives to migrate massive amounts of
computation across geographically disperse data centers.

Myriad data centers support a substantial portion of the
Internet’s infrastructure and operations. Due to their grow-
ing number and density, the Department of Energy has rec-
ommended a 10% power reduction in today’s data center
operations [21]. In response to this call, recent research has
focused almost unilaterally on minimizing the data center’s
operational costs. Energy-aware advancements, including
low-power multicore architectures, virtualization, and cool-
ing techniques now permeate modern data center design.
Data centers have also begun purchasing green energy cred-
its to further reduce their overall carbon footprint [13, 15].

Studies as recent as 2011 have shown that the roughly
6000 data centers in the U.S. consume anywhere from 80
to 120 billion kilowatt-hours (kWh) per year, i.e., 2.2% to
3.5% of all electricity use [30, 19, 20]. Because data centers
can command great amounts of energy, we propose shifting
power load geographically by migrating computation across
data center locations. We believe that a massive, but low-
cost, compute migration will not only lower costs for both
data centers and electric utilities, but also increase the rate
of variable green energy integration.

The remainder of this paper is organized as follows. Sec-
tion 2 describes a real-world grid balancing problem in the
Pacific Northwest. We present the motivating cost benefits
in Section 3 and explore initial technical challenges in Sec-
tion 4. Related works will be discussed in Section 5, and we
will conclude in Section 6.

2. MOTIVATING PROBLEM AT BPA

The Bonneville Power Administration (BPA) is a federal
power marketing giant, regulating a diverse set of power
sources (hydro, wind, thermal/nuclear) in the Pacific North-
west [9]. Just this year (March 2012) the BPA announced it
had integrated more than 4000MW of wind power from pri-
vately owned wind farms, collectively known as a wind fleet,
hoping to market their energy to the public. The fleet’s out-
put is predicted on an hourly schedule, but due to imperfect
prediction models, the BPA must be ready to balance the er-
ror margin, forcing incremental and decremental reserves to
be running on standby, which explains the inherently higher
costs of wind energy [1].

Within the hourly schedule, the BPA can ramp up an
incremental reserve to reconcile a wind deficiency. To com-
pensate for a surplus, operators must call on a decremental
reserve (e.g., its control over 30+ hydroelectric dams) to off-
set unexpected increases in wind production [3]. Decrement-
ing is done by spilling water over the dam instead of passing
it through the turbines. While spilling has been an effec-
tive strategy, it is far from optimal in terms of costs. Here,
wind energy would be offsetting an already green resource
(hydro), but a deep environmental concern also looms: The
spills can hurt the salmon fish population and consequently,
the broader ecosystem [3].

With increasing numbers of wind farms requesting for
BPA interconnection, this problem’s urgency has reached
a boiling point, and BPA’s Wind Integration Team must
seek tangible solutions to this problem.

3. COST ANALYSIS

We argue that myriad data centers, which are distributed
and significant contributors of demand, can work in concert
with local electric utilities for mutual cost and environmen-
tal benefits. In this section, we model the utility and data
center costs in a workload migration environment. We em-
phasize that our preliminary models are simplistic, but can
nonetheless communicate the cost benefits at a high level.

3.1 Modeling Utility Cost

We will first show that the workload migration framework
would be economically beneficial to electric utilities. Let
us define the Regular Operation at an electric utility U as
follows. Assuming demand at time ¢ can be interpreted as,

Dy = wy +wy (1)

where w; and w; denote wind and non-wind energy respec-
tively, generated at time ¢. Suppose that R is the price
charged to consumers for 1 MWh of energy, and C\,, and Cw
represent the cost to produce 1 MWh of wind and non-wind
energy, respectively. Utility U’s profit can be expressed as
the revenue minus cost of operation,

Py(t) = Revy(t) — Costy(t) (2)
= Rx (’lUt —&—117) — (Cw X Wi +CWXW+Q(At))

where Q(A;) denotes the overhead cost to run incremen-
tal/decremental reserves on standby to balance |A;] MWh
instantaneously. For simplicity, we will assume that 2 mono-
tonically increases over |Ay|.

Now suppose at time ¢ + 1, wind energy production w41
is displaced by A,, MWh, and demand also changes by Ap
MWh. We express the true displacement at ¢t + 1 as,

At+1 = Aw - AD
= (wer1 —we) = (Deg1 — Di) 3)

As wind energy ramps up or down at ¢t + 1, we may have to
displace Ap MWh of change in demand. The utility’s profit
at t + 1 is defined as,

Py(t+1)= Revy(t+1) — Costy(t+1)
= Rx (we+wi+ Ap) —Costy(t+1) (4)

where

Costy(t+1) = (5)
Cw X wiy1 + Cw X (W — Ayr1) + Q(Asg1)

The utility’s profit Py (t+ 1) is constrained by the overhead
cost of Q(A¢41). Specifically, when A;4q1 # 0, then an im-
balance exists, and we must either ramp up or lower the
reserve power by |A¢11] MWh. Notice that in this model,
we also affix the same overhead costs for a decrease in gen-
eration. The intuition is derived from a waste of otherwise
profitable resources. As mentioned in Section 2, the BPA
can spill water over its dams instead of turbines to lower
generation. The waste of A1 MWh of hydro in this case
is also viewed as an overhead cost of Q(A;4+1) in our model.

In general, the electric utility cost optimization problem is
simply to minimize 3"'7} Q(A;). Because Q is an increasing
function over A; and Ay — 0 = Q(A;) — 0, our approach
seeks to eliminate A; by providing a conceptually new ap-
proach for a grid operator to balance energy on the grid:
Migrating some resident data center load to a non-regional



compute location and reducing electricity demand. Con-
versely, compute load can be brought near the utility when
there is a surplus of wind energy.

If we let A’ denote the amount of energy migratable as
workloads across data centers, then electric utilities have
two ways to curtail costs:

e When Asy;1 < 0 (i.e., wind production decreases and/or
demand increases): We reduce local demand by A’
to circumvent the overhead cost to generate the extra
A¢41 incremental reserve energy.

e When Asy1 > 0 (i.e., wind production increases and /or
demand decreases): We can add to local demand by A’
to reduce the overhead of wasting decremental reserve
energy.

The utility’s operational cost at t+1 with migration (U Mig)
can now be altered as follows,

COStUMig(t + 1) - (6)
Cuw X wig1 + Cw X (Wi — (A1 — A"))
+ QA1 — A,)

3.2 Mutual Cost Benefits for Data Centers

Data centers, on the other hand, share the same goal of
reducing total operational costs. To entice data centers to
buy-in on the demand-response mechanism, electric utilities
must use dynamic price signals. Suppose we have a data
center DC' consisting of a set of n geographically disperse
locations DC' = {u1,uz,...,un}. Furthermore, each data
center location u € DC' is associated with its own demand
dw(t) and cost R, for 1 MWh energy from its local utility.
The total cost of operation for DC' at time t can be defined
as,

> Ruxdu(t) (7)

ueDC

Costpc(t) =

Suppose the electric utility nearby data center u experiences
a power deficiency and signals for an € increase in pricing
per MWh. The rise in costs may encourage a transfer of A’
MWh from u to its remaining data center sites, DC — {u}
at t + 1.* The aggregate cost of DC at t + 1 would be,

Costpo(t+1) = (Ru +¢) x (du(t) — A') +

> Rux(do(t) + AL+ C (Work(AY))
veDC—{u} u

(8)

where A/ denotes the fraction of A’ that a remote data
center v must offset, and Work(x) is the amount of compu-
tational work equivalent to £ MWh. The migration cost,

C (Work(A,)) = (9)
Cs(u) + Chet(Work(AL)) + Cs(v)

Clearly, for migration to be economically sensible on either

end of the utility and the data center, the following condi-
tions must be satisfied:

COStU]uig(t + 1) < COStU(t + 1) (C—l)

Costpc(t + 1) < Costpc(t) (c-2)

*Due to space limitations, we only show one direction of
migration, but the reverse would be similar
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Figure 1: Demand Response Data Center Manage-
ment Framework

For Condition C-1 to hold, we observe that Costynrig(t+ 1)
can be minimized when the utility displaces A’ approaching
true displacement A;41. This would not only require timely
and accurate wind prediction models, but also, the utility
must make sensible pricing adjustments to lower the risk
of a loss in revenue [24]. Condition C-2 requires that the
staging costs (Cs) and data transfer costs (Chret) between
the migrating data centers, both functions of time, be trivial.
Moreover, the change in price, €, issued by the utility must
also be significant to encourage the migration process. The
function to distribute work A, among the destinations, and
the relationship between Work and energy would also affect
Condition C-2.

These models provide an analytical basis for our intuition
that we need systems where the data transfer cost is ez-
tremely low, while the amount of work migrated is high.

4. LOW COST WORKLOAD MIGRATION

We envision the Demand-Response Data Center Manage-
ment Framework, shown in Figure 1. We will present a high
level description of the framework’s major functionalities.
The Physical Layer of our data center refers to the infras-
tructure, e.g., machines, lighting, cooling, etc. We could
measure energy demand at both coarse-grained (building
phase) and fine-grained (rack or machine PDU) levels. The
Application Layer for each data center refers to the compu-
tational components. The unit of migratable computational
Work can be defined at this level. The type of work of in-
terest should be both spreadable and malleable, i.e., easily
consolidated, dispersed, and/or scaled. We will revisit the
applications later in this section.

Each data center will associate an FElectric Utility which
dynamically signals its unit-energy price. The Power Man-
ager is responsible for minimizing cost from the global sys-
tem perspective by handing down power scaling decisions
(i.e., A") to participating data centers. It monitors the util-
ities” dynamic price signals and the power state of each data
center.

The Resource Manager in each data center must decide
on how to increase or decrease power demand. For instance,
to increase usage, a data center could turn on a set of ma-



chines and redistribute its work. Conversely, decreasing us-
age might be done by consolidating existing work onto a
smaller set of physical machines. When consolidation is in-
feasible, then the data center should determine a candidate
set of work to migrate.

For our approach to be viable from both stakeholders, to-
gether with BPA grid operator personnel, we have identified
following key questions:

Can data centers really affect large scale electricity
loads? An influencial 2009 European study [2] on wind
energy estimated that power reserve requirements would be
on the order of 2% to 4% of installed wind capacity. At
BPA, 4% of 4000MW of integrated wind energy would be
roughly 160MW of reserve energy. Suppose we only consider
Google’s data centers, in which Koomey’s 2011 report [20]
estimated 220MW of average consumption. It suggests that
migration could reduce power reserve usage, and potentially
lowering costs of wind energy. We concede that this is far
from provable, and further investigation is needed to support
this speculation. Power system experts have indicated that
our approach must eventually scale to the GW range, which
is currently beyond the capacity of simply data centers.

‘What is the relationship between energy and com-
putational Work? Recent works have shown that power
usage and computation share a non-trivial relationship [17,
5, 29, 25, 27]. Further understanding this relationship and
the particular applications that influence power is impera-
tive for our proposed paradigm. Clearly, the work distri-
bution function for the participating data centers would be
closely related.

How do we measure the success of the workload
migration paradigm? We will have access to BPA’s live
and historical data pertaining to power generation (hydro,
wind, thermal) and consumer demand. The data shows in-
stances of when balancing occurred, and for how long. Be-
low, we consider several data center applications, and how
the answers to these questions vary with each.

How quickly must the workload transfer take place?
From our interviews with BPA personnel, in the worst case,
their facilities can wait up to approximately 10 minutes be-
fore tapping the power reserves. Our migration approach
must consider fast transfers of work. We consider the fol-
lowing pervasive data center applications.

Map-Reduce: By itself, a single Map-Reduce instance ap-
pears to be a poor candidate for grid balancing. Hav-
ing to pause and restart computation elsewhere re-
quires transferring massive amounts of state, that is,
Work(A’) can be high. However, emerging distributed
Map-Reduce environments that can collectively process
subsets of data shared on a remote host (e.g., a data
cloud) can be considered [10]. Because Map-Reduce
is idempotent, scaling computational nodes up/down
on various data center locations would have no effect
on final results. With proper coordination, this can
potentially drive Work(A') to be small.

Simulation: Large-scale simulation is characterized by low
input with high computational requirements leading
to significant electricity demand. Combined with the
ability to pause and restart execution with relatively
low amounts of saved state, e.g., small Work(A') trans-
ferred, makes simulation an excellent candidate for
electric grid balancing. We would, however, expect

a complicated staging time, as the simulation software
must already be resident at all locations. This may
mean having to boot up many virtual machine images
at the receiving data center locations before restarting
the simulation, which can take time.

Elastic Cloud/Web Services: Cloud computing has ex-
ploded in popularity. At peak loads, cloud services
represent a significant electrical demand and may be
effective in grid balancing. However, cloud workload
demand is tantamount to electric demand: customer-
driven and variable. During low periods in the end-
users’ request rates, the electrical demand will decrease,
making migration less effective. Moreover, even with
advancements in live migration [18], Work(A') must
capture a large amount of machine state. Another key
challenge is quelling disruptions in service level agree-
ments during migration [4]. Web services, which are
stateless, may be more plausible than VM migration.

With BPA collaboration, we will deploy the migration
framework over large-scale clusters at Washington State Uni-
versity and the Ohio State University as our initial dis-
tributed data center testbed. We will evaluate our approach
using BPA’s historic generation and demand data sets on
these three types of applications.

S. RELATED WORKS

The emergence of energy-aware and energy-efficient “green”
clouds [8, 23, 7, 6, 11, 28] has generated much excitement
in systems research circles. Particularly, these refer to cloud
infrastructures which strive to be energy-aware by leverag-
ing the use of VMs and, particularly, their migration, while
meeting performance requirements.

Nathuji and Schwan proposed VirtualPower to flexibly
manage power in a virtualized data center [25]. They showed
that a combination of soft scaling, hard scaling, and VM
consolidation can be leveraged to provide viable power man-
agement in a data center. Liu, et al. proposed the Green-
Cloud architecture, which combines online monitoring of
physical resources with a technique for finding power-saving
VM placements [23]. They modeled VM migration time,
energy consumed, and physical server load as a function of
cost. Le, et al. consider VM placement in a cloud environ-
ment for high performance applications [22]. The authors
propose policies for VM migration across multiple data cen-
ters in reaction to power pricing. More recently, Goiri, et
al. proposed GreenSlot [14], a solar power-sensitive schedul-
ing algorithm for data center workloads. The authors ar-
gue that “the ideal design for green datacenters connects
them to both solar/wind energy sources and the grid (as a
backup).” GreenSlot was shown to reduce data center costs
and increase green power consumption.

More related to our work, Rao, et al. sought to minimize
overall costs for multiple data centers located in disparate
energy marketing regions [26]. Akoush, et al.’s Free Lunch
architecture for cloud data centers shares several aspects
of our goals [4]. The authors argue for either pausing VM
executions or migrating VMs between sites based on local
and remote energy availability. The Canadian-based Green-
star Network provides similar efforts toward developing in
green load-following carbon protocol [16]. Liu, et al.’s geo-
graphical load balancing matches very closely to our goals



[24]. The authors assume a general Internet service-request
workload for data centers located in various geographical
regions. They proposed distributed algorithms for minimiz-
ing aggregated costs by solving for an optimal number of
active servers per data center and a load balancing policy
(request routing). In contrast, we further model the util-
ity’s overhead cost grid balancing, and our work distribu-
tion framework considers mass migration of several classes of
data center workloads. We also argue for a loosely-coupled
integration of data center and grid operations influence elec-
tricity supply and demand. Our workload migration model
must meet time and energy objectives, set externally by grid
operators.

6. CONCLUSION

Due to their variable production, green energy integration
is a tremendous challenge for utility operators to match de-
mand with supply. In this paper we posit that data cen-
ters, which are growing increasingly dense and notorious
consumers of energy, can be used to influence electricity de-
mand. We argue to the contrary of current research direc-
tions that increasing the data centers’ power consumption
can also be beneficial helpful in reducing environmental im-
pact. We have presented initial models that show the mutual
cost benefit for both utilities and data center operations. We
will work directly with the Transmission Services team at a
federal electric marketing unit, the Bonneville Power Ad-
ministration (BPA), to solve real-world power management
problems in the Pacific Northwest.
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