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Abstract: Digital agriculture employs artificial intelligence (AI) to transform data collected in the 1

field into actionable crop management. Effective digital agriculture models can detect problems 2

early, reducing costs significantly. However, ineffective models can be counterproductive. Farmers 3

often want to validate models by spot checking their fields before expending time and effort on 4

recommended actions. However, in large fields, farmers can spot check too few areas, leading them 5

to wrongly believe that ineffective models are effective. Model validation is especially difficult for 6

models that use neural networks, an AI technology that normally assesses crops health accurately but 7

makes inexplicable recommendations. We present a new approach that trains random forests, an AI 8

modeling approach whose recommendations are easier to explain, to mimic neural network models. 9

Then, using the random forest as an explainable white box, we can 1) gain knowledge about the 10

neural network, 2) assess how well a test set represents possible inputs in a given field, 3) determine 11

when and where a farmer should spot check their field for model validation, and 4) find input data 12

that improves the test set. We tested our approach with data used to assess soybean defoliation. 13

Using information from the four processes above, our approach can reduce spot checks by up to 94%. 14

15
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1. Introduction 17

Digital agriculture is the fourth revolution of agriculture wherein sensors, computation 18

and artificial intelligence (AI) improve crop management, increasing yield. A common 19

objective in digital agriculture is the early detection of signs of pest infestations. Unmanned 20

Aerial Vehicles (UAVs) can fly over whole fields and capture images of crops [1–3]. Then 21

digital agriculture machine learning models can infer crop health from captured images. 22

For example, state-of-the-art neural network [4] architectures can recognize defoliated 23

leaves, a sign of infestation, appearing in aerial images [5]. Neural network models are 24

increasingly common in digital agriculture because they can achieve greater classification 25

accuracy than competing machine learning (ML) models [5]. However, the process that 26

neural networks employ for classification involves complex, non-linear transformations 27

on a multitude of variables and require large amounts of data inputs [6]. It is difficult to 28

explain the behavior of neural network models, i.e., why the models label images the way 29

they do. Other ML models, such as decision trees [7], use salient features within an image 30

to make predictions. The behavior of these models are easier to explain. Decision trees can 31

also achieve high accuracy in some cases, particularly when using bagging and boosting 32

techniques to create ensemble models [8–11]. 33

However, in digital agriculture a finely tuned neural network still outperforms ensem- 34

ble models [5]. When neural networks underlie digital agriculture models, farmers must 35

trust the model without knowing how the model works. At best, farmers may see that the 36

model performed well on other fields (test datasets), but they have little assurance that the 37

model is working correctly on their field. This is particularly important when considering 38

that many models are vulnerable to under and over-fitting and to biases in training and 39

testing. 40
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Ideally, farmers deciding to use a particular model in the field would be able to 41

evaluate both the model and the datasets used to provide performance metrics of the 42

model. Therefore, the farmer would want to: 43

1. Look at predictions made by the ML model and then go to the location of said 44

prediction and evaluate its accuracy. This requires an understanding of how many 45

images need to be observed to have a representative idea of model behavior, which in 46

turn requires an understanding of how well does a set of images cover all possible 47

inputs in a field. Ideally, the images to be observed would be representative of the 48

whole field while being as few as possible. 49

2. Assess how representative a test set is of a whole field. This is particularly important 50

for identifying biases in a dataset. For instance, if all images on a field were taken 51

at a certain time of day, maybe the model can learn to focus on a specific side of the 52

image. A test set with the same bias would lead to high performance while the model 53

would be likely to under-perform in practice. Results using a test set in which all 54

features of the input are relevant are more likely to be representative of in-practice 55

performance. Thus, measuring feature coverage can be an indication of the quality 56

of a test set. Feature coverage also may be adjusted depending on the rigor needed 57

by the farmer. A farmer could consider unnecessary that all features of a dataset are 58

relevant and instead focus on the relevance of different regions of adjustable size. A 59

model providing this representation assessment should adapt to different levels of 60

quantization. 61

3. Add images to the test set, if necessary, so that the test set is more representative. This 62

requires quantification of how representative is a dataset and how much does one 63

input contribute to the overall representation. 64

4. Evaluate the type of features of the input that make the model predict a certain result. 65

While a perfect understanding might not be possible, an approximation is still useful 66

for the farmer when making a decision. Using a separate interpretable model that 67

learns from the original might lead to some additional knowledge on the original 68

model. 69

We propose an approach that can achieve all four of these goals. Our approach starts 70

by training a random forest [12] on the output of the neural network, i.e. the labels of 71

the training set are the neural network prediction as opposed to ground truth. While this 72

approach does not guarantee the random forest will output the same predictions as the 73

neural network, it can provide hints on the neural network behavior. Then, we consider 74

how the random forest uses the features available to its trees. Here features correspond to 75

pixels or regions in the input images. We consider how many of the images of the test set 76

are needed until all the features are used at least once. Expectations on how many images 77

should be seen are given as lower and upper bounds by solutions of the coupon collector 78

problem [13]. 79

This approach allows farmers to know how many images must be seen until the model 80

has considered all areas of all images, which gives an indication of how many images to see 81

in the field so that the predictions of the model are evaluated in different scenarios. Further, 82

understanding which images provide the most value can reduce the set of images to be 83

observed. Simultaneously, the number of images needed in the test set to see all features 84

indicates how well the test set represents all possible situations that could occur on the 85

field. A test set in which more images are needed than those expected given the solution of 86

the coupon collector problem probably is an unbalanced test set in which too many images 87

share the same features. Additionally, an understanding of feature coverage given a set 88

of images also provides information on what features are missing. Consequently, if a set 89

of features is not present in a dataset, this approach indicates what features need to be 90

present in additional images so that the feature coverage is complete. Finally, given a set 91

of images, a random forest can indicate which features are relevant for the inputs [14–16]. 92

While this is not a perfect correlation with feature importance on a neural network, if the 93
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random forest approximates the neural network closely enough, the features used by the 94

forest might give insights on the behavior of the neural network. 95

We tested our approach using DefoNet [5] and a set of images taken by six UAV 96

missions conducted in August and September of 2020 in five soybean fields in Wooster, 97

Ohio, U.S. We ran DefoNet on the set of images and recorded its predictions. Then we 98

trained a random forest using DefoNet predictions as the class labels. We observed that 99

our approach satisfied all goals described above while achieving a reduction of over 94% of 100

the set of images that provide a full feature coverage with respect to the amount of images 101

given by random selection. 102

2. Overview of System Proposed 103
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Figure 1. Overview of our approach. Images and the expert labels are used to train Defonet. Then
the same images are given to DefoNet to generate new labels. A random forest is trained with those
images and DefoNet’s output

Figure 1 gives an overview of our approach. First, images and expert generated labels 104

are used to train a neural network (DefoNet in this case). Then, the same set of images are 105

classified using DefoNet to produce another set of labels - the classifications of the neural 106

network. The output of the neural network might differ from the expert generated labels, 107

i.e. unless the neural network achieves 100% accuracy on the training set (which is typically 108

undesirable as it signals over-fitting), the model will err on some inputs. Nonetheless, 109

because the goal is for the random forest to learn the function of the neural network, the 110

forest is then trained using the output of the neural network as labels, instead of the true 111

labels. This produces a random forest trained to classify the output of the neural network. 112

If the forest is trained effectively the forest will approximate the outputs of the neural 113

network and the interpretation on forest classification could be indicative of what the 114

neural network may be doing. 115

By following this technique, the four goals described above can be achieved. An 116

interpretation of the neural network model can be obtained by running classification on 117

a random forest. While there is no guarantee that feature importance will be the same 118

in both models, the random forest can give a good indication of how the neural model 119

works. A reasoning for this claim is provided in section 3.4. This approach also allows for a 120

method to quantify the coverage of a dataset, section 3.5 discusses this method. The ability 121

to add images to a dataset and to find a minimal set of locations to spot check are direct 122

consequences of the method described in section 3.5. 123

An added benefit of this approach is that the resulting random forest could potentially 124

be used as a stand-alone model and outperform a random forest trained on ground truth 125

data. Decision trees are vulnerable to over-fitting due to noisy data. Since trees can split 126

the input space indefinitely, they might learn data divisions that do not correspond to 127

meaningful differences. While random forests are more robust, they still might under- 128

perform if input data is inconsistent. However, the output of neural networks, due to 129

their structure, must be a function in the strict mathematical sense, i.e. outputs of the 130

neural network will be consistent. Thus, the training data that uses the outputs of a neural 131
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network would not contain any noise. A random forest trained from noiseless data could 132

potentially perform better on the test set predicting ground truth. However, this is a 133

potentially beneficial consequence of our design, but not a part of the original design. Thus, 134

for online predictions, we still rely on the neural network model and use the forest for the 135

purposes described above. 136

3. Materials and Methods 137

3.1. Dataset 138

Healthy plants Defoliated plants

Figure 2. Example of images in the dataset. Images on the left are labeled healthy, while those on the
right are labeled defoliated [5].

The images used for our experiment are the same images as the training set for 139

DefoNet [5]. Figure 2 depicts some of the images of the dataset. The dataset consists of 140

97, 235 images taken by six UAV missions conducted in August and September of 2020 141

in five soybean fields in Wooster, Ohio, U.S. The images are all 108x108 pixels and are 142

labeled healthy or defoliated if they show more than 10% defoliation. All images were 143

expert labeled. For training and testing the model we separated all 97, 235 images into a 144

training set (with 87, 182 images) and a test set (with 10, 213 images). Both sets preserved 145

the same proportion of positive (defoliated) and negative (healthy) samples. 146

3.2. Neural network model 147

Input images

x8

Convolution
layer

ReLU
Activation

Normalization Max Pool Dropout Output

Figure 3. Architecture of DefoNet [5].

Neural networks [4] are popular ML models used for classification. They use one 148

or more layers of functions to produce a classification output. If a neural network with 149

multiple layers uses at least one convolution layer, then the network can be referred to 150

as a convolutional neural network (CNN) [17]. CNNs perform better in computer vision 151

tasks [17]. For our neural network we used DefoNet [5] which is a fine tuned CNN designed 152

to perform well on defoliation recognition. Figure 3 illustrates the architecture of DefoNet. 153

In Defonet, the inputs are images of 108x108 pixels. These inputs are then passed through 154

8 convolutional layers all with 3x3 filters. Layers have varying number of filters (from 32 155
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to 128). After each convolutional layer, there is a ReLU activation function, followed by 156

normalization and pooling layers. Finally, there is a dropout layer before a fully connected 157

layer which gives the output. 158

3.3. Random Forest training 159
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Figure 4. Example of a random forest

Decision trees [7] are ML models that classify inputs by repeatedly separating input 160

samples based on the values of certain features. Decision trees learn these splits by con- 161

sidering potential information gain splitting at each feature. While effective, this method 162

is vulnerable to over-fitting and to noise in the input data. A random forest [12] is an 163

ensemble of decision trees in which every tree has access to a different subset of samples 164

and features during training. Figure 4 illustrates an example of a random forest with four 165

decision trees. Features available to the trees are labeled f.a through f.g. Each tree uses 166

a different set of features although they share some commonalities. This example uses 167

binary classification ("yes" and "no") although the structure can be generalized for more 168

classes, trees and features. During testing, each tree in the forest contributes a vote (the 169

classification of the tree) and results are aggregated to produce a classification for the forest. 170

We trained a random forest using Python Scikit-learn [18] - the most widely used 171

framework for random forests - with 20 trees each with a maximum depth of 20. All other 172

parameters were the default parameters. To train the random forest we used the dataset 173

described above but instead of the expert-generated labels, the labels given to the random 174

forest were the outputs of DefoNet on the same set of images. The result is a random forest 175

classifier trained to predict the behavior of DefoNet. 176

3.4. Characterization of a neural model through random forests 177

Neural networks use a combination of linear and non-linear layers to produce a 178

classification [19,20]. This classification is a composite function on as many dimensions as 179

features has the input. On the other hand, decision trees split the input field using lines 180

perpendicular to the axis of each feature [21–23]. While this is a fundamental difference 181
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in how models operate, so is the difference between Riemann sums and definite integrals. 182

Geometrically both situations are analogous. Nonetheless, it is a well known idea that 183

Riemann sums can calculate the value of definite integrals [24]. Similarly, with sufficient 184

input, a decision tree could exactly match the function produced by a neural network. Thus, 185

others have considered before the idea of extracting information from a neural network 186

into a decision tree [25–27]. However, in the case of Riemann sums, an infinite sum of 187

infinitesimal areas is required for the value to match exactly that of a definite integral. 188

Analogously, the amount of input needed to guarantee that the output of the decision 189

tree exactly matches that of the neural network might be prohibitively large. For this 190

reason, others have argued that the explanation of the neural model using a decision 191

tree is not necessarily faithful [28]. While increasing input samples might not be feasible, 192

increasing the number of trees can produce a better approximation as this also achieves 193

more splits over the input space. Thus, a random forest could give a closer approximation 194

of the function of a neural network. To be sure, random forests are harder to explain than 195

individual decision trees. However, they maintain enough interpretability to provide a 196

good idea on how the model works. 197

3.5. Quantification of feature coverage 198
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Figure 5. Example of feature coverage when considering individual pixels on an 8x8 image. Pixels in
red are used for classification.
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Figure 6. Example of feature coverage on the same input as Figure 5, but considering only whether
any pixel in any of the four regions is used.

ML models are vulnerable to learning particularities of their training set [29]. This is 199

particularly dangerous when many samples in the training set have features in common. If 200

the same features are relevant for classification in every sample of the training set, the model 201

can learn to focus on those relevant features and ignore others. This is not a problem when 202
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other features are irrelevant in practice, however, if the ignored features are relevant in the 203

inputs after the model is deployed, this can lead to decreased performance. Particularly, 204

with images, models could learn to give higher importance to areas of the image that are 205

key for classification. For aerial field images, certain areas of the input could have higher 206

importance due to factors like drone position, sun orientation, shadows, etc. For example, 207

in a field that is mostly healthy but with a small defoliated area, drone images taken from 208

similar positions would show the defoliated areas on the same side of the image, leading 209

the model to ignore other groups of pixels. 210

This manifests differently in different kinds of ML models. In neural networks, un- 211

derstanding whether a feature is used or not might not be possible. Saliency maps [30] 212

compute feature importance, but the outputs are real numbers. Low numbers could indi- 213

cate that a feature is not used, but this is not precise nor guaranteed. On the other hand, 214

random forests can directly and unequivocally output the features that are used to make a 215

prediction. 216

Figure 5 and Figure 6 show two examples of the feature usage output by a random 217

forest. Figure 5 uses an 8x8 image instead of the 108x108 for clarity. In Figure 5, any time a 218

pixel is used in any node of any of the trees, the pixel is marked as used. Pixels in red are 219

marked as used. Figure 6 on the other hand, uses the same image as input, but here, the 220

output does not have the same level of detail. Perhaps a farmer is only concerned about 221

whether every region of the image is used for classification. In Figure 6, there are only 4 222

regions and the output is which of the 4 regions are used. Since the random forest is the 223

same, the regions in Figure 6 correspond exactly with the location of the used pixels in 224

Figure 5. Thus, the bottom left region is not used because no pixel from that area was used 225

in the 8x8 image. 226

Ideally, models would make use of every feature available to them if the input requires 227

it. Specially, in the case of an aerial image, every pixel has the same probability of being 228

the location of defoliation. Thus, with a sufficiently extensive dataset, all features should 229

be used at least once. This can be used as an indication of how representative is a dataset. 230

However, depending on the rigor needed, measuring the usage of all pixels might be too 231

much. Potentially, separating the input in regions would indicate the presence of shadows 232

or the concentration of defoliation on the same area and require less input. Thus, the feature 233

coverage should be adaptable to different levels of quantization. Further, evaluating feature 234

coverage in the test set is more meaningful than in a training set. If a model uses all features 235

in the test set, that means the training set was diverse enough for the model to not only use 236

all features but learn their importance. We used a random forest to measure the feature 237

usage of the model on the test set. 238

3.5.1. Boundaries 239

Evaluating if all features are used at least once might not be enough to assess a test set. 240

If there is only one image that uses a certain feature, if that image is misclassified, accuracy 241

could remain high. Thus, measuring feature usage against some expectation might be more 242

informative. 243

An indication of how many images are required to use all the features in the input 244

is given by the coupon collector problem [13]. This is a classical problem in which the 245

collector randomly collects coupons until all n distinct types of coupons are collected. In this 246

setting, the probability of collecting a certain coupon is constant, regardless of previously 247

collected coupons. So, some duplicate coupons are expected. The solution to the coupon 248

collector problems gives an expectation of how many trials are required until all coupons 249

are collected. If all coupons have the same probability of being collected, then the expected 250

number of trials (E[Yn]) is: 251

E[yn] = n
n

∑
i=1

1
i

. (1)
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This is, however, less than the number of trials if the probabilities of every coupon are 252

not identical due to increased probability of repetitions. In our approach, a trial consists 253

of a visit to a node in any of the trees of the forest. A collected coupon corresponds to a 254

previously unseen feature. Since decision trees are not structured to be random, features in 255

our model do not have the same probability of appearing. E.g. root nodes of every tree in 256

the forest have a 100% probability of being collected in the first trial of a sample. So, we 257

take the previous result as a lower bound on the number of images that need to be seen. 258

Alternatively, instead of assuming every visited node on any sample has the same 259

probability of giving a feature not previously used, we could assume that every image is 260

slightly different than the rest and that each new image would use exactly one new feature. 261

A dataset in which this was true would have very good feature coverage but it is unrealistic 262

as images are likely to differ in more than one feature, and even if they do differ in exactly 263

one feature that feature might not determine the classification of said input . However, as 264

an average this is a useful metric. If in a dataset all images on average added less than one 265

feature, that would mean the dataset has too much repetition. Here, we can consider again 266

the coupon collector problem. In this instance coupons are still features, but a trial is a new 267

sample image. Using the same formula as above, we have an upper bound for the number 268

of images to be seen before all features are used. 269

3.5.2. Application 270

The dataset we used consists of images that are 108x108 pixels. Thus, we had 11, 664 271

features to track. Using our random forest, we measure how many images need to be 272

classified before all 11, 664 features are used at least once by the model. I.e. for all features 273

f , we find a sample s such that while classifying s, some tree of our random forest splits the 274

inputs based on the value of f . 275

Using the bounds defined in the previous section we can compute the number of test 276

samples required to use every feature. If the number is above the upper bound, that can 277

indicate an unbalanced dataset. Further, this result can indicate to a farmer where to go 278

on the field to evaluate the model predictions with a guarantee that the proposed set of 279

images would provide full feature coverage, so, a full evaluation can be made. To be sure, 280

the number of images to be visited might be very large. This can be reduced by relaxing 281

the constraint on the model using every pixel and replacing it with using a pixel in every 282

region. This allows for the definition of arbitrarily small regions and finding a set of images 283

in which every region is relevant. This method can significantly reduce the number of 284

locations on the field to visit and provides a tunable parameter for rigor. 285

Finally, this method can identify which features are less common in the dataset. If the 286

dataset was judged to not cover the field well, then using the proposed approach we can 287

identify which of the characteristics of images that need to be added so that the dataset 288

becomes representative. 289

3.6. Producing a minimal observation set 290

Because random forest can highlight the set of features used in each sample, when 291

finding the number of samples that have to be visited so that all features are used, our 292

approach can also identify those images that contribute the most to coverage and remove 293

redundancies. Thus, in our experiments we first randomly selected images until all of the 294

features were used and then pruned the set of selected images so that when used by the 295

farmer to make observations on the field, the locations the farmer must visit are reduced. 296
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4. Results 297
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Figure 7. Number of samples needed until all features were used.

Figure 7 shows the average values over 10 runs of randomly selecting images until all 298

features are used and of the minimal dataset obtained from pruning the random dataset 299

using information given by the forest’s nodes. Both values are compared to the expected 300

bounds given by the coupon collector problem. All the measurements were done in our 301

trained random forest using the test set described above. As described before, our model 302

can adjust from finding all the features to finding if any feature in a region is used. This 303

allows a farmer to choose how many locations on the field to observe, while balancing this 304

decision with how much confidence should they have on the model. Figure 7 presents the 305

number of regions of the image as the x-axis and shows the samples as the y-axis. The 306

x-axis shows the total number of features counted individually, i.e. an image of 108x108 307

pixels has 11664 features and we only consider 20x20 regions, that gives 400 features. 308

Figure 7 also shows four different data points for every number of regions. The first line 309

(blue) is the number of samples required to achieve full feature coverage using our method 310

of finding the minimal set of images such that all features are used. The red line is the 311

number of images needed to achieve full coverage when randomly selecting images, i.e. the 312

blue line shows the value of the red one, but after the optimization. Black is the expected 313

lower bound given by the solution of the coupon collector problem assuming identical 314

probabilities for all features. Yellow is the expected upper bound, given by the solution to 315

the coupon collector problem assuming that every image provides only one new feature. 316

Noticeably, the expected upper bound in the samples with more pixels exceeds the 317

number of available images in the test set (10, 213). This is expected since the solution to the 318

coupon collector problem does not factor the number of samples available. Further, the two 319

lines corresponding to measurements seem to exhibit asymptotic behavior. For larger sets 320

of features the results seem to approach the number of images available (namely, images 321

classified as defoliated) in the test set for the random selection. For the minimal dataset, 322

the result also seems to approach 800 when the set of features is large, but the requirements 323

do not increase further as features increase. Both these results seem to indicate that there 324

are some features that are uncommon in the dataset, but that a bit under 10% of the whole 325

dataset is enough to cover all features. 326
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Figure 8. Percent decrease in samples needed to achieve full feature coverage by minimal set with
respect to random sampling.

Figure 8 shows the decrease in the number of samples required to achieve full feature 327

coverage by different levels of quantization (different number of pixels/regions). The case 328

with 16 regions is not included in Figure 8 because both results are 2 images, so there is no 329

reduction. For others, the results oscillate between 56% and 94%. 330

In terms of the accuracy of the model, the neural network still outperforms the random 331

forest. However, our approach does not intend to replace the neural network model, but 332

to complement it by adding interpretability and providing information for the farmer to 333

make an informed decision on trusting the model. Thus, the accuracy of the model is the 334

reported by DefoNet, i.e. over 90% accuracy and over 90% recall and precision [5]. 335

5. Discussion 336

Our approach effectively trains a random forest to attempt to learn the function 337

produced by a neural network. As discussed previously this allows us to obtain certain 338

insights from the model. This is not a result coming from an experiments but a consequence 339

of the used structures. Further, since neural networks are hard to explain, it is hard to 340

effectively verify that the conclusions about DefoNet drawn through our random forest are 341

correct. 342

In regards to our goal of evaluating if a dataset is a good representation of the field, 343

we observed on most inputs that the number of samples needed was between the expected 344

upper and lower bounds, which indicates a good level of coverage. However, when using 345

all the features available, the expected lower bound was higher than the number of images 346

classified as defoliated, so the actual results were under the lower bound. While surprising, 347

this fact makes sense given the formula used to solve the coupon collector problem. It is 348

likely insightful that the dataset had a full feature coverage when using all of the images. 349

However, future work might look into biased datasets and see how they compare. An 350

additional detail to consider is how for inputs of size 20x20 the expected upper bound came 351

very close to the actual measured value for random selection. This means, when evaluating 352

a dataset for balance, the input size matters as specific input sizes might be outliers. For all 353

experiments with more than 400 pixels, the number of samples needed in random selection 354

was very close to the number of defoliated samples in the dataset. Future work might 355

explore the point at which this starts to happen. It makes sense that for a sufficiently large 356

number of features all samples are needed, but how many features are needed for this to 357

occur might be insightful. Regardless, in all cases the minimal dataset was much smaller 358
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than the random sampling. Thus, a few different levels of quantization are recommended 359

so that outliers in the results can be more easily spotted. Nonetheless, the results in that 360

case were still under the limit and the minimal set was far from the upper bound, which 361

also support the idea of a well balanced set. 362

Finally, the results show that the minimal set of samples is consistently smaller than 363

the set of samples given by random selection. This shows that the information available 364

due to the interpretability of random forests, helps reduce the set of samples a farmer 365

would need to look at, by up to 94%. Thus, showing the value of this technique to farmers. 366

6. Conclusions 367

Farmers can benefit from ML models that help with the timely identification of pests 368

and other threats to crops. One type of such ML models are machine vision models that 369

recognize defoliation in crops. Typically, these models use neural networks to maximize 370

accuracy. However, neural network models are not interpretable. Thus, farmers may not 371

have a way to verify that the model given is effective. While showing a high accuracy in 372

a test set can induce some confidence, this represents performance of the ML model in 373

another field. To trust the model given a farmer might want to verify the model and the 374

test set. For this, a farmer would want to: 375

1. Spot check specific locations in the field and compare to model prediction. 376

2. Evaluate the coverage of a dataset (test set) in a field. 377

3. Modify the dataset by adding images if coverage is not complete. 378

4. Understand why the model makes the predictions that it does. 379

We propose an approach in which the output of a trained neural network is used to 380

train a random forest. We then showed that this method can satisfy the first three goals 381

described above and provide an approximation for the fourth one. We start by quantifying 382

coverage of a field by comparing the usage of features with solutions to the coupon’s 383

collector problem. Then, we find a set of images so that the coverage is complete. The 384

quantification of coverage gives the evaluation of the dataset and the ability to recognize 385

missing images in the dataset. The set of images with full coverage gives the list of locations 386

to spot check. Finally, the random forest provides an approximation to an interpretation of 387

the neural network. By employing this method, we showed that we can produce a set of 388

locations to spot check that is 94% smaller than a randomly selected set that also has full 389

coverage. 390
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